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Abstract:

Hartry Field defended the importance of his nominalist reformulation of Newtonian Gravitational

Theory, as a response to the indispensability argument on the basis of a general principle of intrinsic

explanation.  In this paper, I argue that this principle is not sufficiently defensible, and can not do the

work for which Field uses it.  I argue first that the model for Field’s reformulation, Hilbert’s

axiomatization of Euclidean geometry, can be understood without appealing to the principle.  Second, I

argue that our desires to unify our theories and explanations undermines Field’s principle.  Third, the

claim that extrinsic theories seem like magic is, in this case, really just a demand for an account of the

applications of mathematics in science.  Last, even if we were to accept the principle, it would not favor

the fictionalism that motivates Field’s argument, since the indispensabilist’s mathematical objects are

actually intrinsic to scientific theory.
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§1: Overview

Quine argued that we should believe that mathematical objects exist because of their

indispensable uses in scientific theory.  Hartry Field rejects Quine’s argument, arguing that we can

reformulate science without referring to mathematical objects.  Field provided a precedental

reformulation of Newtonian Gravitational Theory (NGT) which has been refined, improved, and extended

in the nearly thirty years since his original monograph.  In this paper, I argue that Field’s impressive

construction and the more recent developments based on it do not impugn Quine’s argument in the way

that Field alleges that they do.  I do not defend the indispensability argument, generally.  I merely attempt

to undermine this particular, influential line of criticism.

By itself, Field’s reformulation is simply a formal construction.  Field argues for its relevance in a

defense of nominalism on the basis of a principle of intrinsic explanation.  I argue that this principle is not

sufficiently motived or defensible, and that it can not do the work for which Field uses it.  I start with the

relevant background for the Quine/Field disagreement, in §2, and a discussion of Field’s principle, in §3. 

In §4-§6, I present and reject Field’s arguments for that principle.  Finally, in §7, I show that even

accepting Field’s principle would not lead to his nominalist, or fictionalist, conclusion.
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 See Quines 1939, 1948, 1951, 1955, 1958, 1960, 1978, and 1986.  Other versions of the1

indispensability argument are available.  See Putnam 1971 (the success argument); Resnik 1997: §3.3 (the

pragmatic indispensability argument); and Mancosu 2008: §3.2 (the explanatory indispensability

argument) for a few examples.  I focus on Quine’s argument, since Field’s response is directed at it.

 Carnap might be the instrumentalist toward which QI is aimed: “...[S]ome contemporary2

nominalists label the admission of variables of abstract types as ‘Platonism’.  This is, to say the least, an

extremely misleading terminology.  It leads to the absurd consequence, that the position of everybody

who accepts the language of physics with its real number variables (as a language of communication, not

merely as a calculus) would be called Platonistic, even if he is a strict empiricist who rejects Platonic

metaphysics” (Carnap 1950: 215, emphasis added).  See Melia 2000, Azzouni 2004, and Leng 2005 for

more recent defenses of instrumentalism, mainly in response to QI.

§2: Quine’s Indispensability Argument and the Dispensabilist Response

Quine nowhere presents a detailed indispensability argument, though he alludes to one in many

places.  I interpret Quine’s argument as follows.

QI QI1. We should believe the single, holistic theory which best accounts for our sense

experience.

QI2. If we believe a theory, we must believe in its ontological commitments.

QI3. The ontological commitments of any theory are the objects over which that theory

first-order quantifies.

QI4. The theory which best accounts for our sense experience first-order quantifies over

mathematical objects.

QIC. We should believe that mathematical objects exist.1

An instrumentalist who believes that our uses of mathematics in science do not commit us to the

existence of mathematical objects, may deny either QI1 or QI2, or both.  Regarding QI1, there is some

debate over whether we should believe our best theories.  Regarding QI2, one might interpret some of a

theory’s references fictionally.  I shall return briefly to instrumentalist responses to QI in §7 of this

paper.2

Quine’s procedure for determining the ontological commitments of theories, QI3, is even less

controversial than QI1-2.  Still, it is odd to talk of the commitments of a theory.  People make

commitments, or, better, believe things.  It is more appropriate to talk about what a theory says, or means,

though the connections among meaning, reference, and ontology may remain obscure.  That the

statements of a theory mean that there are mathematical objects need not entail that they refer to
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 Contemporary discussions of the eleatic principle trace mainly to David Armstrong’s work. 3

Armstrong sometimes focuses on causation: “Against the suggestion that the world might contain...such

things as possibilities, timeless propositions and “abstract” classes, I argued that these latter entities had

no causal power; and that if they had no power there was no good reason to postulate them” (Armstrong

1978b: 46).  At other times, Armstrong focuses on spatio-temporal location: “The world is nothing but a

single spatio-temporal system” (Armstrong 1978a: 126).  Other formulations are found in Oddie 1982:

286; Azzouni 2004: 150; and Field 1989: 68.  The eleatic principle is difficult to formulate precisely, in

part because necessary and sufficient conditions are always hard to come by, and in part because of its

reliance on the concept of causation, which is itself notoriously unclear.

 See Shapiro 1983.  Field says that he, “Came down more solidly in favor of the first order4

formulations,” in Field 1985b.  He continued to take the second-order version seriously in Field 1990.

 Burgess and Rosen 1997 elegantly collects the slew of reformulation strategies published in the5

wake of Field’s monograph.  See especially the construction at §IIA, based on Burgess 1984, in precisely

the spirit of Field’s original work.  Most reformulations replace mathematical references with modal ones. 

I focus on Field’s work since he explicitly defends the principle of intrinsic explanation.

mathematical objects, let alone that by using the theory we must believe that there are mathematical

objects.  I believe that QI3 provides a misleading method for determining the ontological commitments of

a theory, though I shall not argue directly against it.  Still, instrumentalists who dismiss QI should be

prepared to defend alternative criteria for determining their ontological commitments.  One alternative to

QI3 would be to adopt an eleatic principle on which the ontological commitments of any theory are,

approximately, those objects in the causal realm.3

Debate over QI has focused mostly on QI4.  To oppose QI4, Field provided two synthetic

reformulations of NGT, replacing the standard analytic version of the theory, which relies on real

numbers and their relations, with theories based on physical geometry.  A second-order reformulation

replaced quantification over mathematical objects with quantification over space-time points.  A first-

order reformulation referred instead to space-time regions.  There are technical questions about whether

Field’s reformulations are adequate for NGT.  Field mostly ceded the second-order reformulation, due to

problems involving incompleteness.   The first-order version, using Quine’s canonical language, is a more4

appropriate response to QI anyway.  There are also questions about whether analogous strategies are

available for other current and future theories.   I put these questions aside, for this paper, and suppose5
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 See Field 1980, Chapter 7.  See Field 1985a for his arguments for a substantivalist interpretation6

of space-time.

that reformulations in the spirit of Field’s construction are available for our best theories.

My concern in this paper is whether such reformulations are better theories than standard ones,

for the purposes of QI.  The superiority of dispensabilist reformulations is important because the

indispensability argument relies on the claim, at QI1-2, that we find our ontological commitments in our

best theory.  While Field defends his reformulation on the basis of a principle of intrinsic explanation, I

argue that we do not really accept this principle, and that the standard theory is preferable to its

dispensabilist counterpart.  Thus, I reject Field’s claim that QI4 is false, not because reference to

mathematical objects is ineliminable from science, but because the reformulated theories which eliminate

quantification over mathematical objects are not our best theories.

The value of dispensabilist reformulations has been questioned before.  Pincock 2007 argues that

the standard theory is better confirmed.  To construct representation theorems which demonstrate that a

reformulation is adequate, the dispensabilist adopts axioms about the physical world and its properties. 

For example, to measure mass or temperature, Field assumes the existence of spatio-temporal regions or

points, and orderings among them, to do the work that connected sets of real numbers do in the standard

theory.   But, Pincock argues, those assumptions about the physical world are not as well confirmed as the6

corresponding mathematical axioms and mappings between physical and mathematical structures.

Against Pincock’s claim, even if the dispensabilist’s axioms are less well confirmed than the

mathematical axioms they replace, they may derive some measure of confirmation from their adequacy. 

Furthermore, the dispensabilist reformulation, eschewing mathematical objects, makes fewer

commitments.  It is not clear how to balance the virtue of having fewer commitments with the benefit of

having a greater degree of confirmation.

Burgess and Rosen 1997 argue that a better theory should be publishable in scientific journals,

and adopted by working scientists; since dispensabilist reformulations are not preferred by practicing
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 On Burgess and Rosen’s suggestion: “While entertaining as rhetorical flourishes, such demands7

leave a serious explanatory gap...” (Pincock 2007: 255).

 See Field 1980: viii, 8 and 41.  8

 See Colyvan 1999 and Colyvan 2001: §4.3.9

scientists, they are no better.  This is a wrong way to measure the value of a theory.  The practicing

scientist wants a useful theory to produce and replicate empirical results.  The scientist is mainly

unconcerned with ontological commitments.  Field’s defense of his reformulation correctly emphasizes

concerns about ontological commitments.  Dismissing such concerns, as Burgess and Rosen do, begs the

questions raised by QI about whether scientific theories must quantify over mathematical objects.7

Much of the debate over whether dispensabilist reformulations are better than their standard

counterparts has focused on their attractiveness.  Field uses attractiveness as a criterion for acceptable

reformulations in his original work.   But, attractiveness is a vague and malleable criterion.  One might8

find a theory attractive based on its strength, simplicity, or explanatory power, for just a few examples.  It

is further unclear how to balance such considerations.  “Of course, it is a deep and difficult question how

the various attributes that contribute towards a theory’s attractiveness ought to be spelled out, and how

these attributes are to be independently measured and weighed against each other” (Melia 2000: 472).

Mark Colyvan, arguing that the standard theory is more attractive than Field’s reformulation,

mentions the unification achieved by the standard theory, and its boldness, simplicity, and predictive

powers.   Unfortunately, Colyvan’s argument remains sketchy.  “While I admit that I have remained9

rather vague about the details of how to compare theories, nevertheless I have presented a case for

accepting that mathematical entities directly contribute toward qualities such as boldness and unificatory

power, which we see as properties of good theories” (Colyvan 2001: 87).

This paper pursues and extends Colyvan’s argument, criticizing Field’s own criterion for

attractiveness, his principle of intrinsic explanation.  I present a specific explanation of why Field’s

reformulation is not a better or more attractive theory than the standard one.
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 Joseph Melia argues that space-time points are actually extrinsic to physical theories; see Melia10

1998: 65-7.  He also argues that they are causally irrelevant and arbitrarily chosen.  Melia’s argument is

independent of earlier criticisms that reformulating analytic physical theories by quantifying over space-

time is either cheating (Putnam 1981: 175) or just not nominalistically acceptable (Resnik 1985: 196).

§3: Intrinsic and Extrinsic Explanations and Theories

Field defends his reformulation by appealing to a general preference for intrinsic explanations

over extrinsic ones.

If in explaining the behavior of a physical system, one formulates one’s explanation in terms of

relations between physical things and numbers, then the explanation is what I would call an

extrinsic one.  It is extrinsic because the role of the numbers is simply to serve as labels for some

of the features of the physical system: there is no pretence that the properties of the numbers

influence the physical system whose behavior is being explained.  (The explanation would be

equally extrinsic if it referred to non-mathematical entities that served merely as labels...) (Field

1985a: 192-3).

Field uses ‘intrinsic’ and ‘extrinsic’ to apply to entities, theories, and explanations.  The

application to entities appears basic, since he classifies explanations and theories depending on the types

of objects involved.  Explanations and theories are intrinsic if they make no demand for extrinsic objects.

According to Field, numbers are extrinsic to physics, while physical objects and space-time

regions are intrinsic.   Numbers are extrinsic to geometry, too, while line segments and their ratios are10

intrinsic.  The application of ‘intrinsic’ within mathematics proper raises several questions about the

relationships among mathematical theories.  Are real numbers intrinsic or extrinsic to the theory of natural

numbers?  Are sets extrinsic to category theory?  Are topological spaces extrinsic to Euclidean geometry?

Similar questions can be asked purely within empirical science.  Are biological or psychological

predicates extrinsic to physics?  The objects of physics could be considered extrinsic to the special

sciences, especially if there are emergent properties in those sciences.  In fact, the classification of objects

or theories as intrinsic or extrinsic seems suspiciously flexible.  Consider how an Aristotelian would deem

planets and stars as objects extrinsic to theories about terrestrial objects.

These questions about Field’s principle within either mathematics or empirical science should
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make us wary of the commonsense intrinsic/extrinsic distinction.  But, since my goal at this point is just

to illustrate Field’s distinction, and since my concern in this paper is with the relationship of mathematics

to physical theories, I shall put them aside.

Field relies on the presumption that mathematical objects do not influence physical systems to

classify them as extrinsic to physical theory.  “If, as at first blush appears to be the case, we need to

invoke some real numbers...in our explanation of why the moon follows the path that it does, it isn’t

because we think that the real number plays a role as a cause of the moon’s moving that way...” (Field

1980: 43).

Field’s preference for intrinsic explanations is a broad methodological principle.

Extrinsic explanations are often quite useful.  But it seems to me that whenever one has an

extrinsic explanation, one wants an intrinsic explanation that underlies it; one wants to be able to

explain the behavior of the physical system in terms of the intrinsic features of that system,

without invoking extrinsic entities (whether mathematical or non-mathematical) whose properties

are irrelevant to the behavior of the system being explained).  If one cannot do this, then it seems

rather like magic that the extrinsic explanation works.  (Field 1985a: 193; see also Field 1980: 44

and Field 1989: 18-9).

Call this principle PIE: we should prefer intrinsic explanations over extrinsic ones, where

possible.  PIE is supposed to account for Field’s preference for synthetic physical theories over analytic

ones.  PIE also supports Field’s argument for substantivalist space-time (since relationalist theories

require references to (extrinsic) real numbers) and explains his hostility to modal reformulations of

science (since modal properties are extrinsic to physics).  I make no claims about whether my ensuing

arguments against intrinsic explanation, as it is applied in QI, hold in these two other cases.

Field’s focus on intrinsic explanations, rather than intrinsic theories, might seem a bit puzzling. 

His project is clearly a response to Quine’s indispensability argument, which is formulated in terms of

theories because of Quine’s demand that we find our ontological commitments in our best theory.  To

reformulate the indispensability argument in terms of explanations would force the indispensabilist to

argue, implausibly, that we determine our commitments by consulting our best explanations.
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 If a mathematical theory is conservative over a nominalist physical theory, then we can use the11

mathematics to facilitate derivations in the physical theory with assurance that we will not derive any

unacceptable empirical consequences.  The conservativeness of mathematics would assure us that Field’s

reformulation need have no consequences for working scientists.

If one thinks that scientific explanations are exhausted by the applications of our most austere

scientific theories to sets of initial conditions, then there is no significant difference between appeals to

explanations and theories, and the puzzle is solved.  For traditional covering-law analyses of explanation,

we need not worry whether Field’s principle is made in terms of explanations or theories.  Indeed, Field

seems to have such a model of explanation in mind.

What we must do is make a bet on how best to achieve a satisfactory overall view of the place of

mathematics in the world...  My tentative bet is that we would do better to try to show that the

explanatory role of mathematical entities is not what is superficially appears to be; and the most

convincing way to do that would be to show that there are some fairly general strategies that can

be employed to purge theories of all reference to mathematical entities (Field 1989: 18; see also

fn 15 on p 20).

Furthermore, Field says that an explanation is, “A relatively simple non-ad hoc body of principles

from which [the phenomena] follow” (Field 1989: 15).

In contrast, one might believe that criteria for good explanations are different from criteria for

good theories, especially when theories are used for revealing ontological commitments.  For example,

one might wish that explanations be perspicuous.  If so, one could not prefer Field’s reformulation of

NGT to the standard theory.  Indeed Fields’ reformulation is imperspicuous, and hardly recognizable as

NGT.  It would be impossible to use, which is why he attempts to establish that mathematical theories are

conservative over nominalist physical ones.   If we were to adjust QI to focus on explanation in this11

sense, a preference for intrinsic explanations could not support a dispensabilist reformulation.

Recent interest in mathematical explanation has led to a new version of the indispensability

argument which could be called the explanatory indispensability argument.  According to the explanatory

argument, we should believe in the existence of mathematical objects if they are essential to our scientific
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 In addition to Mancosu 2008, see Baker 2005; Bangu 2008; Leng 2005; and Lyon and Colyvan12

2008.

 Hilbert mentions both in a letter to Frege on his motivation for axiomatizing geometry.  (Frege13

1980: Letter IV/4)

explanations.   If we take ‘explanation’ in the covering-law sense, the explanatory argument is relevantly12

similar to QI.  The challenge for the nominalist to remove references to mathematical objects from our

best theories remains.  If we take ‘explanation’ in a broader sense, Field’s principle would need to be

adjusted, but so would QI.  Since these adjustments are beyond the scope of this paper, I will focus on

PIE in the sense that I believe Field intended.  In this sense, explanatory power is an important theoretical

virtue, and we can evaluate either intrinsic explanations or theories.

§4: Field’s Motivation for PIE: Hilbert’s Intrinsic Geometry

I discern three arguments for PIE in Field’s work.  There is the ‘magic’ argument mentioned in

the previous section, which I assess in §6.  Field also relies on an implicit Okhamist argument, which I

consider in §5, that theories should be as parsimonious as possible.  Lastly, Field argues that the

importance of Hilbert’s 1899 reformulation of Euclidean geometry, which inspired Field’s project, can be

explained by PIE: Hilbert’s axiomatization is superior because it is an intrinsic theory.  In this section, I

argue that we can understand the success of Hilbert’s axiomatization without adopting PIE as a general

principle which supports Field’s reformulation as a best theory for the purposes of QI.

The projects of axiomatizing mathematics in the late nineteenth century were motivated by

diverse factors, two of which stand out: the oddities of transfinite set theory, and the development of non-

Euclidean geometries.   In both cases, traditional mathematical ontology was contentiously extended13

without obvious inconsistency.  Rigor in the form of axiomatic foundations was sought to put the

controversial new theories on firm ground.

Euclidean formulations of geometry had used real numbers to represent lengths of line segments
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and triples of real numbers to represent points.  Hilbert’s new axiomatization referred to regions of

geometric space in lieu of real numbers, and used the geometric properties of betweenness, segment

congruence, and angle congruence in the way that real numbers, and their ordering, were used in analytic

versions.  Hilbert constructed representation and uniqueness theorems which assured the adequacy of his

so-called synthetic theory.

We can understand why Hilbert would prefer a synthetic geometry over analytic versions without

appealing to PIE.  Here is what Hilbert says about his motivation:

I wanted to make it possible to understand those geometrical propositions that I regard as the

most important results of geometric inquiries: that the parallel axiom is not a consequence of the

other axioms, and similarly Archimedes’ axiom, etc.  I wanted to answer the question whether it

is possible to prove the proposition that in two identical rectangles with an identical base line the

sides must also be identical, or whether as in Euclid this proposition is a new postulate.  I wanted

to make it possible to understand and answer such questions as why the sum of the angles in a

triangle is equal to two right angles and how this fact is connected with the parallel axiom...”

(Frege 1980: 38-9).

Hilbert’s account of his motivations make it clear that he wanted to clarify relations within

geometry.  By relying on geometric relationships to explain geometric phenomena, he avoided worries

about the consistency of analysis in addition to the worries about geometry.  Hilbert thought that his

axiomatization better explained geometric entailments.

We can best interpret Hilbert’s motivation as purely mathematical, rather than ontological.  He

makes no suggestion that his new theory is better for the purposes of revealing ontology, which is how

Field uses his formulation of NGT.  Hilbert devised his axiomatization well before Hempel’s work on

scientific explanation, which linked explanation with formal theories, and well before Quine’s work on

ontological commitment, which linked formal theories with commitments.  Furthermore, there are no

benefits of parsimony arising out of Hilbert’s work.  He only shows that real numbers are avoidable in the

axiomatization of geometry.  His project was not intended to eliminate commitments to numbers.

Regarding more general ontological questions, our main worry within mathematics is antinomy,



Intrinsic Explanation and Field’s Dispensabilist Strategy, Page 11

not parsimony.  Worries about antinomy within analysis seem to be the source of the nineteenth-century

concerns that motivated the arithmetization project of Cauchy, Weierstrass, Dedekind, and others, and

which eventually motivated Hilbert’s axiomatization of geometry.  But, contradictions may be more

easily discovered in larger, more comprehensive theories than in smaller, more isolated ones.  The

superiority of Hilbert’s axiomatization for the purposes of revealing geometric relations does not entail its

superiority in constructing proofs and discovering contradictions.  For a recently well-worn example,

consider that Fermat’s theorem, a number-theoretic claim, was proved by mapping formulas to

topological spaces, after hundreds of years of more direct, intrinsic attempts to prove it.

Different axiomatizations serve different purposes.  For ontological purposes, it is the conjunction

of Hilbert’s construction with analysis, which maps geometric structures onto those of number theory,

which really interests us.  We need not invoke a general principle, PIE, to explain the utility of Hilbert’s

reformulation, and insist that his intrinsic, synthetic theory is superior in all ways to the analytic

formulation.  While Hilbert’s axioms emphasize narrow geometric relations, they omit broader and

edifying relations between analysis and geometry.

§5: Unification and Parsimony

Since we need not appeal to PIE to see the virtues of Hilbert’s reformulation, Field’s response to

QI loses some of its motivation.  More importantly, PIE, which seeks to isolate theories and explanations

according to their intrinsic elements, conflicts with our general preference to unify explanations, revealing

connections among diverse disciplines.  A comprehensive theory simplifies, by showing how different

commitments cohere.  As Michael Devitt argues, ontology is not to be found in isolated theories.  “The

best ontology will be that of the best unified science” (Devitt 1984: §4.9; see also §7.8).  Using PIE,

which seeks to isolate independent theories, in a response to the essentially holistic QI, effectively begs

the question.

For an example of the virtues of extrinsic theories within mathematics, consider how the
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 See Kitcher 1981: 508.14

 In contrast, the claim that unifying connections indicate that certain theories (say psychology)15

reduce to others (say physics) is contentious.  The point here relies only on the weaker claim that we

fundamental theorem of calculus bridges geometry and algebra.  Algebra could easily be seen as extrinsic

to geometry, but uniting the two theories yields a more comprehensive, and more fruitful, theory.  We can

prove more in an extrinsic second-order theory than we can in an incomplete first-order theory, like first-

order arithmetic, itself.

The historical precedents for unification in science are overwhelming, and include Newtonian

Gravitational Theory unifying Kepler’s celestial mechanics with Galileo’s terrestrial mechanics, and

Maxwell’s electrodynamics unifying electrical and magnetic theories with optics.  Consider how welcome

bridge laws between physics and chemistry or biology would be.  Indeed, unification may be central to

our notions of scientific explanation.  The importance of unifying disparate theories is emphasized, for

example, by its central role in Kitcher’s unificationist account of explanation.  On the unificationist

account, it is essential to an explanation that it unify a range of disparate phenomena; Kitcher argues that

unification is the underlying principle which the covering-law model was intended to capture.14

A detailed discussion of the various accounts of scientific explanation is beyond the scope of this

paper.  But, on all of the most promising accounts, unification plays a similarly important role.  Covering

laws are preferred if they are broader.  Causal accounts seek fewer, more unifying causes.  The desire to

unify theories is compatible with the observation that there are some good explanations which appeal only

to isolated portions of our theories.  For example, even if we presume that mental-state predicates are

somehow reducible to physical ones, a psychological explanation may not need to appeal to any physical

principles.  Such limited explanations do not conflict with our broader presumption toward unification. 

Even a dualist would have to appreciate the development of bridge laws between cognitive and physical

sciences.  We can remain neutral concerning both the ultimate autonomy of special sciences and whether

there is a Grand Unified Theory without impugning our preference to unify theories.   It would be15
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would welcome bridge laws if they were formulated.  

implausible for Field to reject the general desire for unification, and there is no evidence that he does.

But granted that we seek unifying explanations and theories, Field’s general principle of intrinsic

explanation seems difficult to defend.  Our desire to unify theories undermines PIE, as a general principle. 

Explanations are less edifying if they are restricted to isolated, intrinsic objects.  The addition of extrinsic

elements can improve a theory.  

One might wonder if the unification of mathematics and physics is a special case which resists a

general preference for unification.  Such resistance might be supported, say, by the observation that

mathematical objects are causally independent of the physical world.  Does our preference for unification

prevail?  Or, do the differences between mathematics and physical science entail that we should prefer

scientific theories which eschew extrinsic mathematical objects?  In the latter case, our preference for

intrinsically isolating physics from mathematics is a specific case, not a corollary of a general principle. 

Even if one agreed with Field that his reformulation of NGT were a preferable, more attractive theory,

that preference would not derive from a general principle of intrinsic explanation.

In the former case, we are left to wonder whether a limited principle of intrinsic explanation, in

this particular case, supports a preference for Field’s reformulation.  Colyvan directly tackled the question

of whether Field’s reformulation is more attractive than standard NGT.  He argued that unifying

mathematics and science leads to a preferable theory.  “Mathematics contributes to the unification and

boldness of the physical theory in question, and therefore is supported by well-recognised principles of

scientific theory choice” (Colyvan 2001: 81).

Colyvan provides three examples.  First, the introduction of complex numbers as missing

solutions to quadratic differential equations simplifies mathematics, since we need not wonder why some

quadratic equations have only one, or even no, root.  It unifies exponential and trigonometric functions,

and any scientific theory which uses such functions.  Second, Dirac predicted the existence of positrons
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 Boolos 1987 forcefully made the point that inferences which are simply derived using16

mathematics become impossibly complex without mathematics.

by relying on the mathematical solutions to his eponymous equation in relativistic quantum mechanics;

positrons were not experimentally verified for another five years.  The unification of mathematics and

physics allowed for faster scientific progress.  Lastly, the Lorentz transformations were initially derived

as an account of the failure of the Michelson-Morley experiment intended to provide evidence of the

ether.  Lorentz, who was in the grip of a false scientific theory, nevertheless developed equations which

were later derived from a better scientific theory, viz. special relativity.  Without the underlying extrinsic

mathematics, it is difficult to see how Lorentz could have developed his equations.

Colyvan’s examples illustrate how, in the absence of an over-riding principle, being intrinsic is

just one among many characteristics to be weighed when evaluating the attractiveness of a theory.  The

principle of intrinsic explanation seems especially disfavored when applied specifically to the

mathematics used in science, i.e. in the specific case on which QI depends.  The unification of

mathematics with physics yields a simpler and more powerful theory, a point which Field grants by

arguing for conservativeness.  And, the isolation of scientific theory from mathematics, especially on the

basis of a dispensabilist reformulation, denies important relations among mathematical and physical

objects.  

For a simple example, it is a mathematical property of a three-membered set that it has exactly

three two-membered subsets.  Applying this property, we can account for why we can, with a red marble,

a blue marble and a green marble, form exactly three different-looking pairs of marbles.  This example of

the empirical utility of mathematics does not demand much mathematical machinery.  The conclusion

may be derived from empirical premises and first-order logic, but such reformulations are not simple. 

The nominalistic reformulation of claims which refer to numbers or sets, written in terms of first-order

logic, is substantially more complex than the theory which includes mathematical axioms.16

The ability of a theory to unify disparate phenomena is only one factor among several that we use
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to evaluate theories.  Others include strength, simplicity, fruitfulness, perspicuity, and parsimony. 

Complete lists are difficult to formulate.  Field’s argument is that we should include on such a list

whether a theory is intrinsic, and I have argued that our desire to unify theories is more important.  Still,

the specific case at hand, the one for which Field invokes PIE, is whether standard (extrinsic) science is

preferable to Field’s nominalized (intrinsic) theory.  The only obvious theoretical virtue of the

nominalized theory is parsimony.

Desire for parsimony proceeds from a principle applicable to the concrete objects posited by our

best theories: do not multiply physical entities without good reason.  When constructing scientific

theories, it is important not to posit more in the world than that which accounts for the phenomena.

It is an open question whether principles of parsimony should apply to the mathematical objects

used in science.  In mathematics proper, parsimony is not the most important theoretical virtue.  In

contrast to the natural scientist, the mathematician explores his universe with a desire to multiply entities. 

In mathematics, it is a virtue to be plenitudinous, as long as we avoid antimony.  Once we have admitted

abstracta into our ontology, we do not run out of room.  Set theorists proudly present discoveries of

distinct new cardinals.  Kripke models for modal logic have ameliorated mathematical worries about

modality without resolving persistent philosophical worries about possible worlds.  The belief that

principles of parsimony are applied differently in mathematics is also a basis for Mark Balaguer’s

plenitudinous platonism on which every consistent set of mathematical axioms truly describes a

mathematical universe.   Worries about the introduction of new mathematical entities, as with complex17

numbers, or transfinites, tend to focus mainly on their consistency, or the rigor with which they are

introduced.

PIE would reduce the ontology of scientific theories at the expense of perspicuity, explanatory

power, fruitfulness, and coherence with other theories.  And it is not even clear that the reduced ontology
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 “On the one hand, the indispensability argument sides with nominalists in avoiding any18

presupposition that mathematical statements are intrinsically privileged.  On the other hand, the argument

sides with Platonists in taking mathematical statements at face value, as making genuine ontological

claims...  This evenhandedness is an important strength of the indispensability argument...” (Baker 2003:

50).

is preferable.

Joseph Melia argues for scientific theories which reduce ontology.  “I accept that considerations

of simplicity play an important role in theory choice.  But I prefer the hypothesis that makes the world a

simpler place.  For sure, all else being equal, I prefer the theory with the simpler ontology.  For sure, all

else being equal, I prefer the theory that postulates the least number of fundamental properties and

relations.  But the simplicity I value attaches to the kind of world postulated by the theory - not to the

formulation of the theory itself” (Melia 2000: 473).

Burgess and Rosen argue against reduced mathematical ontology as a theoretic virtue.  “It is at

least very difficult to find any unequivocal historical or other evidence of the importance of economy of

abstract ontology as a scientific standard for the evaluation of theories” (Burgess and Rosen 1997: 206).

The indispensability argument is alluring since it seems to provide a framework on which

mathematical nominalists and platonists can agree.   Like QI, PIE was intended as a non-question-18

begging approach to the nominalist/platonist debate.  But, as the quotes from Melia and Burgess and

Rosen illustrate, the old debate remains.  Given a dispensabilist reformulation of standard science, we

have two competing scientific theories: the intrinsic dispensabilist one, and the extrinsic standard one. 

The intrinsic theory is preferable only if one has a prior disposition to nominalism.

§6: The ‘Magic’ Argument

I have argued that two of Field’s three arguments for PIE (its ability to explain the value of

Hilbert’s geometry and a general preference for parsimony) are unsuccessful.  Lastly, in defending his

general principle, Field granted the utility of extrinsic explanations, but argued that they seem like magic
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if there is no underlying intrinsic explanation presupposed.  Field’s claim is that explanations of physical

phenomena should be possible which refer only to entities which are active in producing those

phenomena.  Why should one insist on this?

The obvious defense of the general demand for intrinsic theories comes from linking theories

with ontological commitment, as Quine does.  We want our theories to refer only to relevant objects in

order to avoid errant commitments.  A theory of gravitational force among concrete objects should not

commit us to mathematical objects.

But if we have the mathematical commitments already, the extrinsic theory involves us in nothing

untoward, and simplifies and unifies our theory.  We do not want mistakenly to impute causal powers to

mathematical objects by using the extrinsic mathematical theory within physics.  But, merely noting that

mathematical objects are non-spatio-temporal blocks any such confusion.

Thus, the strength of the magic argument depends on whether we have a prior commitment to

mathematical objects.  The nominalist sees the uses of mathematics in science as magical, since s/he

denies the existence of mathematical objects.  The platonist sees no magic, only a demand for an account

of the application of mathematics.

Several accounts of the application of mathematics in science, compatible with platonism, have

been developed since Field’s original monograph.  Mark Balaguer argues that there is nothing magical

about the utility of mathematics in physical science, since mathematics provides a theoretical apparatus

for all possible physical states of affairs.   Pincock 2004 provides an explanation of the applications of19

mathematics which, though ontologically neutral, is compatible with platonism and so can also undermine

Field’s magic argument.  Furthermore, one could deny the magic argument by claiming that mathematical

objects are intrinsic to every physical system.  Indeed, Quine’s holism entails that the indispensabilist and

the dispensabilist are committed to such a position, as I will discuss in the next section.
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§7: PIE Does Not Favor Fictionalism

I have presented considerations which favor extrinsic theories over intrinsic ones, and which

undermine PIE, and thus deflect Field’s criticism of QI.  In addition to Field’s negative argument against

QI4, he presents a positive account of mathematics, which he calls fictionalism.  According to

fictionalism, mathematical existence claims are false, and mathematical conditionals are vacuously true, if

true.  In this section, I argue that even if we accept PIE, it does not favor fictionalism.  The

indispensabilist can accept PIE since s/he should deny that mathematical objects are extrinsic to physical

theory.

It is well-known that the indispensabilist has trouble accepting a distinction between abstract and

concrete objects.  As Charles Parsons notes, 

Although Quine makes some use of very general divisions among objects, such as between

‘abstract’ and ‘concrete’, these divisions do not amount to any division of senses either of the

quantifier or the word ‘object’; the latter sort of division would indeed call for a many-sorted

quantificational logic rather than the standard one.  Moreover, Quine does not distinguish

between objects and any more general or different category of ‘entities’ (such as Frege’s

functions) (Parsons 1983: 377).

 Furthermore, Quine himself wonders if such distinctions are sustainable.

[O]dd findings [in quantum mechanics] suggest that the notion of a particle was only a rough

conceptual aid, and that nature is better conceived as a distribution of local states over space-time. 

The points of space-time may be taken as quadruples of numbers, relative to some system of

coordinates... We are down to an ontology of pure sets.  The state functors remain as irreducibly

physical vocabulary, but their arguments and values are pure sets.  The ontological contrast

between mathematics and nature lapses (Quine 1986: 402; see also Quine 1978; Quine 1960: 234;

Quine 1974: 88; and Quine 1969: 98).

The indispensabilist’s theory is constructed to explain or represent phenomena involving ordinary

objects.  “Bodies are assumed, yes; they are the things, first and foremost.  Beyond them there is a

succession of dwindling analogies” (Quine 1981: 9).

As these analogies dwindle, the traditional abstract/concrete distinction blurs, and so does the
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 Ontic blur is just one of a larger set of characteristics that distinguish the indispensabilist’s20

platonism from a traditional version.  The indispensabilist’s commitments are limited to those

mathematical objects required by empirical science, while mathematicians, especially set theorists, work

with a vaster universe.  Claims that the indispensabilist’s mathematical objects exist necessarily, or

eternally are also difficult to defend.  Further, since the justifications of the indispensabilist’s

mathematical beliefs are the same as those of science, the a priori methods of mathematics are impugned.

intrinsic/extrinsic distinction.  For Quine, these distinctions must be made within science.  But Quine’s

preferred theory does not support them.  All of the indispensabilist’s objects are posits of the same

monolithic theory, made in the same way, for the same purposes of explaining our sense experience. 

There is no basis for discrete differences in type, no basis for either an intrinsic/extrinsic distinction or a

related abstract/concrete distinction.  Call this facet of indispensabilism ontic blur.20

Field classified mathematical objects as extrinsic to NGT in part because of their causal isolation

from physical ones.  Field, though, is clearly thinking of traditional mathematical objects: abstract objects

that exist in all possible worlds, and are knowable a priori.  Mark Balaguer defends a principle of causal

isolation (PCI) governing the traditional separation of mathematical and physical objects.  But, PCI is off

limits to the indispensabilist.  In fact, Balaguer notes that ontic blur is definitive of QI.  “The Quine-

Putnam argument should be construed as an argument not for platonism or the truth of mathematics but,

rather, for the falsity of PCI” (Balaguer 1998: 110).

Just as the indispensabilist does not countenance traditional abstract objects, discretely distinct

from ordinary objects, any dispensabilist must accept ontic blur.  For, the dispensabilist accepts the

indispensabilist’s terms of debate, including QI1-3, which are the source of the blur.  Given blur, Field

can not call mathematical elements extrinsic to physical theory.  The indispensabilist’s mathematical

objects are actually intrinsic to the one, holistic best theory.

Field tries to establish that the posits of space-time points differ from posits of mathematical

objects in order to admit space-time points as intrinsic to physics.  He claims that mathematical objects

are supposed to be known a priori, while physical space is not (Field 1980: 31).  But, for the

indispensabilist, mathematical objects, like all objects, are known a posteriori.  A defense of the apriority
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of our knowledge of mathematical objects would undermine both the dispensabilist and the

indispensabilist, making Field’s reformulation moot.  An apriorist could argue for mathematical

knowledge more forcefully, independently of QI.

Field also argues for the difference between the posits of mathematical objects and space-time

points on the basis of the richer mathematical ideology (Field 1980: 32).  But Resnik 1985 develops an

impressive amount of mathematics within Field’s space-time, the geometry of which corresponds to

second-order analysis.  Not only do we get addition and multiplication over the reals and the natural

numbers, but we can set up a coordinate system, and define ordered n–tuples.  We can even avoid the

arbitrary choice of points to serve as 0 and 1 by substituting individual variables.

It is difficult to see how Field could deny that numbers are intrinsic to physical theories without

turning PIE into some version of an eleatic principle, appealing to the causal isolation of mathematical

objects.  But, if he is presuming an eleatic principle, it is difficult to see why indispensability holds any

sway.  The eleatic can just deny Quine’s argument in favor of a causal criterion for ontological

commitment.  The eleatic can be an instrumentalist about a theory’s references, and need not reformulate

physical theory to avoid commitments to mathematical objects.21

Field’s dispensabilist ideology and the indispensabilist’s quasi-mathematical ideology both apply

to intrinsic objects.  The traditional platonist can make the extrinsic/intrinsic distinction.  But by

definition, the traditional platonist has an independent epistemology for mathematics.  The dispensabilist

reformulation of standard science does not denigrate our beliefs about mathematical objects if they are

independently justified.
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§8: Conclusion

It is difficult to see any value in PIE, as a general principle guiding theory choice.  Resnik,

reviewing Field’s monograph, argues that we can see it at work in economics.

The Expected Utility Theorem, which underwrites the use of utility functions, establishes that if

an agent’s preference ordering satisfies certain conditions then it can be represented by a real

valued function which is unique up to positive linear transformations.  From this it is usually

argued that there is no need to presuppose ill understood utilities in accounting for behavior

which maximizes expected utility because an account can be given directly in terms of

preferences. (Resnik 1983: 515)

Resnik says that an intrinsic account, in terms of preferences, is desirable because utilities are “ill

understood.”  But, if they were better understood than preferences, then the account would go the other

way.  If we could order utilities uniquely, while remaining confused about inter- and intra-personal

comparisons of preferences, we would seek to explain preferences in terms of utilities.  One principle

underlying Resnik’s preference is that we should explain things we do not understand in terms of things

we do understand.  Appropriate Ockhamist principles also guide the avoidance of utilities.  It is ironic that

Resnik uses an example which employs mathematics to characterize the elements we understand.  If

utilities were as well understood as mathematical theories, then accounts in terms of them would be

welcome.  PIE is doing no work, here.

I have argued that our preference for unification of theories undermines PIE.  A proponent of PIE

might complain that once we introduce bridge principles which unify two distinct theories, they are no

longer extrinsic to each other, and thus that PIE is not in conflict with unification.  Before unification, we

have separate theories, and explanations of the principles of one theory in terms of principles of the other

would be disfavored.  After unification, such explanations would be welcome.

To be slightly more precise, consider (the conjunction of axioms of) two completely independent

1 2 1 2 1theories, T  and T .  We could take T  to be biology and T  to be quantum mechanics; or, we could take T

2 1 2to be ZFC and T  to be general relativity.  But, assume that T  and T  are indisputably extrinsic to each
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1 2other.  The theory T  + T  which merely conjoins two sets of axioms is thus an extrinsic theory. 

1 2Explanation of phenomena governed by the axioms of T  in terms of the principles embodied in T  would

be extrinsic explanations.

1 2 1 2Now, consider a set of mapping principles, M, which bridge T  and T .  Field claims that T  + T

1 2+ M is also an extrinsic theory.  We can see that Field thinks that T  + T  + M is extrinsic by noting that

standard (mathematized) physics includes physical axioms, mathematical axioms, and mappings between

the two.  These mapping principles are precisely at work when we measure the length of a wire in meters,

or when we discuss the Hilbert space of an atom.

So, my imagined response by the defender of PIE who wishes to embrace unification claims that

1 2 1T  + T  + M is an intrinsic theory, since the bridge principles connect the objects posited by T  with the

2the objects posited by T .  This approach would save PIE.  We could all agree that extrinsic explanations,

1 2in the sense of explanations that used T  + T  (without M), were magical, and to be disfavored.  But, this

interpretation of PIE deprives it of all application.  For, on this view there would be no extrinsic

explanations.  We would never appeal to mathematics in physics, or to quantum mechanics in biology,

unless we had bridge principles in hand.  Any plausible explanation would be have to intrinsic. 

Unification is really opposed to intrinsic explanation.

We can appreciate both intrinsic and extrinsic theories.  The situation is analogous to the relation

between classical mathematicians and intuitionists, from a classical perspective.  The classical

mathematician can appreciate the distinction between constructive and nonconstructive proofs, without

concluding that only constructive proofs tell us what exists.  Similarly, we can appreciate the technical

acuity of Field’s construction without inferring from it that there are no mathematical objects.

Philosophers with nominalist predispositions may see PIE as a commonsense principle, and so

may have neglected to recognize a gap in Field’s argument against QI.  There also may be other reasons

to reject QI, or merely to prefer a theory which does not quantify over, or otherwise refer to, mathematical

objects.  But the principle of intrinsic explanations can not do this work.
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