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Generally speaking, ‘induction’ refers to any form of inference in which we
move from a finite set of observations or experimental results to a conclusion
about how things generally behave. There are various forms of inductive infer-
ence, but we shall concentrate on simple enumerative inductions, which start
from the premiss that one phenomenon has always followed another so far, and
conclude that those phenomena will always occur together. So, for example,
you might note that, every time you have seen red sky in the evening, there has
been fine weather the next day, and conclude on that basis that red sky in the
evening is always followed by fine weather. Or you might note that all the sam-
ples of sodium you have heated on a Bunsen burner have glowed bright orange,
and conclude on this basis that in general all heated sodium glows bright
orange. Schematically, the premiss to an enumerative induction is that ‘n As
have all been observed to be Bs’, and the conclusion is that ‘All As are Bs’.

Note that these inductive inferences start with particular premisses about a
finite number of past observations, yet end up with a general conclusion about
how nature will always behave. This is the source of the notorious problem of
induction. Por it is unclear how any finite amount of information about what has
happened in the past can guarantee that a natural pattern will continue for all
time.
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After all, what rules out the possibility that the course of nature might
change, and that the patterns we have observed so far turn out to be a poor
guide to the future? Even if all red-skyed evenings have been followeq by fine
weather so far, who is to say that they won't start being followed. by rain in th.e
next century? Bven if all heated sodium has glowed orange up till now, who is
to say it won't start glowing blue at some future dz?te? o

In this respect induction contrasts with deduction. In dedu.cnve inferences
the premisses really do guarantee the conclusion. For example, if you know that
*Either this substance is sodium or it is potassium’, and t}?en' learn fu'rthe‘r that
It is not sodium’, you can conclude with certainty that It is porassium’. The
truth of the premisses leaves no room for the conclusion to be amyth.\n'g but
true. But in an inductive inference this does not hold. If you are t?ld thaF Each
of the As observed so far has been B’, this does not guarantee that All.As, includ-
ing future ones, are Bs’. It is perfectly possible that the former claim may be
true, but the latter false. ‘

I have illustrated the problem of induction with respect to enumerative
inductions. There are other forms of induction apart from enumerative induc-
tion, as we shall see later. But the problem of induction is quite general. For
what the different forms of induction have in common is that they take us ﬁ'f)m
information about a finite number of instances to some general conclusion
about a wider class of cases. Since nothing in logic seems to guarantee that the
wider class will display the same behaviour as the finite instances, any such
inference is for this reason equally problematic. .

The problem of induction threatens both everyday and scientific }cm.:wled.ge.
Most of the everyday knowledge we rely on consists of general pnncxPlcs like
‘Whenever you cut yourself, you bleed’, or "Whenever the brak.es are applied, cars
stop’. Similarly, all scientific discoveries worth the name are in the f'orm of gen-
eral principles: Galileo’s law of free fall says that “All bodies fa!l with constant
acceleration’; Newton’s law of gravitation says that ‘All bodies attract each
other in proportion to their masses and in inverse proportion to the square of
the distance between them’; Avogadro’s law says that ‘All gases at the.same tem-
perature and pressure contain the same number of molecules per unit volume’;
and so on. The problem of induction calls in question the authonFy of all these
general claims. For if our evidence is simply that these generalizations have
worked so far, then how can we be sure that they will not be disproved by future

occurrences?

1.2. Initial Responses to the Problem
1.2.1. A Principle of Induction

One possible response to the problem of induction would be to appeal to some
‘principle of induction’ which asserts that, for some number N,
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(P) Forany aand B, whenever N as are observed to be s, then all as are Bs.

If such a principle were available, then we could add it to the original premiss
of any enumerative induction—namely, that N (or more) As have been observed
to be Bs—to conclude deductively that ‘All As are Bs’. For once we add (P)asa
premiss, then there is no longer any room for the premisses of the induction to
be true and the conclusion to be false.

However, even if we leave to one side the question how big N needs to be to
make (P) plausible, there is an obvious difficulty about the status of the pro-
posed principle. Clearly (P) is not an analytic claim whose truth is guaranteed
by its meaning: you could understand all the terms in it yet not believe it. So it
must be a synthetic claim, in need of support by empirical evidence. But since
(P) is a generalization, this support would have to be some kind of inductive .
argument, taking as its premisses some finite body of instances where inductive
inferences have worked in the past, and seeking to move to (P) as a conclusion.
So in the present context of argument this would beg the question at issue,

which is to defend inductive arguments against the challenge raised by the
problem of induction.

1.2.2. Inductive Arguments for Induction

Suppose we abandon any principle of induction, and thereby accept that we
cannot make inductive arguments deductive. Still, cannot we simply argue that
inductive arguments are nevertheless acceptable because they work? Even if the
premisses don't logically guarantee the conclusions, don’t the conclusions nor-
mally turn out to be true anyway? After all, hasn’t our experience shown us that
patterns like red-sky-good-weather or sodium-heated—orange-flame continue
to hold good in the future, once they have displayed themselves in the past?

Byt this suggestion runs into the same difficulty as the last one. We are argu-
ing that inductions are generally acceptable because our experience has shown
them to work so far. But this is itself an inductive argument. After all, even if
observed patterns have tended to hold good so far, what guarantees that they
will continue to do so? As Bertrand Russell once said, it is no help to observe
that past futures have conformed to past pasts; what we want to know is
whether future futures will conform to future pasts. Given that we are trying to
vindicate induction against objections, an inductive argument for induction
once more begs the question.

1.2.3. Introducing Probability

Another possible response to the problem of induction is to regard inductive
inferences as merely generating probable conclusions, rather than certain ones.
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Even if past evidence doesn’t allow us to be sure about future patterns, might it
not at least support conclusions about probable patterns?

Later on we shall see that the idea of probability is indeed important for our
understanding of inductive arguments. But it is not difficult to show that on its
own it is not enough to solve the problem of induction.

In fact, as we shall see later, there are really two notions of probability.
Roughly, we need to distinguish probability in the sense of rational degree of
belief from probability in the sense of objective tendency. When we say that it is 50
per cent probable that it will snow today, we might mean one of two things.
First, we might be expressing a degree of belief: saying that we have an equal
expectation both for its snowing and for its not snowing today. Alternatively, we
might be making a claim about an objective tendency: saying that in general it
snows on 50 per cent of days like today. Later on we shall look at these ‘subjec-
tive’ and ‘objective” interpretations of probability in more detail. Here I merely
want to show that neither helps with the problem of induction.

Suppose first that the conclusion of an inductive inference is a statement of
objective probability, stating that in 90 per cent of cases, say, As turn out to be Bs
(for example, that on 90 per cent of days following red-skyed evenings there is fine
weather). The evidence for this claim will still be a finite body of observations,
namely, that in our experience so far more or less 90 per cent of As have been Bs.
So the problem of induction is still with us, for we still need to explain how a finite
body of evidence can establish a general conclusion. For note that the probabilis-
tic conclusion is still a claim, requiring not just that 90 per cent of As have been
Bs in the past, but also that this will continue in the future. Even if the pattern we
are now interested in is probabilistic, rather than exceptionless, we still face the
same difficulty in explaining how past patterns can tell us about future ones.

Alternatively, we might take the conclusion of an inductive inference to be a
statement of subjective probability, asserting that “We should attach a high
degree of belief to the proposition that all As are Bs’. (Note that we could also
have a statement of subjective probability about a proposition of objective
probability: for example, “We should attach a high degree of belief to the propo-
sition that 90 per cent of As are Bs’. The point which follows would apply just
the same.) The difficulty once more is that our evidence for such a conclusion
about subjective probability is simply that As have been observed to go with Bs
so far. Yet the conclusion says that we should have a high expectation that As will
go with Bs in the future as well as the past. So we still face the problem of
explaining how facts about the past can tell us what to think about the future.

1.3. Popper’s Alternative to Induction

A rather different line of response to the problem of induction is due to Karl
Popper. Popper looks to the practice of science to show us how to deal with the
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problem. In Popper’s view, science does not rest on induction in the first place.
He denies that scientists start with observations and then infer a general theory.
Rather, they first put forward a theory, as an initially uncorroborated conjec-
ture, and then compare its predictions with observations to see whether it
stands up to test. If such tests prove negative, then the theory is experimentally
falsified and the scientists will seek some new alternative. If, on the other hand,
the tests fit the theory, then scientists will continue to uphold it—not as proven
truth, admittedly, but nevertheless as an undefeated conjecture.

If we look at science in this way, argues Popper, then we see that it does not
need induction. According to Popper, the inferences which matter to science
are refutations, which take some failed prediction as the premiss and conclude
that the theory behind that prediction is false. These inferences are not induc-
tive, but deductive. We see that some A is not-B, and conclude that it is not the
case that all As are Bs. There is no room here for the premiss to be true and
the conclusion false. If we discover that some piece of sodium does not glow
orange when heated, then we know for sure that it is not the case that all heated
sodium glows orange. The point here is that it is much easier to disprove theo-
ries than to prove them. A single contrary example suffices for a conclusive dis-
proof, but no number of supporting examples will constitute a conclusive
proof.

So, according to Popper, science is a sequence of conjectures. Scientific theo-
ries are put forward as hypotheses, and they are replaced by new hypotheses
when they are falsified. However, this view of science raises an obvious ques-
tion: if scientific theories are always conjectural, then what makes science bet-
ter than astrology, or spirit-worship, or any other form of unwarranted
superstition? A non-Popperian would answer this question by saying that real
science proves its claims on the basis of observational evidence, whereas super-
stition is nothing but guesswork. But, on Popper’s account, even scientific the-
ories'are guesswork—for they cannot be proved by the observations, but are
themselves merely undefeated conjectures.

Popper calls this the ‘problem of demarcaton'—what is the difference
between science and other forms of belief? His answer is that science, unlike
superstition, is at least falsifiable, even if it is not provable. Scientific theories are
framed in precise terms, and so issue in definite predictions. For example,
Newton’s laws tell us exactly where certain planets will appear at certain times.
And this means that if such predictions fail, we can be sure that the theory
behind them is false. By contrast, belief systems like astrology are irredeemably
vague, in a way which prevents their ever being shown definitely wrong.
Astrology may predict that Scorpios will prosper in their personal relationships
on Thursdays, but when faced with a Scorpio whose spouse walks out on a
Thursday, defenders of astrology are likely to respond that the end of the mar-
riage was probably for the best, all things considered. Because of this, nothing
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will ever force astrologers to admit their theory is wrong, The theory is phrased
in such imprecise terms that no actual observations can possibly falsify it.

Popper himself uses this criterion of falsifiability to distinguish genuine sci-
ence, not just from traditional belief systems like astrology and spirit-worship,
but also from Marxism, psychoanalysis, and various other modern disciplines
he denigrates as ‘pseudo-sciences’. According to Popper, the central claims of
these theories are as unfalsifiable as those of astrology. Marxists predict that pro-
letarian revolutions will be successful whenever capitalist regimes have been
sufficiently weakened by their internal contradictions. But when faced with
unsuccessful proletarian revolutions, they simply respond that the contradic-
tions in those particular capitalist regimes have not yet weakened them suffi-
ciently. Similarly, psychoanalytic theorists will claim that all adult neuroses are
due to childhood traumas, but when faced by troubled adults with apparently
undisturbed childhoods, they will say that those adults must nevertheless have
undergone private psychological traumas when young. For Popper, such ploys
are the antithesis of scientific seriousness. Genuine scientists will say before-
hand what observational discoveries would make them change their minds, and
will abandon their theories if these discoveries are made. But Marxists and psy-
choanalytic theorists frame their theories in such a way, argues Popper, that no
possible observations need ever make them adjust their thinking,

1.4. The Failings of Palsificationism

At first sight Popper seems to offer an attractive way of dealing with the prob-
lem of induction. However, there is reason to doubt whether he really offers a
solution.

The central objection to his account is that it only accounts for negative sci-
entific knowledge, as opposed to positive knowledge. Popper points out that a
single counter-example can show us that a scientific theory is wrong. But he
says nothing about what can show us that a scientific theory is right. Yetit is pos-
itive knowledge of this latter kind that is supposed to follow from inductive
inferences. What is more, it is this kind of positive knowledge that makes induc-
tion so important. We can cure diseases and send people to the moon because
we know that certain causes do always have certain results, not because we
know that they don’t. If Popper cannot explain how we sometimes know that
‘All As are Bs’, rather than just “It's false that all As are Bs’, then he has surely
failed to deal properly with the problem of induction.

Popper's usual answer to this objection is that he is concerned with the logic
of pure scientific research, not with practical questions about technological
applications. Scientific research requires only that we formulate falsifiable con-
jectures and reject them if we discover counter-examples. The further question
whether we should believe those conjectures, and rely on their predictions when,
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say, we prescribe some drug or build a dam, Popper regards as an essentially
practical issue, and as such not part of the analysis of rational scientific practice.

But this will not do, if Popper is supposed to be offering a solution to the
problem of induction. The problem of induction is essentially the problem of
how we can base judgements about the future on evidence about the past. In
insisting that scientific theories are just conjectures, and that therefore we have
no rational basis for believing their predictions, Popper is simply denying that we
can make rational judgements about the future.

Consider these two predictions:

(A) When I jump from this tenth-floor window; I shall crash painfully into
the ground.

(B) When I jump from the window, I will float like a feather to a gentle land-
ing.

Intuitively, it is more rational to believe (A), which assumes that the future will
be like the past, than (B), which does not. But Popper, since he rejects induction,
is committed to the view that past evidence does not make any beliefs about the
future more rational than any others, and therefore to the view that believing
(B) is no less rational than believing (A).

Something has gone wrong. Of course believing (A) is more rational than
believing (B). In saying this, I do not want to deny that there is a problem of
induction. Indeed it is precisely because believing (A) is more rational than
believing (B) that induction is problematic. Everybody, Popper aside, can see
that believing (A) is more rational than believing (B). The problem is then to
explain why believing (A) is more rational than believing (B), in the face of the
fact that induction is not logically compelling. So Popper’s denial of the ratio-
nal superiority of (A) over (B) is not so much a solution to the problem of induc-
tion, but simply a refusal to recognize the problem in the first place. As a
reviewer of one of Popper’s books once said, Popper’s attitude to induction is
like that of someone who stands on the starting-line of a race and shouts, ‘I've
won, ['ve won’. -

Even if it fails to deal with induction, it should be recognized that Popper’s
philosophy of science does have some strengths as a description of pure scien-
tific research. For it is certainly true that many scientific theories start life as
conjectures, in just the way Popper describes. When Einstein’s general theory
of relativity was first proposed, for example, very few scientists actually believed
it. Instead they regarded it as an interesting hypothesis, and were curious to see
whether it was true. At this initial stage of a theory’s life, Popper’s recommen-
dations make eminent sense. Obviously, if you are curious to see whether a the-
ory is true, the next step is to put it to the observational test. And for this
purpose it is important that the theory is framed in precise enough terms for
scientists to work out what it implies about the observable world—that is, in
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precise enough terms for it to be falsifiable. And of course if the new theory
does get falsified, then scientists will reject it and seek some alternative, whereas
if its predictions are borne out, then scientists will continue to investigate it.

Where Popper’s philosophy of science goes wrong, however, is in holding
that scientific theories never progress beyond the level of conjecture. As I have
just agreed, theories are often mere conjectures when they are first put forward,
and they may remain conjectures as the initial evidence first comes in. But in
many cases the accumulation of evidence in favour of a theory will move it
beyond the status of conjecture to that of established truth. The general theory
of relativity started life as a conjecture, and many scientists still regarded it as
hypothetical even after Sir Arthur Eddington’s famous initial observations in
1919 of light apparently bending near the sun. But by now this initial evidence
has been supplemented with evidence in the form of gravitational red-shifts,
time-dilation, and black holes, and it would be an eccentric scientist who nowa-
days regarded the general theory as less than firmly established.

This example can be multiplied. The heliocentric theory of the solar system,
the theory of evolution by natural selection, and the theory of continental drift
all started life as intriguing conjectures, with little evidence to favour them over
their competitors. But in the period since they were first proposed these theo-
ries have all accumulated a great wealth of supporting evidence, and nearly
everybody who is acquainted with this evidence has no doubt that these theo-
ries are well-established truths.

1.5. Induction is Rational by Definition

I have just insisted, against Popper, that it is often rational to believe the con-
clusions of inductive inferences. However, as 1 said, this observation is by no
means a solution to the problem of induction. For we still need to explain how
inductive inferences can be rational, give that their conclusions are not logically
guaranteed by their premisses.

Some philosophers have argued that we can solve the problem by focusing
on the everyday meaning of the term ‘rational’.! After all, they point out, in nor-
mal usage this term is by no means restricted to deductive reasoning. True,
everybody recognizes that deductive reasoning is one species of rational argu-
ment. But at the same time nearly everybody also applies the term ‘rational’ to
other kinds of reasoning, and in particular to inductive reasoning.

By way of illustration, consider three different ways of forecasting the
weather. The first type of forecaster does not pay any attention to past weather
patterns, but simply guesses at random at tomorrow's weather. A second type
of forecaster does attend to past patterns, but predicts future weather on the

' See Paul Edwards, ‘Russell’s Doubts about Induction’, Mind, 68 (1949), 141-63; and section 9 in P. F.
Strawson, Introduction to Logical Theory (London, 1952).
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basis of the assumption that future weather patterns are going to be different
from past patterns: so, for example, on seeing red sky in the evening, this fore-
caster reasons that, since red sky has presaged fine weather in the past, tomor-
row’s weather will not be fine. The third forecaster works on the assumption
that past weather patterns are indeed a guide to future patterns, and so, on the
basis of past experience, takes red sky in the evening to be a sign that there will
be fine weather tomorrow.

Now, if we ask people who understand the meaning of the word ‘rational’
which of these three weather forecasters is rational, there is no doubt that they
will reply that the third forecaster is rational, and the other two are not. And
there is no doubt that they would also say that in general people who anticipate
the future on the basis of the past are rational, and those who merely guess, or
expect the future to be unlike the past, are irrational.

Doesn’t this now show that induction is rational? For what more could be
needed to show this than that people who understand the meaning of the term
‘rational’ all agree that this term is applicable to inductive reasoning?

This form of argument is known as the ‘paradigm case argument’, and was
very popular among British ‘ordinary language philosophers’ in the 1950s and
1960s. It was applied to other philosophical problems apart from the problem
of induction. So, for example, in response to the thesis that human beings do
not really have free will, ordinary language philosophers pointed out that any-
body who understands the phrase ‘acting of their own free will’ will have no
hesitation in applying it to a wide range of human actions. After all, the ordi-
nary language philosophers argued, aren’t such actions as drinking a cup of
coffee or buying a new car paradigm cases of free actions, as we ordinarily use
the term? And what more could be needed to show that free will exists than that
people who understand the meaning of the term ‘free will’ all agree that it
applies to this kind of human action?

However, this example also serves to bring out the weakness of paradigm
case arguments, The only reason some philosophers doubt the existence of free
will is because they think there is an underlying requirement for an action to be
free, namely, that it not be determined by past causes, and because, moreover,
they doubt that any human actions are not so determined. Any such philoso-
pher will reply to the paradigm case argument for free will as follows: ‘Maybe
ordinary people are happy to apply the term “free will” to such actions as drink-
ing a cup of coffee or buying a new car. But this is only because they are im-
plicitly assuming that these actions are not determined by past causes. But in
fact they are wrong in this assumption. All human actions are determined by
past causes. So there is really no free will, and everyday people are just making
a mistake when they apply the term “free will” as they do.”

The same point applies to the attempt to establish the rationality of induc-
tion by appeal to ordinary usage. For ordinary usage leaves it open that there
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i i i t as ratio-
be some underlying requirement for a form qf mfe::ence to coun i
z?a?And inductive inferences may in fact fail to satisfy thls requirement, 'despxte
the inclination of ordinary people to apply the term ‘rational’ to induction.

1.6. A Reliabilist Defence of Induction N

then, whether there is some underlying requireme.nt‘ which a fo.rm
i?;;}:rzsrll‘c'e must satisfy if it is to qualify as rational. Well, a minimum require-
ment is surely that the conclusions of these inferencg:s must generally be g'{ue,f
if the premisses are. The whole point of inferences is to increase our sto c;
knowledge. Inferences make new knowledge out of old: they take olic;llflznreow -
edge as input, and generate new knowledge as output. Buta forr.n of fon nce
will fail in this task if it issues in false conclusions even w.hen pr9v1ded wi truef
premisses. For in such cases the inference will not be increasing our stock o

t rather leading us into error. .

hul)tviv:e'dm%;;rt:nt to r(:cogniz::g that this requirement—that the conclusions of a
form of inference should generally be true if its pren.u'sses are—does not neces-
sarily amount to the requirement that the form of u.1fe1:en_ce.shoul-d be dedz.tc-
tively valid. A form of inference is deductively vahfi if it is log:ca]ly f;u;te
impossible for the conclusions to be false if the premisses are true. This is far
stronger than the requirement that as a matter of fact Fhe conc]_uslons are nevcxt:
false when the premisses are true. By way of illustration, consider this form o

inference.

X is a human
X is less than 200 years old

is is not deductively valid. It is logically possible for someone to be a human
:nhcllst:)s live for 200 yeaZs. But, asit happens, there are no such human.bemgs, a?d
so this form of inference will never in fact take us from a true premisstoa fa. se
conclusion. (Of course, this form of inference can be mafle deductive }ay .add.mg
the premiss that ‘All humans are less than 200 years old’. But my point is thaF,
even if we don't add this premiss, and so stop the inference meg deductive, it
still satisfies the requirement of never going from true premisses to false con-
Cluatzn:;)use the term ‘reliable’ for the requirement that true premisses should
always yield true conclusions. Then deductively valid infere.nces canbe thou%}llt
of as inferences that are necessarily reliable. In the termmol(')gy of possible
worlds, a deductively valid inference will generate true conclu.smr.is out of true
premisses in every possible world. A reliable but non-deductive 1f1ference, b);
contrast, always generates true conclusions out of true premisses in the actua
world, but ‘would go astray in other possible worlds (such as worlds, say, in
which humans live for more than 200 years).
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Given this distinction, it seems clear that reliability is a minimal requirement
for a form of inference to be acceptable. However, to ask in addition for deduc-
tive validity seems like overkill. If we have a form of inference which works in
the actual world, why require in addition that it should also work in every other
possible world, however unlikely or outlandish?

These points support the ordinary language philosophers in their insistence
that deductively valid inferences do not exhaust the category of rational infer-
ences. But they suggest a different kind of reason for recognizing some non-
deductive forms of inference as rational, The ordinary language philosophers
were prepared to count as rational any form of inference that normal speakers
of English call ‘rational’. The points made in this section, however, argue that a
form of inference should only count as rational if it satisfes the underlying
requirement of reliably transmitting truth from premisses to conclusion.

It should be said that it is a matter of active controversy whether reliability is
sufficient for rationality. This issue is part of a widespread contemporary debate
which involves not only the notion of rationality, but also such related notions
as knowledge and justification. Few contemporary philosophers, I think, would
still want to say that a belief is rational (knowledge, justified) only if it is arrived
at in ways that are necessarily reliable (such as by deductive inference). But
among the remainder there is a split, between those (let us call them ‘reliabilists’
henceforth) who think that a reliable source on its own suffices for a belief to be
rational (knowledge, justified) and those who think that some further require-
ment, such as intuitive persuasiveness, also needs to be satisfied.

However, there is no question of resolving this wider dispute here. So in the
remainder of this section I shall discuss the following conditional thesis: if you
think the reliability of a form of inference is sufficient for its rationality, then you
will have an answer to the problem of induction.

Note first that, if we do adopt the reliabilist point of view, the original argu-
mentagainst induction ceases to present a substantial problem. For the original
argument was simply that the premisses of an inductive argument do not
deductively imply its conclusion. But since we are no longer demanding that
inductive arguments should be logically infallible, but only that they in fact reli-
ably transmit truth, this is no argument against induction at all. For, as I have
emphasized, a form of inference can be reliable without being deductively valid.

This is only part of a reliabilist defence of induction. For, even if the tradi-
tional argument fails to show that induction is not reliable, the reliabilist still
needs to provide grounds for thinking that induction s reliable. Unlike the ordi-
nary language philosopher, the reliabilist cannot simply defend induction on
the grounds that most people regard it ‘rational’. For, according to reliabilism,
a form of inference is only rational if it satisfies the underlying requirement of
reliably transmitting truth from premisses to conclusion.

But perhaps the reliabilist can answer this challenge. The issue is whether
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i ive inferences generally yield true conclusions if given true premisses.
’1;‘1:: ﬁl‘;abilist can pOiit out d{at there is plenty of evidence that I:hey.do.. When
people have made inductions from true premisses in the past, the rehabxhtst can
argue, their conclusions have turned out true. So we can mf:er, from this evi-
dence, that inductive inferences are in general reliable transmitters of truth,

Of course this last step is itself an inductive inference, from the past success
of inductions to their general reliability, and so this argument is simply a version
of the inductive defence of induction I accused of begging the question in
Section 1.2.2. However, at that stage we were assuming that the tr@monal
argument raises a genuine problem for induction, and that thefefore it would
be illegitimate to use induction in further philosophical analysis. But the first
point made by the reliabilist defence of induction was that t.he traditional argu-
ment, which merely points out that induction is not deduction, does n‘othmg at
all to discredit induction. So why shouldn’t we use our normal inductive meth-
ods to ascertain whether induction is reliable? How else, the reliabilist can rea-
sonably ask, are we expected to address the question? .

Of course this kind of inductive defence of induction is not going to persuade
somebody who does not already make inductions to start makmg them,. for
such a person will be disinclined to conclude, from the premiss that }nc{\{mom
have worked in the past, that they will do so in the future. But the reliabilist can
respond that the inductive argument for induction is not supposed to cure any
eccentrics who might reject induction. Rather, it is simply suPposed to expla}m,
to normal people like ourselves, how we are entitled to the view that induction
is reliable, and hence rational. _ . .

Not all philosophers would agree that this reliabilist defence o.f 1'nducuon
avoids begging the question. But at this stage I propose to leave t.h.lS issue .and
turn instead to a more direct objection. This defence assumes that inductions
with true premisses have at least generated true conclusions so far, as t!\e pre-
miss to the inductive argument for induction. But is even this true? {\ren t there
plenty of cases where people have made inductions, and yet have arrived at false
rather than true conclusions? '

Clearly this is a challenge reliabilists need to answer. For even 1.f.we grant
them the legitimacy of inductive arguments for inductit)n. relliabll.xsts aren't
going to get anywhere if the past evidence indicates that induction is not reli-
ablIeshall examine two sorts of reason for thinking that induction is downright
unreliable. One sort appeals to the history of science and notes that many ind}m
tively supported scientific theories, from Ptolemaic astronomy to Newtonian
physics, have been shown by later evidence to be false. However, I shall postpone
discussion of this sort of historical argument against induction until Section 3.

First | want to examine a more abstract reason for thinking that induction, or at
least enumerative induction, cannot possibly be generally reliable.
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1.7. Goodman’s New Problem of Induction

Suppose we define ‘grue’ as a term which applies to all and only those objects
which are first examined before A 2000 and Jound to be green or which are not first
examined before 2000 and are blue.

Now imagine that we want to ascertain, by inductive means, which proper-
ties, if any, are possessed by all emeralds. Well, we can note that all the emer-
alds that we have observed so far have been green, and conclude on this basis,
by an enumerative induction, that all emeralds are green. But we could also
note that all the emeralds we have observed so far have been grue (since they
have all been first examined before ap 2000 and found to be green) and so infer,
by a quite analogous enumerative induction, that all emeralds are grue.

Butnow note that these two conclusions, that all emeralds are green and that
all emeralds are grue, cannot both be true, given that some emeralds will only
be first examined after ap 2000. For the first conclusion implies that these emer-
alds will be green, and the second conclusion implies that they will be blue, and
so one of them must be wrong. Intuitively, of course, we are convinced that it
is the ‘grue hypothesis’ that is wrong, and that emeralds will still be green after
AD 2000. But this intuitive assumption is not needed to make Goodman'’s initial
point, which is that both conclusions were reached by enumerative inductions
of the form: A large number n of As have all been seen to be Bs’, so ‘All As are
Bs’; yet at most one of these conclusions is true; so enumerative inductions can-
not all reliably generate true conclusions.

Of course, grue is rather a funny property, and I'll come back to that in 2
moment. But the central moral of Goodman's argument is simply that, unless
we put some restrictions on what As and Bs are allowed to enter into enumera-
tive inductions, there are going to be far too many enumerative inductions for
them all to have true conclusions. This is because, given any ‘normal’ predicate
like,‘green’, we can easily cook up an infinity of funny grue-like predicates that
will give rise to-inductive conclusions that must be false, if ‘normal’ inductive
conclusions are true.

The ‘new problem’ raised by Goodman is thus to distinguish, among all the
complicated predicates that can be defined, that subclass which should be
allowed to enter into inductive inferences. Goodman called this the problem of
distinguishing ‘projectible’ from ‘non-projectible’ predicates.

Some philosophers have suggested that the problem can be dealt with fairly
quickly, by simply banning any predicates whose definition makes reference to
some particular time, in the way that the definition of ‘grue’ refers to ap 2000.
But Goodman shows that the problem cannot be dealt with this easily. For sup-
pose we define ‘bleen’ as “first examined before Ap 2000 and found to be blue or
not first examined before 2000 and green’. Then it is true that if we start with
the predicates ‘green’ and ‘blue’, and define ‘grue’ and ‘bleen’ in terms of them,
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as above, then the definitions make mention of particular times. But suppose
we instead started with ‘grue’ and ‘bleen’ as our primitive terms. Then we could
define ‘green’ as ‘first examined before Ap 2000 and found to t'ae grue or not_ﬁrst
examined before 2000 and bleen’; and we could define ‘bl}xe as ‘first examined
before Ap 2000 and found to be bleen or not first exammec! befox:e 2000 anc!
grue’; and from this perspective it is then the definitions of ‘green’ and ‘h!ue
that make mention of time. So in effect the appeal to time beg's the question.
For it is only because we start with the assumpti?n that green and ‘blue are
respectable predicates, in terms of which ‘grue ant'i ‘bleen’ need defining,
rather than vice versa, that we deem ‘grue’ and ‘bleen’ not to be re_spectablc.

Goodman’s own solution is that the ‘projectible’ predif:ates are simply those

which happen to be ‘entrenched’ in our inductive practices, in t'he sense that
they are the ones which our community has used to make md}lcuve mferfences
in the past. Other philosophers, however, have tric(% to devxse. less arbitrary
ways of drawing the line, appealing to ideas of simphaty" or of importance to
science. It would be fair to say, I think, that there is no universally agreed solu-
s is question.

no;t:nt;‘:;ge, simply drawing a line between projectible predicates a{nd the rest
is arguably only half the problem. We would also like some explanation of why
it is rational to make inductions with projectible predicates but not othf:rs.
From the reliabilist perspective outlined in the last section, suchan elfplananoy
would need to establish that inductions made using projectible predicates reli-
ably produce true conclusions given true premisses. . .

There is the possibility of simply arguing once more that past inductions pro-
vide inductive evidence for induction’s reliability, as was done at the end Pf the
Jast section. But it can no longer be taken for granted that this move is avaxlab-le.
For when we made this move in the last section, it was via an Fnumeratwe
(meta-)induction. But we now know that enumerative induct?on is not always
a satisfactory means of reasoning, and that at best some restricted category of
such inductions is acceptable, namely, those that deal specifically with ‘pro-
jectible’ features of the world. Until we have some more detailed th.eory o.f pro-
jectibility’, we cannot take it for granted that the success of past mduc.tlons is
itself the kind of projectible pattern that provides inductive evidence for its own
continuation.

At this stage, however, 1 propose to leave this topic. | shall return and con-
sider it from a somewhat different perspective at the end of Section 3.6.
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2. LAWS OF NATURE

2.1. Hume, Laws, and Accidents

In this section I want to consider a different puzzle raised by the existence of
general truths about nature. Here the puzzle is not to do with our knowledge
of such truths, but with the nature of the reality they describe: it is a problem in
metaphysics, rather than epistemology. This problem is normally called the
problem of distinguishing ‘laws of nature’ from ‘accidental generalizations'.

A helpful way to approach this problem is to go back to David Hume's analy-
sis of causation. Prior to Hume, philosophers assumed that when one thing
caused another, this was because the cause possessed some kind of power
which necessitated the occurrence of the effect. Moreover, they took it that we
can know about these necessitating links a priori, in the sense that we can infer
a priori that the effect will necessarily follow the cause, even if we have never
had previous experience of their co-occurrence.

Hume argued against this account of causation. He pointed out that when
we observe one event causing another (for example, the impact of one billiard-
ball causing another to move), we never see any necessitating link. All we see is
the initial event (the first ball’s impact), and then the subsequent event (the sec-
ond ball’s motion), but never any third thing which might link them together.
In addition, Hume argued that there is no a priori knowledge of the kind which
such necessitating links would provide. People who have never observed
billiard-balls cannot possibly tell, on the first occasion they see a moving ball
approaching a stationary one, that the impact will make the stationary one
move, rather than explode, or turn into a leprechaun.

Hume’s own account of the link between a cause and its effect is simply that
events like the cause are always followed by events like the effect. In Hume’s
view; there is nothing in a particular cause-effect sequence, other than that the
first event occurs, and the second occurs after it. The link is simply that this

sequence is an instance of a general pattern in which, to use Hume's terminol-
ogy, events like the cause are “constantly conjoined’ with events like the effect.

One consequence of Hume’s analysis of causation is the problem of induc-
tion discussed in the last section. Prior to Hume, it was assumed that we could
know a priori that certain results would always follow certain causes. According

to Hume, however, knowledge of causation is simply knowledge of constant
conjunctions which are not the upshot of any a prioti link between the cause
and the effect. So our knowledge of causation can only derive from our experi-
ence of the cause being constantly conjoined with the effect. The problem of
induction then emerges as the problem that our experience, which is always of
a finite number of past cause-effect instances, is insufficient to guarantee what
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we need for causal knowledge, namely, knowledge that the cause will be con-
stantly conjoined with the effect, not just in the past, but in the future too.

The problem of induction is a problem about our knowledgF of general
truths, a problem in epistemology. But Hume's analysis of causation also gen-
erates a problem about the nature of general truths, a problem in metaphy_snf:s.
The problem is that Hume’s analysis of causation makes it dii.ﬁcult to distin-
guish genuine laws of nature which state causal truths from accidental general-
izations whose truth is a matter of mere happenstance.

According to Hume, a causal law is simply a statement of the form
“Whenever A, then B’. However, there are truths of this form which do notseem
to express laws. Whenever 1 go to watch Arsenal play, the score is 0-0. Thatisa
true statement of the form “Whenever A, then B". And it’s going to stay true,
because I'm not going to watch Arsenal any more. But it clearly isn't a causal
law. Even though my attendance is in fact always followed by zero goals, my
being at Highbury doesn't stop the players scoring.

Bft whygn}:)tl?nl.f):a]] that is reiuired for a law is that As are always followed by
Bs, then why isn't it a law that there are no goals when I watch Arsena‘l? After
all, there is, by hypothesis, a perfect correlation between my being at Highbury
and nobody scoring.

This is the problem of distinguishing laws from accidents. The Humean
account of causation threatens to admit accidentally true generalizations into
the category of laws. We need to find some way of keeping them out.

There are two general lines of response to this problem, which I shall call
‘Humean’ and ‘non-Humean’. The Humeans stick to the basic Humean idea
that causal laws state constant conjunctions, not necessary connections, and
then try to explain why some constant conjunctions (the laws) are better than
others (the accidents). Non-Humeans, by contrast, question this basic idea, and
argue for a return to the pre-Humean view that the difference between lafws and
accidents is simply that laws, but not accidents, state necessary connections.

2.2. Counterfactual Conditionals

However, before exploring these two types of response, it will be useful to deal
with 2 connected issue. One often-noted difference between laws and accidents

is that laws but not accidents support counterfactual conditionals. A counterfac- -

tual conditional is an if . . . then . . .” statement with a false antecedent clause.
So, for example, the claim ‘If the temperature had fallen below 0°C, then there
would have been ice on the road’, made on an occasion where the temperature
did not in fact fall below 0°C and the water did not freeze, is a counterfactual
conditional. Indeed it is a counterfactual conditional that we intuitively accept
as true, in virtue of the law that water always freczes at 0°C. But now consider
the counterfactual conditional ‘If I had gone to Arsenal, the score would have
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been 0-0’, made about a match to which I did not go and which was not a score-
less draw. Even though it is in fact true that on all occasions when I am present
there are no goals, we do not accept this second counterfactual conditional as
true on that account. Intuitively we feel that my presence would not have made
any difference. Even if I had been there, the goals would still have been scored.

This is the sense in which laws but not accidents support counterfactuals. We
intuitively project laws, but not accidents, into counterfactual situations.
However, while this is certainly a good symptom of the difference between laws
and accidents, it does not amount to an explanation of the difference.

The reason is that the meaning of counterfactuals is itself a matter that calls
for philosophical explanation. We might start such an explanation by saying
that counterfactuals state what happens in non-actual situations. But in what
sense do non-actual situations exist? And if they don't exist, what makes coun-
terfactual claims true?

One possible philosophical theory of counterfactuals is to say that counter-
factuals are true just in casé there is a law linking up the antecedent and conse-
quent. But if we take this line on counterfactuals, then we obviously cannot
turn round and use counterfactuals to explain the law-accident difference. For
this theory of counterfactuals presupposes this difference.

As it happens, there are in any case well-known difficulties facing an expla-
nation of counterfactuals in terms of laws. To mention just one, consider coun-
terfactuals in which the antecedent is itself the denial of a law, such as ‘If the
force of gravity were inversely proportional to r, rather than r2, then the uni-
verse would already be contracting’. This seems a perfectly cogent counterfac-
tual assertion, but the notion of some further law linking antecedent and
consequent does not seem to apply.

Because of this, contemporary philosophers have developed various other
theories of counterfactual. One popular such theory, due to David Lewis,?
appeals to the metaphysics of ‘possible worlds’, and says that the counterfactual
‘If A, then B’ is true if and only if the 'nearest’ possible world in which A is true
is also one in which B is true. This is an attractive theory of counterfactuals. But
if we adopt this, or any other similar theory of counterfactuals, then we still can-
not explain the law-accident difference in terms of counterfactuals. For, since
we are now explaining counterfactuals in terms of possible worlds, rather than

laws, we will need-some further explanation of why laws, but not accidents,
‘project’ into nearby possible worlds. After all, on the Humean view, both laws
and accidents simply state that As are always followed by Bs in the actual world.
So why do laws, but not accidents, also tell us about other non-actual worlds?

A complete philosophy of these matters would combine an account of the
law-accident distinction with an account of counterfactuals in order to yield an

? Counterfactuals (Oxford, 1973).



142 David Papineau

i rfactuals. But, until we

tion why laws and not accidents support counte ' '
;ﬁa::c: a corzplete account, the counterfactual-supporting power of laws is
part of the problem of explaining the difference between laws and accidents, not

a solution.

2.3. Laws as Wide-Ranging Generalizations

strategy, remember, is to explain why soxr‘le'c.onstant conjunc-
E;s%:le;?re bette%ythan others (accidents). An obvious initial thou%il: is t?:tt:
laws tend to be more general than accidents. The truth. that water ezteast
0°C covers an indefinite, and perhaps infinite, number of instances. By ;:ion rast,
the truth that there are never any goals when | am at Arsenal only applies to an
o cases. '
Odg::l ;:?::I: i?lrf:ct an invariable difference. There can well be l_aws with onl):
a few instances. ‘In any expanding universe, the rate of expansion decn:la:se.s
presumably only has one instance, but it isn’t any less a law.for that. A;: 1tt|s
even arguable that there are laws with no instances, such as ‘A body subject to
ill have zero acceleration’. .
no[iorriﬁt:vént?:)ught is that accidents are disq.ualiﬁed from l:fwhke stat'us.
because they tend to be framed using terms whxchr refer to pam:;llar spau;
temporal individuals, like ‘David Papinea‘u , anc'i 'A:se’nal fo‘otb gr;\mm;
rather than in purely qualitative terms like ‘water’, 0 C’, and free:zes . ex; i
of the latter kind apply to any objects anywher'e wl'{n:h hayc th? right gen "
properties, whereas non-qualitative terms like ‘David Papineau’ are restricte
ific individuals. s
© ;I:ftudf:fs lcrllcjl:z‘s,,lrxot get to the heart of the matter either._ SuPpose we start d:mh
a true accidental generalization framed in non~quahtat?ve terms, dsu. zlxs
“Whenever David Papineau goes to Arsenal, the score is 0—0 , and simply
replace the non-qualitative terms by qualitative descriptions detailed ego%gh tg
pick out just the same individuals. That is, suppose we x:eplacc;l ] :}::11
Papineau’ by ‘anybody with such-and-such an appearance and Azs:n hoo bal
ground’ by ‘any football ground with such~and-such—§haped stands’, where <
‘such-and-suches” were long descriptions which umquel.y identified mih an
Arsenal football ground. Then ‘Whenever somebody with such-anccll-ss.u :13
appearance goes to a football ground with such-ar.ud-such-shape:.i stan s v\tric;l !
be a true generalization framed in purely qualitative terms. But it would still be

an accident.

2.4. Laws are Inductively Supported by their Instances

But still, despite the arguments of the last section, isn’t there some sense in
! - .
which accidents are too specific, too local, to function as general guides to the
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workings of the universe? J. L. Mackie has argued for a different way of captur-
ing this intuition. The trouble with accidents, according to Mackie, is not that
they have too few instances, as such, but rather that they aren’t inductively sup-
ported by their instances. When we observe a number of cases of water freezing
at 0°C, then this gives us good reason to suppose that all water freezes at 0°C.
By contrast, that the teams failed to score on the first three or four occasions
when I went to Arsenal seems a bad reason for supposing that my presence
would preclude them from scoring the next time I went.

In effect, Mackie is suggesting that we explain the difference between laws
and accidents in terms of the difference between projectible and non-projectible
predicates.* Recall the discussion of Goodman’s ‘new problem of induction’ in
Section 1. Goodman shows that we need to recognize a distinction between
patterns involving predicates like green, which can rationally be projected on to
further unobserved cases, and patterns involving predicates like grue, which it
is irrational to expect to continue. Mackie’s suggestion, then, is simply that laws
are those true generalizations that contain projectible predicates.

Note how this suggestion yields a natural explanation of why examples of
accidents tend to be framed in non-qualitative terms and to have finite numbers
of instances. According to Mackie, while laws can be asserted on the basis of
subsets of their instances, accidents, which aren’t inductively supported by their
instances, can only be accepted as true when we know we have exhaustively
checked through all the instances. (For example, we only knew the Arsenal gen-
eralization was true because I could promise you I wasn’t going there any
more.)

So itisa condition of an accident’s being known to be true that it have a finite
number of instances, for otherwise exhaustive examination would be impossi-
ble. And one natural way to ensure such finiteness is to frame examples of acdi-
dents in non-qualitative terms. (Which is not necessarily to rule out true
accidents with an infinite number of instances. The point is only that such acci-
dents cannot be known to be true, and so won’t be available as examples for
philosophical discussion.)

We can now see exactly why accidents are useless as guides to the workings
of the universe. It’s not that accidents are less true than laws, nor even that they
are necessarily less general. It is just that we are neverin a position to use them
as guides, for we are never in a position to trust an accidentally true generaliza-

tion, until we have already ascertained everything it might tell us by indepen-
dent means.

* ). L. Mackie, Truth, Probability and Paradox (Oxford, 1973).
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2.5. Laws and Systematization

to look at a different Humean account of the law-accident differ-
L::: ;:a:}l)te end of this section I shall compare it with lV.lack'ie's account. ;I‘ﬂl:e
central idea is that laws, but not accidents, are part of a scientific accou::t o ;
ways the world works: the difference between ‘Water &??zes at 0°C’ an
“There are no goals when David Papineau goes to nghl.mry is t}_lat the former,
but not the latter, is explainable in terms of basic scientific principles. ‘
Of course, this suggestion needs to give some independc_:n_t account of 'ba;xlc
scientific principles’, apart from their being basic laws. This is done by’apptt;.‘ -
ing to the idea of the simplest systematization of g?neral truths. Imagine that
from a God's-eye point of view, so to speak, there is a class of objf:cuvely true
generalizations which includes both all the laws and all .the acadent.?. Now
think of the various ways these truths might be organizef.l into a deductive sys-
tem, based on a set of axioms. Some of these systemauz‘anons would hav::h a
greater degree of simplicity than others. (We can take it that the fewer ef
axioms, the simpler the system.) But simplicity will_be bought at r._he cc:lst 01[
leaving some generalizations out of the systematization. (sz could mclu. ea
general truths in the system by simply taking them all as axioms. But this sys-
tematization would completely lack simplicity.) Arguably, t.ht.:re w1ll be one sys-
tematization that optimally combines strength and simplicity, in that it has a
small number of axioms, for simplicity, but nevertheless manages to include
nearly all the original class of general truths as theorems which f.ollow from
these axioms. We can then distinguish laws from accidents by saying that the
axioms and theorems in this optimal systematization are laws, while the general
dangling are the accidents.
tmlt:ssll;f:-t, wglgg that laws are those general truths which follow frorr.l the
axioms of science, and then use the simplicity-plus-strength argument to iden-
i ose axioms. .
nfde(:w does this idea, which was first put forward by E P Ramsey early this
century, and later revived by Pavid Lewis, relate to Mackie’s s.uggesuon? I.,et us
assume, for the sake of this comparison, that the class of projectible predxca!tes
coincides with those which appear in the simplest-plus-strongest systematiza-
tion. Even if we make this assumption, Mackie’s theory differs &c_)m Ra.mst.zy s
and Lewis’s. For Mackie says that any true generalization fram.ed in projectible
predicates is a law; whereas Ramsey and Lewis require in addition Fhat the gen-
eralization be deducible from the axioms of science.* So to decide between
these two theories of lawhood, we need to consider the status of sorm? general-
ization which is framed in projectible terms, but is not in fact deducible from
the axioms of science.

4 F. P. Ramsey, 'Universals of Law and Universals of Fact’ (1928); repr. in Foundations, ed. D. H. Mellor
(London, 1978); David Lewis, Counterfactuals (Oxford, 1973).
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For example, imagine you are doing some research with some complicated
electronic equipment, and you notice that, whenever the equipment and your
radio are both on, your radio makes a funny noise. Suppose also that this is the
only time this kind of complicated equipment will ever be constructed, because
you dismantle it at the end of the experiment. Given that the properties of elec-
tronic equipment and radios are presumably projectible, if anything is, you infer
that, whenever equipment of that kind is on, radios like yours make a funny
noise. But suppose that in fact there is no real connection, and that your radio
is making funny noises for some quite different reason. Then the generalization
"Whenever equipment of that kind is on, radios like yours make a funny noise’
will be exceptionlessly true, and will contain projectible predicates. Yet it clearly
isn’t a law. This shows that Ramsey and Lewis are right about laws and Mackie
is wrong, since the Ramsey~Lewis theory does not count this generalization as
alaw, while the Mackie theory does. (If you were the cxperimenter in the exam-
ple, you would no doubt think that the pattern is a law, for you would no doubt
think that it has some explanation in terms of basic science. But still, you will be
wrong in thinking this, since it does not have such an explanation.)

2.6. The Non-Humean Alternative

One objection to the Ramsey-Lewis theory of laws is that its dependence on
the notions ‘strength’ and ‘simplicity” makes it vague and subjective. But even
if we let that pass, and allow that the theory yields a reasonably precise way of
distinguishing those true generalizations that qualify as laws, there is another
objection, indeed an objection that can be levelled at all Humean theories.
Namely, that the whole Humean approach to lawhood is highly counter-
intuitive,

~ Consider these two sequences: (1) The temperature falls below 0°C, and
then:the water freezes; (2) I go 1o Highbury, and then there are no goals.
Humeans say that the only distinction between them is that, while they are
both instances of true universal generalizations, the generalization covering (1)
is somehow more significant than that covering (2). But this is surely counter to
intuition. For it seems to leave out the idea that in (1) the first event made the
second one happen, that it was because of the first event that the second event
happened; whereas in (2) there is no such link berween the two events, To say
that this difference is a difference in the covering generalizations seems to put
the difference in the wrong place, to make it a linguistic matter rather than an
aspect of nature. Intuitively, the issue is whether there is a link in nature
between the particular events, not whether the covering generalizations are suf-
ficiently general, or inductively supported by their instances, or even part of the
optimal systematization.

Of course, to side with intuition here is simply to reject Hume’s analysis of
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causation. But a number of recent philosophers have argued that we should do
just that. In the last two decades David Armstrong, Fred Dretske, and Michael
Tooley® have all argued that causal laws are not simply statements of constant
conjunction, but rather state necessitating relationships between the properties
involved. They say that the way to represent the content of a causal la\’v is not
simply as ‘All As are (asit happens) followed by Bs’, but rather ‘Nec(A, B.) , where
‘Nec stands for the relationship of necessitation between the properties 4 and
B. So, in the contrasting pair above, the low temperature necessitates the freez-
ing, but my being at Highbury does not necessitate the absence of goals. .

On the Armstrong-Dretske-Tooley view, a necessitating relationship
between A and B certainly implies that all As are Bs. But the converse implica-
tion does not hold: there can be cases where all As are Bs even though it is not
true that Nec(4, By—namely, when it is an accident that all As are Bs.

So this non-Humean view offers an entirely straightforward explanation of
the law-accident difference. The difference is simply that laws state something
that accidentally true generalizations do not, namely, the existence of a neces-
sitating relationship between properties. '

Given the possibility of this simple solution, the obvious question to ask is
why most philosophers in the 250 years since Hume have not availed them-
selves of it.

Hume had two arguments against the idea that causal laws involve necessi-
tating links. First, we never see such links. Second, we cannot know laws of
nature a priori, as would be possible if they stated necessities.

We need not dwell too long on Hume's first argument. The assumption that
we cannot meaningfully talk about things we cannot observe has had few sup-
porters in this century, even if it was generally accepted in Hume's time. The
example of modern science, with its talk of atoms, electrons, and radio waves,
has shown that meaningful reference is not restricted to observable phenom-
ena. So the fact that we cannot see necessitating links does not automatically
mean we cannot talk about them.

Hume's second argument deserves more attention. This argument assumes
that if laws state necessities, then they must be knowable a priori (and so con-
cludes that, since laws clearly cannot be known a priori, they cannot state neces-
sities). The assumption that necessity implies aprioricity went unchallenged
until very recently in the Western philosophical tradition. At the beginning of
the 1970s, however, the American philosopher Saul Kripke argued that the meta-
physical notion of necessity needs to be sharply separated from the epistemo-
logical notion of aprioricity. In particular Kripke argued that many statements of
identity (for example, “The Evening Star = the Morning Star’) are necessary (for

3 David Armstrong, What is a Law of Nature? (Cambridge, 1983); Fred Dretske, 'l.aws of Nature', Philosophy
of Science, 44 (1977), 248-68; Michael Tooley, "The Nature of Laws’, Canadian Joumal of Philosophy. 7 (1977),
667-98.
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how could that planet not be itself?), even though it is only after a posteriori
empirical discoveries that they can be known to be true.

It is striking that Armstrong, Dretske, and Tooley all put forward their non-
Humean view of laws within five years of the publication of Kripke's ideas. This
suggests that the key which allowed them to reject Hume'’s view of laws was the
separation of necessity from aprioricity. For when they say that laws of nature
state that A necessitates B, they certainly do not mean to imply that these laws
can be known a priori. To this extent the kind of necessary connection they
uphold is different from the kind Hume rejected. (It also means that their view
of laws makes no difference to the problem of induction: since laws have to be
derived from a posteriori evidence, we still need to explain how past evidence
can tell us something that implies future patterns.)

While it seems highly plausible that Kripke’s views about necessity prompted
the re-emergence of non-Humean views of laws of nature, there are important
differences between these two developments. Most centrally, the non-Humean
necessitating connections are not in fact necessary in Kripke’s sense. Kripkean
necessities are supposed to obtain in all possible worlds. It is simply impossible
that a planet should exist yet not be itself. But the modern non-Humeans do not
require their laws of nature to be necessary in this sense. They allow that it is
possible that the force of gravity might have been weaker than it is, that water
might have frozen at a different temperature, and so on. Their idea of a neces-
sitating connection is that of one property making another happen, not the
Kripkean idea of a claim that could not possibly be false.

This difference points to a difficulty facing the non-Humean views of laws of
nature. The non-Humeans say that necessitation involves something more than
constant conjunction: if two events are related by necessitation, then it follows
that they are constantly conjoined; but two events can be constantly conjoined
without being related by necessitation, as when the constant conjunction is just
a matter of accident. So necessitation is a stronger relationship than constant
conjunction. However, the non-Humeans say very little about what the extra
strength amounts to. We are told that it is not necessity in the Kripkean sense
of truth in all possible worlds. But we are not given any positive characteriza-
tion of this extra strength, except that it distinguishes laws from accidents.
Critics of the non-Humean view argue that a satisfactory account of laws ought
to cast more light than this on the nature of laws. They complain that the notion
of necessitation simply restates the problem, rather than solving it.

So we can sum up our overall discussion of laws of nature with a choice.
If you like explanations, and don't mind too much about intuitions, then you can
go for a Humean strategy, with the Ramsey-Lewis theory the most promising
version. But if you want an account of laws of nature that fits our pre-theoretical
intuitions, and don’t mind the complaint that it simply reifies the law-accident dif-
ference without explaining it, then you can take the modern non-Humean option.
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3. REALISM, INSTRUMENTALISM, AND
UNDERDETERMINATION

3.1. Instrumentalism versus Realism

In the first section I discussed the problem of induction. In this section I want to
consider a different difficulty facing our knowledge of the natural world and sdi-
entific knowledge in particular. Much of science consists of claims about unob-
servable entities like viruses, radio waves, electrons, and quarks. But if these
entities are unobservable, how are scientists supposed to have found out about
them? If they cannot see or touch them, doesn’t it follow that their claims about
them are at best speculative guesses, rather than firm knowledge?

It is worth distinguishing this problem of unobservability from the problem
of induction. Both problems can be viewed as difficulties facing theoretical
knowledge in science. But where the problem of induction arises because scien-
tific theories make general claims, the problem of unobservability is due to our
lack of sensory access to the subject-matter of many scientific theories. (So the
problem of induction arises for general claims even if they are not about unob-
servables, such as ‘All sodium burns bright orange’. Conversely, the problem of
unobservability arises for claims about unobservables even if they are not gen-
eral, such as, ‘One free electron is attached to this oil drop’. In this section and
the next, however, it will be convenient to use the term “theory’ specifically for
claims about unobservables, rather than for general claims of any kind.)

There are two schools of thought about the problem of unobservability. On
the one hand are realists, who think that the problem can be solved. Realists
argue that the observable facts provide good indirect evidence for the existence
of unobservable entities, and so conclude that scientific theories can be
regarded as accurate descriptions of the unobservable world. On the other hand
are instrumentalists, who hold that we are in no position to make firm judge-
ments about imperceptible mechanisms. Instrumentalists allow that theories
about such mechanisms may be useful ‘instruments’ for simplifying our calcu-
lations and generating predictions. But they argue that these theories are no
more true descriptions of the world than the ‘theory’ that all the matter in a
stone is concentrated at its centre of mass (which is also an extremely useful
assumption for doing certain calculations, but clearly false).

Earlier this century instrumentalists used to argue that we should not even
interpret theoretical claims literally, on the grounds that we cannot so much as
meaningfully talk about entities we have never directly observed. But as I said
in the last section, the development of modern science, with its talk of atoms,
electrons, and so on, has made this restriction on meaningful talk difficult to
defend. So nowadays this kind of semantic instrumentalism is out of favour,
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Contemporary instrumentalists allow that scientists can meaningfully posty-
late, say, that matter is made of tiny atoms containing nuclei orbited by elec-
trons. But they then take a sceptical attitude to such postulates, saying that we
have no entitlement to believe them (as opposed to using them as an instru-
ment for calculations.)

3.2. Initial Arguments for Realism

An initial line of argument open to realism is to identify some feature of scien-
tific practice and then argue that instrumentalism is unable to account for it. So,
for example, realists have pointed to the fact that scientists characteristically
seek to unify different kinds of scientific theory in pursuit of a single ‘theory of
everything’. In the nineteenth century, for instance, physicists working in ther-
modynamics developed the kinetic theory of gases, which explained variations
in the temperature, pressure, and volume of gases by postulating that gases are
made of swarms of tiny particles; at the same time chemists were developing
the atomic theory of matter, which explained chemical combinations on the
assumption that matter was made of atoms, one kind of atom for each element.
An obvious question was to investigate the relation between the two theories:
were the particles of the physicists combinations of atoms, and if so what kinds
of combination? The resolution of this issue was not always easy, but in time a
satisfactory conclusion was arrived at.

However, this whole procedure, the realist points out, only makes sense on
the assumption that scientific theories are true descriptions of reality. After all,
says the realist, if theories are simply convenient calculating-devices, then why
expect different theories to be unifiable into one consistent story? Unification is
clearly desirable if our theories all aim to contribute to the overall truth, but
there seems to be no parallel reason why a bunch of instruments should be
unifiable into one big ‘instrument of everything’.

Other features of science appealed to by realists as arguments against instru-
mentalism include the use of theories to explain observable phenomena, and
the reliance on theories to make novel predictions. I shall take these in turn. The
topic of explanation will be discussed in detail in Section § below. But for the
moment we need only note that scientists often explain the behaviour of
observable phenomena in terms of unobservable mechanisms. Thus, to use
one of the above examples, scientists explain why the pressure of an enclosed
gas increases when its temperature does by referring to the behaviour of the
tiny particles making up the gas. But surely, the realist urges, this only makes
sense if these tiny particles really exist and the theory describing them is not just
an instrument for making calculations. We surely cannot say that the pressure
goes up because the tiny particles are moving faster if we don’t believe in the
existence of those particles.
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Then there is the argument from prediction. Scientists often predi?t surpns
ing and hitherto quite unknown observable phenomena on the basis of their
theories. For example, Einstein predicted, on the basis of the general t.heory of
relativity, that light would bend in the vicinity of the sun. Apart fr_orrl his theory.
there was no reason whatsoever to expect this. Yet this prediction was tri-
umphantly confirmed by Sir Arthur Eddington’s famous observations in West
Afica during an eclipse of the sun in 1919. This provides another argument for
realism. For the realist can insist that there would be no reason why such pre-
dictions should ever work if the theories behind them were not true.

These three arguments, from unification, explanation, and prediction, all
give some support to realism. But none of them are conclusive. In each case,
there are two possible lines of response open to instrumentalists. They can o.ffer
an instrumentalist account of the relevant feature of scientific practice.
Alternatively, they can deny that this feature really is part of scientific practice
in the first place. 1 shall go through the three cases in turn.

3.3. Initial Instrumentalist Responses

3.3.1. Unification

First, the argument from unification. The first possibility is for instrumental?sts
to offer an instrumentalist account of the scientific practice of unifying theories.
They can do this by arguing that the unification of science is motivated, not by
the pursuit of one underlying truth, but simply by the desirabi.lity. of a single,
all-purpose calculating instrument instead of a rag-bag of different instruments
for different problems. If the aim of theories is convenience, rathe}' than vera-
city, is it not more convenient to have one device that will deal with all prob-
lems, rather than having to worry which tool will be most effective for the
problem at hand? .

The second possibility for an instrumentalist faced by the argument from
unification is to deny that unification is essential to science to start with. Thus
Nancy Cartwright argues, in How the Laws of Physics Lie, that science really‘ isa
rag-bag of different instruments. She maintains that scientists faced with a given
kind of problem will standardly deploy simplifying techniques and rules of
thumb which owe nothing to general theory, but have shown themselves to
deliver the right answer to the kind of problem at hand. So, in Cartwright's
view, unification is not central to science in the first place, and so not something
instrumentalists need to account for.

¢ (Oxford, 1983).
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3.3.2. Explanation

The same two lines of response can be made to the realist argument from expla-
nation. Here the more normal line of response is the second, namely, to deny
that explanation really is an essential feature of scientific practice. Instrumental-
ists can argue that the essential aim of science is to describe, not to explain.
What we want of science, they will say, is an accurate account of how the
observable world behaves. The further issue of why it behaves like that is a far
more difficult question, which takes us beyond science, if it can be answered at
all. (After all, the instrumentalist can observe, even realists have to stop explain-
ing at some point. Maybe they can explain observables in terms of unobserv-
ables, and some unobservables in terms of others. But even realists will have to
admit that at some point, perhaps with quarks or other fundamental particles,
they run out of explanations, and can only describe the behaviour of the funda-
mental particles, without explaining it in terms of further mechanisms.)

As I said, this kind of denial that explanation is essential to scientific theoriz-
ing is the normal instrumentalist response to the argument from explanation.
But a minority of instrumentalists try the opposite tack, and argue that there is
nothing in scientific explanation that instrumentalism cannot account for.
According to instrumentalists of this stripe, it is a mistake to think of scientific
explanation as a matter of identifying genuine hidden causes for observable
phenomena, as opposed to simply showing how these phenomena are part of
some wider pattern. The scientist who ‘explains’ variations in the pressure of
gases by the kinetic theory is not, from this perspective, specifying the true
unobservable causes of those variations, but simply showing how they conform
to the same underlying equations as other kinds of observable gas behaviour.
(Perhaps this second response to the argument from explanation does little
more than invent a new meaning for ‘explanation’. But if this makes you uneasy,
therg,is always the first response to fall back on.)

3.3.3. Prediction

There remains the realist argument from prediction. Here the two lines of
instrumentalist response are again open. The more radical, and perhaps less
plausible, would be to deny that the ability to make such predictions is a gen-
uine feature of scientific practice. Instrumentalists who take this line will of
course allow that scientists make ‘predictions’ in the sense that they draw
observable consequences from their theories. But they can deny that this prac-
tice generates any more true predictions than random guessing would. After all,
they can point out, the only predictions that we remember are those that suc-
ceed, like Einstein’s prediction of light bending. But for every such successful
prediction there are thousands of scientific experiments that do not preduce the
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results that are expected. So what real reason do we have for thinking that the;
ories about unobservables enable us to anticipate new observable.p?lel-wmcnac.l
Maybe this is just an impression created by selective me'mory.’lf this is right, an
science is not really predictively successful, then there is obviously no need for
i talist explanation of this success. .

m:::::r::nas 1 sa‘;:? this response is not entirely plausible. It seems unlikely
that the ability of theories about unobservables sometimes to anticipate new
observable phenomena is just a chance matter. However, even 1f we accept th.at
science is predictively successful, there remains room for an }nscrumcntahst
account of this. The realist account, remember, was that theories .about unob-
servables are themselves characteristically true, so it is no surprise t.hat they
issue in true predictions. Instrumentalists, who deny the tmth of theories about
unobservables, cannot say this. But they can say somet.hmg els-e. They can
accept that there is a well-established pattern, displayed in the history of sci-
ence, of novel observable predictions suggested by thgorfes ?bo.ut un.obser\.v-
ables turning out to be true. And then they can simply insist, in line with t}Eelr
general instrumentalism, that there is no need to give any further expl'a.nanon
of this pattern, in terms of such hidden facts as the truth of the theories con-
cerned. After all, instrumentalism is precisely the view that we do not need to
explain manifest patterns in terms of hidden causes (or at most that we §hou]d
‘explain’ them by fitting them into larger manifest patterns). Gwen.that instru-
mentalists start off by denying the need for unobservable explanations, it begs
the question against them to insist that they should produce such an explana-
tion for the predictive success of science.

3.4. The Underdetermination of Theory by Data

In the last section I argued that various arguments against instmm.entalism can
be resisted. I shall now allow instrumentalism to go on the offensive, an_d con-
sider some positive arguments against realism. There are two strong lmes. of
argument that instrumentalists can use to cast doubt on realism. In th:s section
and the next I shall discuss ‘the underdetermination of theory by ev1.de.nce and
some related issues. In Section 3.6 1 shall consider ‘the pessimistic meta-
induction from past falsity’. As it happens, I do not think that either of m?se

_ arguments succeeds in discrediting realism. But they are both arguments which
merit careful consideration. .

The argument from underdetermination asserts that, given any _theory
about unobservables which fits the observable facts, there will be other incom-
patible theories which fit the same facts. And so, the argur.ne:.)t concludes, we
are never in a position to know that any one of these theories is the truth

Why should we accept that there is always more th'an one thf.ory which fits
any set of observable facts? There are two routes 10 this conclusion. One stems
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from the Duhem-Quine thesis, originally formulated by the French philoso-
pher and historian Pierre Duhem at the turn of the century and later revived by
the American logician W. V. O. Quine.” Duhem and Quine point out that a sci-
entific theory T (such as the Newtonian theory of gravitation) does not nor-
mally imply predictions P on its own (about the motions of planets, say), but
only in conjunction with auxiliary hypotheses H (concerning such things as the
number of other planets, their masses, the mass of the sun, and so on). -

T&H—>P

Because of this, T can always be defended in the face of contrary observations
(such as the well-known anomaly for Newtonian theory presented by the orbit
of Mercury) by adjusting the auxiliary hypotheses H (by postulating a hitherto
unobserved planet, say, or an inhomogeneous mass distribution in the sun).

The point is that the observational refutation of P does not disprove T, but only
the conjunction T & H.

Not-P - not-(T & H)

So T can be retained, and indeed still explain not-P, provided we replace H by
some alternative, H’, such that

T& H’ = not-P.

This yields the Duhem-Quine thesis: Any theoretical claim T can consis-
tently be retained in the face of contrary evidence by making adjustments else-
where in our system of beliefs. The underdetermination of theory by evidences
(UDTE) follows quickly. For the Duhem~Quine thesis seems to imply that the
adherents of competing theories will always be able to maintain their respective
positions in the face of any actual observational data. Imagine two competing
theories T; and T,. Whatever evidence accumulates, versions of Ty and T, con-
joingd with greatly revised auxiliary hypotheses if necessary, will both survive,
consistent with that evidence, but incompatible with each other.

The other route to UDTE, first put forward by physicists such as Henri
Poincaré at the turn of the century, has a different starting-point.® It begins, not
with two competing theories, but with some given theory, all of whose obser-
vational predictions are supposed to be accurate. Imagine that T, is the com-
plete truth about physical reality, that it implies observational truths O. Then
we can always construct some ‘de-Occamized’ T; which postulates some more
complicated unobservable mechanism, but which nevertheless has precisely
the same observational consequences.

For example, suppose we start with standard assumptions about the location
? P. Duhem, The Aim and Structure of Physical Theary, Bng. edn. (London, 1962); W. V. O. Quine, "Two

Dogmas of Empiricism’, in From a Logical Point of View (Cambridge, Mass., 1953).
* H. Poincaré, Science and Hypothesis, Eng. edn. (New York, 1952).
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. ized
odies in space-time and about the forces acting on them. A de-(.)cca'rmze :
;.l'fel:ry mighstpthen postulateft;hatcz all bod}es, :;ileléix:f ﬁdmﬂ::nsuandndgj uu;tst:-hue
i sec? in a given s
Z‘:;t?o:z::::;lu:::?g Zp:m this, Thisgtheory would clearly have e:facdy the
same observational consequencels as the original one, even though it contra-
icted i observable level.
dlc';‘i)dl::i:tgttl:\itu:l:e difference between the two arguments for UDTﬁ; no:;s t}v:z
the Duhem-Quine argument does not specify exactl.y wl’nch ov;ra]l thi(:cs v
will end up with, since it leaves open how T and T's auxiliary hypo e ed}ﬁ
need to be revised; the de-Occamization argument, by contrast, actu ﬁy ;pthe
fies T, and T in full detail, including auxiliary hy.potheses: In compensa ;) the
Duhem—Quine argument promises us alternative theories whate.ver obse :
tional evidence may turn up in the future; whereas the Qe-Occamlzanon argu
ment assumes that all future observations are as Ty predicts.

3.5. Simplicity and Elimination

iew i e arguments of the last section give us good reason to accept
gg;?:hlz ?;2:::1 thatgtzrenre will always be incompatible theories to expla.ml ;ny
given body of observational facts. I do not agree, hov.vever. that Utlﬁ;I‘E yie & at
good argument against realism. What UDTE shows is that more ; d(:ne Bet
ory about unobservables will always fit any given set of obserw{auon taz;li ul
it is too quick to conclude, as many philosophers do, .that this makf:s re th;nm
about unobservables untenable. For we should recognize that there 1;1 no " E
in the arguments for alternative underdetermined theories to show “e;;: ;:
alternative theories will always be equally well supported by the 'data. : ht he
arguments show is that different theories will always be consistent wit t; e
data. But they do not rule out the possibility that, among these altema;]nveld l:.—
ories, one is vastly more plausible than the others, and foF th.at reason should t}el
believed to be true. After all, ‘flat-earthers’ can make t.heu' view conmstel;it wi
the evidence from geography, astronomy, and sate.lhte photographs, ﬂ.y con;
structing far-fetched stories about conspiracies to hide the truth, th: Zkzc:; c;r
empty space on cameras, and so on. But this does not s'how we nee ta1 - e
flat-earthism seriously. Similarly, even though Newtonian grawmuc;n - eory
can in principle be made consistent with all the contrary evidence, by 2nlgmg
in various hidden forces and other ad hoc devices, this is no reason not to believe
ivity theory. . .
gerar:tla;relll;u;‘?;ﬁsingryscientists do not regard the UDTE as blo.cklng tl:neltr
access to the theoretical truth. They recognize that we can always in pm]\clgis e
concoct alternative explanations for any given body of data; bu.t they simp yd -
count as not worth taking seriously those complex altefn.atwes tha't nee ;o
invoke hidden planets, or hidden forces, or other truth-hiding conspiracies. In
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effect, scientists are taught, in the course of their scientific training, that only
certain sorts of theory are possible candidates for the truth; and once they have
data that rule out all but one of these theories, they quite happily ignore all the
other conspiratorial theories that remain consistent with the data, (Perhaps the
best way of describing this aspect of scientific practice is to say that scientists
ignore all theories that are not sufficiently ‘simple’; but if we do so we should
not think of ‘simplicity’ as some innate or intuitive idea; rather, the relevant
kind of simplicity is part of what scientists learn when they are trained as
meteorologists, embryologists, physicists, or whatever.) :

Still, even if scientists don't regard the UDTE as a serious obstacle, many
philosophers, as I said, move quickly, from the premiss that different theories
are consistent with the observational evidence, to the conclusion that none of
them can be regarded as the truth. However, I think that they only make
this move because they assume that the only good inferences from data to
theories are deductively valid ones: they note that the data cannot deductively
imply T, if they leave open the possibility that some inconsistent theory T’ is
true; and they conclude that this shows we are never entitled to believe such
aT

However, as we saw in our earlier discussion on induction in Section 1, there
are good reasons for allowing that other inferences, apart from deductively
valid ones, can be rational. In particular, in that discussion I suggested that the
important underlying requirement might merely be that inferences should be
reliable, not deductively valid.,

In fact, the issue we are now addressing is closely related to our earlier dis-
cussion of induction. In Section 1 I focused on enumerative induction, in which
we go from instances of a pattern to the theory that this pattern holds gener-
ally. The theory-choices we are now considering can be thought of as elimina-
tive inductions, in which we assume that the truth lies among one of a limited
number of theories (the reasonably ‘simple’ theories), and then use our obser-
vations to eliminate all but one of those theories.

The essential difference between these two forms of induction is that elimi-
native inductions consider only a limited number of theories to be candidates
for truth. This might make it seem as if enumerative induction is a more gen-
eral form of inference, since it rests on no such presupposition. But in fact our
discussion of Goodman’s ‘new problem of induction’ in Section 1 shows that
even enumerative inductions rely on a similar presupposition: since there are so
many possible ways of projecting observed patterns into the future, enumera-
tive inductions are forced to restrict the generalizations they regard as candi-
dates for the truth to the limited number which involve projectible predicates.
For example, propositions of the sort ‘All emeralds are green (yellow/red/etc.y’
are reasonably ‘simple’, and so candidates for truth, but propositions of the sort
All emeralds are grue (bleen/etc.)’ are not. Someone investigating emeralds
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can then reach the natural conclusion by noting which of the candidates for
truth is consistent with the observations made so far.

Given this, we may as well regard all inductions as in essence eliminative,
rather than enumerative. Still, the question of the reliability arises in just the
same way for eliminative induction as for enumerative induction. The fact that
eliminative inductions are not logically valid does not itself mean that they are
not reliable. But there remains the question whether they are reliable.

In Section 1 | suggested that it might be acceptable to answer this question

for enumerative inductions by providing (enumeratively) meta-inductive evi-
dence for their reliability. Perhaps we can try the same move again. That is,
maybe we can take as evidence those occasions where scientists have chosen
whichever ‘simple’ theory is consistent with the evidence, and then argue meta-
inductively that the only ‘simple’ account of the success of these inferences is
that such eliminative inductions are in general reliable guides to the truth. This
move obviously involves some element of circularity, but, as I noted in Section
1, it is not clear that this kind of circularity is vicious.

It should be said that this is only one possible way in which we might try to
defend the rationality of eliminative induction. The main point 1 want to make
in this section is that the rationality of eliminative induction does not require
that it be deductively valid. So the UDTE does not show that such inductions
are never acceptable, and so does not discredit the realist view that well-attested
theories about unobservables can be regarded as true descriptions of nature.
How best to go beyond this, and show positively that eliminative inductions are
rational, is perhaps too difficult a question to resolve here.

3.6. The Pessimistic Meta-induction from Past Falsity

Let me now turn to the other argument against realism mentioned earlier. This
argument takes as its premiss that past scientific theories have generally turned
out to be false, and then moves inductively to the pessimistic conclusion that
our current theories are no doubt false too.

There are plenty of familiar examples to support this argument. Newton’s
theory of space and time, the phlogiston theory of combustion, and the theory
that atoms are indivisible were all at one time widely accepted scientific theo-
ries, but have since been recognized to be false. So doesn’t it seem likely, the pes-
simistic induction concludes, that all our current theories are false, and that we
should therefore take an instrumentalist rather than a realist attitude to them?

This is an important and powerful argument, but it would be too quick to
conclude that it discredits realism completely. It is important that the tendency
to falsity is much more common in some areas of science than others. Thus it
is relatively normal for theories to be overturned in cosmology, say, or funda-

mental particle physics, or the study of primate evolution. By contrast, theories
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instrumentalists about that subclass of theories which are not supported by ade-
quate evidence.

-

4. CONFIRMATION AND PROBABILITY

4.1. The Notion of' Confirmation

At the end of the last section 1 argued that the h.isto.ry of scieface Iilves; us :t::s;r;
to be cautious in our commitment to certain saenu.ﬁc t:l\eonesf._ra at ;as me
areas of science the evidence for even the best theories is oftenth gn'x:.h E?oﬁes
inconclusive, with the consequence that we should expect that sw

i o be false. . .
Wlllltnv:/r:u;); :): nice to be able to say more about thF degree ;o whlc? ahgaxvv:r;
body of evidence supports a given theorx. That is, it wou.ld e mc::.1 do have
quantitative account of the relationship between evidence ae 4 i nﬁrz'
Philosophers have sought to develop such accounts, unde.r th;i;am of confir
mation theory’. They seek to understand the extent to v.vhlch nz-re; bodies of
evidence ‘confirm’ different theories. If a theory is hlgjnl? co o eif‘t);1 the
available evidence, then we can be reasonably confident it is true; ‘ut't ;ccord.
lower degree of confirmation, then we should moderate our trust in 1
mgll-{y;)wever, this intuitive notion of confirmation is less s.tr?ightforwarltll lt:an 1;
seems. | shall introduce some of the difficulties by desc.nbmg two well-know
paradoxes that any theory of confirmation must deal with.

4.2. The Paradox of the Ravens

Let us assume that there is relationship of confirmation, according to \}:rhlch
sometimes E confirms T, where E is some body of evidence and T some t ;ory;
Then it certainly seems natural to make the following two assumptions aboul

confirmation:

m If E = (Fa & Ga) andT:AilFsareGs,thenEconﬁrmsT. -
(This first assumption simply says that generalizations are confirmed by their
instances.)

(2) IfE confirms T, and T is logically equivalent to §, then E confirms S.

As | said, these two assumptions seem highly uncontentious. But they can eas-

ily be shown to generate a puzzle. _ . .
W Nf)tse ?irst tha% the following two generalizations are logically equivalent:

(L) All ravens are black.
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(M) All non-black things are non-ravens. .

Now take as our evidence an observation that:
(I) The white thing over there is a shoe.

Since (I} is an instance of a non-black thing which is a non-raven, then assump-
tion (1) tells us that (I) confirms (M).

But if we now put this together with the fact that (M) is logically equivalent
to (L), then assumption (2) tells us that (I) confirms (L).

However, this seems absurd. For (L) is the claim that all ravens are black, and
surely we cannot confirm that just by observing that some white thing is a shoe.

Something seems to have gone wrong somewhere. But it is difficult to see
where. For there can scarcely be anything wrong with assumption (2)—logi-
cally equivalent propositions make exactly the same claims about the world, so
it is hard to see how some piece of evidence could support one such proposi-
tion, without therewith supporting the other proposition. And assumption (1)
seemns almost as obvious—if anything is ever confirmed by anything, surely
generalizations are confirmed by their instances.

(Some of you might think that the flaw in the reasoning lies with assumption
(1). For isn't the lesson of Goodman’s new problem of induction precisely that
Fa & Ga cannot always confirm (x) (Fx = Gx)? Goodman shows that, unless
we restrict F and G to ‘projectible’ predicates, there are far too many Fs and Gs
for all such generalizations to be confirmable by their instances. However, I do
not think this helps with the raven paradox, given that there isn’t anything par-
ticularly ‘gruesome’ about the predicates used to formulate it, namely, ‘black’,
‘ravent’, ‘non-black’, and ‘non-raven’. It is of course true that Goodman's argu-
ment shows that (1) is not acceptable as formulated without qualification
above. But the paradox will still be generated even if (1) is restricted to apply
only to ‘projectible’ predicates.)

4.3. The Tacking Paradox

Now for the second paradox. Here are two further assumptions that seem
pretty obvious:

(3) If T entails E, then E confirms T.

(This is just the idea that a theory is confirmed if its consequences are observed
to be true.)

(4) If E confirms T, and T entails P, then E confirms P.

(This is just the idea that, if some evidence entitles you to believe some theory,
then it entitles you to believe what follows from it.)
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4.4. Interpretations of Probability

i ili rstood in a number of different ways. In
The novon o?s):i(;lbiax:) g::?ﬁf)a:ltﬁhuenrgt;m both objective and sul?jecﬁve noqon:
Pamcfal:,ﬂ? But there is one thing that ties together all the c.:lfﬁ'erent lr:::txon
2§'P:'gb:bilig:: namely, that they satisfy the axioms of the pmbahlfty calculus.
ﬁ'hese axioms are normally stated as follows:

(1) 0 =< Prob (p) < 1, for any proposition p.
(2) Prob(p) = 1,ifpisa neces::lry truth.

Prob(p) = 0, if pis impossible. o
Ei; P:gb((f’)or q) = Prob(p) + Prob(g), if p and g are mutually exclusive

Any way of assigning
stit{xtes an interpretation of the pr

. . . on-
numbers to propositions so as to satisfy these axioms cor
obability calculus. We shall concentrate in
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particular on the contrast between subjective and objective interpretations of
probability.

The subjective interpretation takes the probability of p to be a measure of the
strength with which you believe p. More specifically, for any person X, the sub-
jective interpretation equates X's probability for p with the degree to which X
believes p. '

Some extreme subjectivists argue that this is the only notion of probability
we need. But most philosophers who recognize subjective probabilities also
recognize objective probabilities. Objective probabilities apply specifically to
propositions which claim that a certain kind of result will occur on a certain
kind of repeatable trial, such as that a certain kind of coin will come down heads
when tossed. And in this kind of context a statement of objective probability
specifies how much trials of that kind tend to produce the result in question.
This kind of tendency is displayed by the frequency with which the result
occurs—for example, by how often coins like this come down heads,

It should be clear that these subjective and objective interpretations give us
different notions of probability. A degree of subjective belief is one thing, and an
objective tendency is another. There is no guarantee that any particular per-
son’s subjective expectations should correspond to the objective tendencies;
and there would still have been objective probabilities of atoms decaying, even

if there had never been any human beings to form degrees of belief. Let us now
look more closly at these two notions in turn.

4.5. Subjective Probabilities

The central assumption of the subjective interpretation is that belief comes in
degrees. Normally we think of belief as something you either have or have not.
But consider the attitude of someone who takes both umbrella and sunblock
cream on a walk. Does this person believe it will rain or not? The natural answer
is that the person has some expectation that this proposition is true, and some
that it is not. Or consider the attitude of a company director who gives money
to both the Labour Party and the Conservative Party before the election. Again
it seems natural to say that the company director has a positive degree of belief
that each outcome will happen. (Some people object to the idea of ‘degrees of
belief’ because they think of beliefs as definite attitudes to propositions, for or
against. If one preferred, one could think in terms of degrees of expectation
rather than belief. This will make no difference to the points which follow.)
Itis one thing to argue that beliefs come in degrees. It is another to show that
we can attach definite numbers between 0 and 1 to these degrees. But the sub-
jective theory needs to show this, since degrees of belief will have to equal such
numbsers if they are to have any chance of satisfying the probability axioms.
However, this is not necessarily as far-fetched as it seems at first sight. The
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today’ and ‘It won’t rain today’, and so, to satisfy axiom (4), needs to have a
degree of belief equal to the sum of these Propositions” separate degrees of
belief; however, this sum is 1.5, not 1.) ‘

Note also that, because you have these degrees of belief, you will be prepared
to wager your £8 to my £2 on the proposition ‘It will rain today’; and you will
be prepared to wager your £7 to my £3 on ‘It will not rain today’. But this is
clearly a quite silly pair of bets, since you are guaranteed to lose £5 whatever
happens.

It is provable, along the lines of this last example, that people are open to
‘Dutch books’ if and only if their degrees of belief fail to conform to the proba-
bility axioms. Since it seems clearly irrational to have degrees of belief which
can lead you to do things which are guaranteed to fail, this shows that every-
body’s degrees of belief ought rationally to conform to the probability axioms.

Note that the conclusion of this argument is only that a rational person’s
degrees of belief ought to conform to the probability axioms, not that every-
body’s degrees of belief will in fact so conform. After all, most people probably _
have degrees of belief that don’t sum to 1 for at least some sets of exclusive and
exhaustive propositions. So the most that the subjective interpretation can say
is that rational degrees of belief are an interpretation of the probability calculus,
not that all actual degrees of belief are.

Note also that while the Dutch book argument shows that your degrees of
belief ought to conform to the probability calculus, it does not show that you
ought to attach any particular number to the proposition ‘It will rain today’. You
can attach 0.7 or 0.1 or 0.435 or whatever number you like to this proposition,
provided only that the degree of belief you attach to ‘It won't rain today’ is 1
minus that number. The Dutch book argument only shows that your degrees
of belief must be ‘coherent’ (that is, must somehow satisfy axioms (1)<4));
beyond that it is a matter of subjective choice which degrees of belief you have.
Different people can attach different 'subjective probabilities’ to the same
proposition. The requirement is only that for each person the numbers in ques-
tion satisfy the probability axioms; but these can be quite different numbers for
different people.

Itis this last point that makes most people think that we need another notion
of probability—objective probability—to cover the idea that coins (or dice, or
radium atoms) have certain tendencies to land heads (land ‘six’ up, decay). For
these objective tendencies presumably have definite objective values, even if dif-
ferent people have different degrees of belief in the relevant result occurring.

4.6. Objective Probabilities

There are two competing ways of thinking about objective probability, the fre-
quency theory and the propensity theory. I shall consider them in turn.
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4.6.1. The Frequency Theory

The traditional way of making sense of objective probabilities is to equate them
with the relative frequencies of results. Thus we equate the probability p of
result R (heads, ‘six’, decay) in situation § (coin-toss, throw of a die, radium
atom) with:

the number of Rs/the total number of Ss.

Note that this only allows us to ascribe probabilities to results that happen in
repeatable situations where we have some number of S, and not to all propo-
sitions, as on the subjective theory. But this is not a criticism, since it is arguable
that the notion of objective probability only applies to such repeatable situa-
tions, and not to once-off propositions like ‘Prince Edward will get married this
ar’,
¥ An obvious problem facing the above definition is to know which ‘total num-
ber’ of trials S we should consider. It cannot normally be the actual trials of kind
S, since these will normally be finite in number. The problem here is that we
know (since it follows from the probability axioms) that there is always a non-
zero probability that the relative frequency after N trials will be different from
p, if N is finite. For example, it is entirely possible (indeed highly likely) that
1,000 tosses of coins with a 0.5 objective probability of heads will end up with
something other than exactly 500 heads. So there is no guarantee at all that the
relative frequency in any finite number of trials will equal the objective proba-
bility.

gzcause of this, the frequency theory standardly defines probabilities, not in
terms of frequencies in finite sets of trials, but rather in terms of the proportion
of Rs that would occur iftrial S were repeated infinitely many times.

‘This appeal to infinite sequences of trials raises a technical difficuly. For the
notion of a proportion of Rs in an infinite sequence of Ss does not make sense. If
we toss a fair coin an infinite number of times, then there will be an infinite
number of heads and an infinite number of tails. So the proportion of heads in
the total number of tosses is infinity divided by infinity, which is nonsense. The
way round this difficulty is to equate the probability with the limit of the finite
relative frequency of Rs in the first n Ss, as n gets bigger and bigger. More pre-
cisely, we can say that the relative frequency of m Rs in the first # Ss tends
towards such a limit p (and then equate the objective probability with this p) if

for any e, however small, there is an N, such that, forallz > N,
—-<min-p<+te

(This is just the standard mathematical idea of a limit—a number such that, for
any tiny region around it, the relative frequency will eventually stay within that
region once you have gone far enough along the sequence.)
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However, even if the frequency theory can deal with this technical problem
raised by infinite sequences, many philosophers still feel unhappy with defining
probabilities in terms of hypothertical facts about what would happen if § hap-
pened infinitely often. Since most Ss, like coin-tosses, dice-throws, or indeed
atomnic-decays, do not actually happen infinitely often, this means that we are
trying to define objective probabilities in terms of non-existent, imaginary facts.
This has persuaded many philosophers to seek an alternative approach to objec-
tive probabilities.

4.6.2. The Propensity Theory

The propensity theory of objective probability turns away from the idea of rel-
ative frequencies in repeated trials, and argues that we should simply take objec-
tive probability as a primitive notion which measures the strength of the
propensity for each particular S to produce R. Propensity theorists normally use
the term ‘chance’ to refer to this quantity. So when they say that the chance is
0.4 that this coin will land heads when I toss it, they simply mean that this par-
ticular combination of coin and tosser has a 0.4 tendency to produce heads.

The propensity theory has the disadvantage that it does not define probabil-
ity, but simply takes it as primitive. On the other hand, it has the advantage that
it does not need to appeal to the non-existent infinite sequences of the fre-
quency theory. Which of these two theories you prefer will depend mainly on
whether you think the infinite sequences are a price worth paying for an explicit
definition.

At first sight it might seem that the propensity theory will find it harder than
the frequency theory to explain how we find out about objective probabilities.
For surely our knowledge of objective probabilities comes from the observation
of frequencies. Yet the propensity theory seems to deny any link berween objec-
tive probabilities and frequencies.

However, propensity theorists can retort that they do recognize a perfectly
good link between objective probabilities and frequencies, even if not a link that
defines the former in terms of the latter. For they can point out that it is a the-
orem of the probability calculus that

in a sequence of n trials each with probability p of result R, the probability
that the relative frequency of Rs will be close to p can be made as high as
you like, by making n big enough.

This does not yield a definition of probability in terms of frequency, since it uses
the notion of probability in explaining the link between probability and fre-
quency (note the emphasized ‘probability’ in the statement of the theorem).

But it is still a link that entitles us to take frequencies as evidence for probabili-
ties.
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True, they don't provide sure-fire evidence, since even for large n it is only
probable that the frequency will be close to the probability, not certain. But this
problem (‘the problem of statistical inference’) is not a problem for the propen-
sity theory alone. After all, even frequency theorists have to find out about
objective probabilities on the basis of finite frequencies (since we never observe
infinite sequences). So they also face the problem that it is at most probable, not
certain, that the objective probability (that is, for frequency theories, the fre-
quency in the infinite limit) will be close to the observed frequency.

This problem of statistical inference is just one aspect of the philosophy of
probability that we cannot deal with any further here. Our treatment of both
objective and subjective probability has done little more than scratch the sur-
face of these topics. But we now have enough to continue our discussion of con-
firmation theory.

Let me just make one further point before returning to the main line of argu-
ment. So far I have said nothing about the connection berween subjective and
objective probability. There is no question but that these are distinct notions, as
I pointed out earlier. But this does not mean that they are unconnected. More
specifically, the following principle seems to encapsulate an important connec-
tion:

If you know that the objective probability of R at time t is p, then at t your
degree of belief in R ought to equal p.

This idea seemns almost too obvious to be worth saying. Of course, if 1 know that
this coin now has an objective piobability of 0.5 for heads, 1 will make my
degree of expectation for this outcome equal 50 per cent. However, it is worth
observing, before we leave this topic of probability, that none of the theories of
objective and subjective probability outlined above offers any obvious explana-
tion of why this principle is true. Once more, there is more to probability than
we have been able to deal with here.

4.7. Bayesian Confirmation Theory

Inow return to the topic of confirmation theory. In the rest of this section [ shall
concentrate on Bayesian confirmation theory. Bayesians are philosophers who
think that we can use the notion of subjective probability to explicate the rela-
tion of confirmation. This is not necessarily the only way of thinking about con-
firmation. But Bayesianism offers a powerful and uniform way of thinking
about issues of confirmation. In particular, as we shall see, it yields natural solu-
tions to the two paradoxes of confirmation described earlier.

The initial assumption made by Bayesian confirmation theory is that our atti-
tudes towards theories are measured by the subjective probabilities we attach
to them. So if I fully believe a theory, I give it a subjective probability of 1;
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whereas if I regard it as a hazardous speculation, I give it a subjective probabil-
ity close to 0.

Bayesians then say that a piece of evidence E confirms a theory Ti i
should make people increase their probability for T:ﬁ(ln the reso?'of tlhfi? ::c.n:_noilf
shall tend to omit the qualification ‘subjective’; unless I say otherwise, ‘proba-
bility” will mean ‘subjective probability’.) ’

' In order to develop the Bayesian theory further, we need the notion of con-
fixtional probability. The conditional probability of A given B (written ‘Prob(4/BY)
is defined as the quotient Prob(A and B)/Prob(B), and can be thought of as
the probability-of-A-on-the-assumption-that-B-is-true. To see why, note that
Prob(B) is a measure of the likelihood of B happening, while Prob(A and B) is a
measure of the likelihood of A also happening when B happens. So if we divide
Prob(A and B) by Prob(B) we get a measure of the likelihood of A happening
given that B has happened.

Now consider the case where E is some possible evidence and T is some the-
ory. Prob(T/E) is then the probability of T, on the assumption that E is true.
Bayesians therefore argue that when you learn E, you should increase your
probability for T to equal this number. So for Bayesians E will confirm T, in the
sense that discovering E will increase the probability we attach to T, if and only
if Prob(T/E) is greater than Prob(T). (In fact this claim is rather less straightfor-
ward than it may seem at first sight. But I shall assume it henceforth. For fur-
ther discussion see the further reading.)

We can say more about when E will confirm T if we take note of Bayes'’s theo-
vem, originally discovered by the English clergyman Thomas Bayes in the eigh-
teenth century. This theorem follows quickly from the definition of conditional
probability. According to this definition Prob(T/E) = Prob(T and E)/ Prob(E),

;vhi.le Prob(E/T) = Prob(T and E)/Prob(T). Putting these two together, we can
erive

“*Prob(T/E) = Prob(T) X Prob(E/T)/Prob(E).

This is Bayes’s theorem. Its significance is that it tells us that Prob(T/E) is
greater than Prob(T)—that is, E confirms T—if and only if Prob(E/T) is bigger
than Prob(E). This is pre-theoretically just what we would expect. For it says that
E confirms T to the extent that E is likely given T, but unlikely otherwise. In
other words, if E is in itself very surprising (like light bending in the vicinity of
the sun) but at the same time just what you would expect given your theory T
(the general theory of relativity) then E should make you increase your degree
of beliefin T a great deal. On the other hand, if E is no more likely given T than
it would be on any other theory, then observing E provides no extra support for
T. The movement of the tides, for example, is no great argument for genceral rel-
ativity theory, even though it is predicted by it, since it is also predicted by the
alternative Newtonian theory of gravitation.
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4.8. The Paradoxes Resolved

Let us now consider how this Bayesian approach to confirmation deals with the
paradoxes of confirmation.

4.8.1. The Raven Paradox

First, the paradox of the ravens. The assumptions generating this paradox,
remember, are (1) that generalizations are confirmed by their instances, and (2)
that confirmation bears equally on logically equivalent propositions. The stan-
dard Bayesian response to this paradox is to accept both these assumptions, and
therewith the apparently absurd conclusion that a white shoe does confirm that
all ravens are black. But Bayesians then explain this appearance of absurdity by
saying that a white shoe only confirms this hypothesis a tiny bit, by comparison
with the confirmation it gets from a black raven.

Let me use some simple figures to illustrate the point. Suppose that you ini-
tially think that about % of physical objects are black, and that about % are
ravens. (This isn’t very realistic, but let’s keep the figures simple.) Then, in the
absence of any spedial views about the colours of ravens, your probability for
the next object you see being a black raven will be %, and for its being a non-
black non-raven will be *%. (and similarly for its being a non-black raven % and a
black non-raven %o). '

Now consider the conditional probability of a black raven, and a non-black'
non-raven, on the assumption (T) that all ravens are black. This assumption will
tend to increase your probability for both these observations, simply because it
decreases the probability that you will see a non-black raven from %. to zero.
Suppose this conditional probability for a black raven is %, for a non-black non-
raven *%: (and for a black non-raven ‘%).

Now we can apply Bayes’s theorem. The initial probability of a black raven is
%, while the conditional probability given T is %. So, whatever your initial prob-
ability for the hypothesis that all ravens are black (equivalently, for all non-
blacks are non-ravens), Bayes's theorem tells us that an observation of a black
raven will double it. By contrast, where the initial probability of a non-black
non-raven is *%, the probability conditional on T is only *%.. So the observation
of a white shoe will only increase our degree of belief in the hypothesis by %sths.
The point is that the hypothesis that all ravens are black makes the observation
of a black raven significantly less surprising than it would otherwise be; whereas
the observation of a non-black non-raven, never very surprising to start with,
becomes only marginally less so on the hypothesis that all ravens are black. So
black ravens confirm the hypothesis a lot; white shoes confirm it scarcely at all.

It is perhaps surprising to learn that white shoes give any support to the
hypothesis that all ravens are black, even if only a small amount. But we can see
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that, with any realistic figures, this support would be so minuscule that it would
be very odd indeed to say, in an everyday context, that a white shoe gives us any
reason to believe that all ravens are black. So this is how Bayesians deal with the
raven paradox: they do not deny that white shoes confirm that all ravens are
black; they just point out that they confirm it so little as to make no difference
in an everyday context.

4.8.2. The Tacking Paradox

Now for the ‘tacking’ paradox. Recall that the assumptions here were (1) that
theories are confirmed by the observation of anything they entail, and (2) that
any evidence that confirms a theory also confirms its consequences. Many peo-
ple, as I said earlier, think that there must be something wrong with (1), since it
allows that a theory-plus-a-‘tacked-on’-part (Newtonian-theory-plus-the-moon-

. is-green-cheese, say) is confirmed by the predictions of the original theory (the

planets move in ellipses), which seems odd.

However, Bayesians are committed to (1). For if some T entails E, then
Prob(E/T) = 1. So, as long as E is not itself necessarily true, with an uncondi-
tional probability of 1, E must confirm T, by Bayes’s theorem.

But Bayesians point out that this is consistent with E only confirming T in the
sense that it increases the probability of some part of T, while leaving the prob-
ability of the rest of T untouched. So, for example, Bayesians would say the
motion of the planets only confirms Newtonian-theory-plus-the-moon-is-
green-cheese in the sense that it increases the probability of Newtonian theory
itself, while being irrelevant to the green-cheese part of the joint hypothesis.

In line with this, Bayesians will deny (2). For, when some evidence confirms
some theory only in the sense that it increases the probability of part of it, while
leaving the rest untouched, then we would expect that evidence to confirm the
consequences only of that part, and not of the other part. So while the motion
of the planets confirms the joint thesis Newtonian-theory-plus-the-moon-is-
green-cheese, it does not confirm the consequence that the moon is made of
green cheese, or anything that follows from this.

Not only does this Bayesian line offer a natural solution to the tacking para-
dox, it is also helpful in thinking about the relation between theory and obser-
vation generally. Much recent philosophy of science has inferred, from the
Duhem-Quine observation that specific theoretical assumptions only generate
predictions with the help of auxiliary hypotheses, that the relation between the-
ory and evidence is irredeemably holistic, in that it is always the totality of our
beliefs about the world that is confirmed or refuted by evidence. But the
Bayesian approach shows that even if predictions are generated by a conjunction
of assumptions, that evidence can support different elements of that conjunc-
tion to different degrees.
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4.9. Problems for Bayesianism

It should not be forgotten that Bayesianism confirmation theory is derived from
the notion of subjective probability. As I pointed out earlier, there is nothing in
the idea of subjective probability to ensure that different people will attach the
same subjective probabilities and conditional probabilities to any set of assump-
tions, provided they each arrange their own probabilities ‘internally’ in such a
way as to satisfy the probability calculus. Can such a subjective notion really
provide a satisfactory basis for the apparently objective notion of how much
theories are confirmed by the existing evidence? Surely we do not want to allow
that I can be right to hold that the evidence shows relativity theory to have prob-
ability 0.8, while you can be equally right to think it has probability 0.2.

Different Bayesians make different responses to this challenge. Some simply
say that Bayesianism is only a theory of how to change your probabilities, anfi
not of which probabilities you ought to start or finish with. On this view, Bayes's
theorem shows us how to update our subjective probabilities, given that we
start with certain initial conditional and unconditional probabilities; but it says
nothing about what those initial probabilities ought to be, and therefore noth-
ing about which final probabilities we ought to end up with. There isn't any-
thing wrong with my ending up thinking relativity theory has probability (?.8,
while you think it has 0.2, provided we both reached this end-point by updating
our initial probabilities in response to the evidence in the way required by
Bayes's theorem. .

Many Bayesians, however, find the possibility of such divergence worrying,
and so offer a more ambitious answer. They say that, whatever your initial
degrees of belief, Bayes’s theorem will ensure convergence of opinion. The idea
is that, given enough evidence, everybody will eventually end up with the same
probabilities, even if they have different starting-points. There are a number of
theorems of probability theory showing that, within limits, differences in initial
probabilities will be ‘washed out’, in the sense that sufficient evidence and
Bayesian updating will lead to effectively identical final degrees of belief. So in
the end, argue Bayesians, it does not matter if you start with a high or low
degree of beliefin relativity theory—for, after a number of observations of light
bending, gravitational red-shifts, and so on, you will end up believing it to a
degree close to one anyway.

However, interesting as these results are, they do not satisfactorily answer the
fundamental philosophical worry. For they do not work for all possible initial
degrees of belief. Rather they assume that the people in question, while differ-
ing among themselves, all draw their initial degrees of belief from a certain
range. While this range includes most initial degrees of belief that seem at all
plausible, there are nevertheless other possible initial degrees of belief which are
consistent with the axioms of probability, but which will not lead to eventual
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convergence. So, for example, the Bayesians do not in fact explain what is
wrong with people who never end up believing relativity theory because they
always think it is probable that the course of nature is going to change tomor-
row.

This seems to me to show that Bayesianism provides at best a partial account
of confirmation. Bayesianism shows us how our initial degrees of belief con-
strain the way we should respond to new evidence. But it needs to be supple-
mented by some further account of why some initial degrees of belief are
objectively superior to others. Perhaps one way to fill this gap would be to
appeal to the kind of ‘simplicity’ mentioned in Section 3.6 above. But it would
take us too far afield to pursue this issue here.

5. EXPLANATION

5.1. The Covering-Law Model

Our main concern so far has been our knowledge of general truths. In this sec-
tion I shall focus on the use to which this knowledge is put in explanation. Both
in science and in everyday life the aim of investigation is often to find an expla-
nation for some puzzling phenomenon. But what exactly is an explanation? And
how does our knowledge of general truths contribute to our ability to explain?

Most modern discussion of explanation starts with Carl Hempel's ‘covering-
law model’. Let me first illustrate this model for the case where the item to be
explained is some particular event, such as that the ice in your water-pipes froze
last Tuesday, or that it rained this morning. According to Hempel, the explana-
tion of any such event conforms to the following schema:

« Initial conditions: I, I, ..., I,
Laws: L

Explained event: E.

So, for example, we might explain the fact E that it rained this morning by cit-
ing the initial conditions I, I, that there was a certain level of humidity and that
the atmospheric pressure fell to a certain level and the law L that such a fall of
pressure in such humidity is always followed by a precipitation of rain.

The law in such an explanation ‘covers’ the initial conditions and consequent
event, in the sense that it shows that the sequence of events behind a particular
occurrence is simply an instance of a general pattern. The fact that gets
explained, E, is sometimes referred to as the ‘explanandum’, and the facts that
do the explaining, the Is and L, as the ‘explanans’. Note that while I have repre-
sented the law involved in the explanans as a single proposition, L, in most cases
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we will need a conjunction of simpler laws to see why E follows the relevant Is.
For example, we would need both Newton’s second law and the law of gravita-
tion to explain why a meteor moves in the way it does.

Note also that, on this model of an explanation, explaining an event is the
same thing as deducing it from initial conditions and laws. Given the initial con-
ditions and a law which says that in general such initial conditions are followed
by an E, then logic alone allows us to infer that the explanandum occurs.
Because they involve deduction via a law in this way, such explanations are often
called ‘deductive-nomological’ explanations, or ‘D-N’ explanations for short.
(There is a variant of the covering-law model which allows probabilistic rather
than deterministic laws, and in which this requirement of deducibility is
therefore relaxed. So ‘covering-law’ is strictly a wider term than ‘deductive-
nomological’. But for the moment let us stick to deductive cases, and leave
probabilistic explanations to one side.)

It is worth being clear that the idea of a ‘deductive’ explanation does not
assume that the law L can somehow be ‘deduced’ from first principles in an
a priori way. Such laws still have to be established by induction from past ob-
servations of results. The idea is simply that, if we have established such a law,
then it will deductively imply, together with suitable initial conditions, certain
further results.

The covering-law model implies a certain symmetry between explanation
and prediction. The structure of explanations, in which we deduce that Ehad to
occur from initial conditions and laws, exactly parallels the structure of predic-
tions, in which we deduce that E is going to occur from the same initial condi-
tions and laws. For example, if we can explain its raining this morning by the
prior conditions and the relevant law, then we could presumably have predicted
its raining beforehand on the basis of the same information. So for the covering-
law model the difference between explanation and prediction depends only on
whether you know the explanandum before you deduce it from the explanans.
If you already know E, then deducing it from initial conditions and laws will
serve to explain it. If you do not already know E, then the same deduction will
serve to predict it. A prediction tells you what to expect. An explanation shows
you that what you already know was only to be expected.

5.2. Theoretical Explanation

In the last section 1 considered explanations of particular events, such as its rain-
ing this morning, or a particular meteor taking a certain path. However, the
covering-law model is also designed to accommodate explanations of laws as
well as explanations of particular events. For example, suppose you are puzzled
about some general law, such as, say, that there is always a rainbow when you
look towards rain with the sun at a given angle behind you. I can explain this by
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showing that it follows from the laws that (1) sunlight involves a mixture of all
wavelengths of light, (2) these different wavelengths refract differently on mov-
ing from light to water, and (3) raindrops are of a shape which will lead to inter-
nal reflection off the back of the raindrop. Here 1 have explained one law by
reference to other laws. Schematically:

Explanans: L), L,, ..., L,
Explanandum: L.

Because the explanandum here is a general truth, and not a particular event
occurring at some specific place and time, it is not necessary that initial condi-
tions be involved in the explanation. But despite this difference, it is still a deduc-
tive explanation from laws, and so still a species of ‘deductive-nomological’
explanation. Explanations of this kind are often called ‘theoretical explana-
tions’, to distinguish them from ‘particular explanations’.

The possibility of theoretical explanations shows how the covering-law
model can respond to a common initial objection. Consider once more the par-
ticular explanation of this morning's rain offered in the last section. Somebody
might say that it is all very well to attribute this morning's rain to the drep in
pressure and the humidity, but object that this is no kind of explanation until
ly)ou h_ave shown why drops in pressure at high humidity are in general followed

y rain.

The covering-law model can respond by insisting that the explanation of a
particular rainfall this morning is one thing, and the explanation of the law that
falls in pressure at high humidity are followed by rain is another. If you want
explanations of both, you can have them. But it does not follow that you have
not explained the first, the particular rainfall, until you have also explained the
second, the law which accounts for the particular rainfall.

Indeed, it would be obviously self.defeating to require that all explanations
should contain explanations of the facts adduced in the explanans. We would be
forced into infinite regress. As soon as we explained the laws which originally
appeared in the explanans by other laws, we would then have to explain those
other laws by further laws, and so on. And, in the case of particular explana-
tions, there would be an additional regress, for we would need to explain the
initial conditions mentioned in the explanans (why did the pressure drop? why
was the humidity high?), and this would require mention of yet prior initial con-
ditions, which would themselves need to be explained, and so on again.

So it does not make any sense to demand that in an explanation the explana-
tory facts should always be explained too. This is not because there is anything
wrong with asking for further such explanations in specific cases. It is just

that we cannor give the answer to an infinite number of questions in a finite
time.
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Exactly which explanatory questions have to be ans“fered in ordt.zr to yield
explanatory satisfaction is an interesting question. Buf it ?rob:abl)-' is not one
that admits of any general answer. Whether an explanation is satfsfyxng depends
on the practicalities of what is being explained to whom. Any given person has
a rough overall picture of the world, in which earlier events lead onto later ones
according to familiar patterns. But some phenomena do not fit into these pic-
tures. The role of an explanation is to show how such puzzling phenomena can
be fitted in. However, different people can be puzzled by different aspects ofa
given situation, in that the situation will fail to fit into their respective pictures
in different ways. And then different explanations will be needed to satisfy
them.

5.3. Do All Explanations Fit the Covering-Law Model, and Vice Versa?

In this section I want to start raising some questions about the adequacy of the
covering-law model. The covering-law model was Qrig'ma]ly _proposed by
Hempel as an analysis of the intuitive pre-analytic notion ofa smeqnﬁc expla-
nation. So it is possible to ask whether this analysis is afieq}late.'Thxs question
has two parts. (A) Is it true that every scientific explanation is an instance of the
covering-law pattern? (B) Conversely, does every instance of the covering-law
pattern amount to a scientific explanation?

5.3.1. Do All Explanations Fit the Covering-Law Model?

Let me start with (A). Consider this example. Little Katy contracts chickcn-po.x.
You want to know why. You are told that she played with Miranda, who had it.
This seems a perfectly cogent explanation. However, it does not seem to con-
form to the covering-law model. Suppose we think of playing with ar?other
child with chicken-pox as an initial condition in a covering-la“f de'ducuon of
Katy getting chicken-pox. Then we need as the law something like Whe‘ncvcr
a child who has not had chicken-pox plays with another child who has it, the
first child gets it too’. But there isn't any such law. There are plenty of cases
where children do not come down with chicken-pox after playing with another
child with it, even if tﬁcy have not had it before.

So this is a prima-facie counter-example: an intuitively satisfactory explana-
tion that does not fit the covering-law model.

5.3.2, Are All Instances of the Covering-Law Model really Explanations?

Question (B) raised the converse issue: is every instance of the covering-law
pattern really an explanation? Here is one case which is not.
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h, I The barometer fell this morning; and the humidity was high.
L: Whenever the barometer falls in high humidity, it rains.
E: It rained this morning.

This deduction conforms perfectly to the requirements of the covering-law
model of a particular explanation. But intuitively it just is not a satisfactory
cxplanation. The barometer falling might account for how you know it is going
to rain. But its actually raining is a different fact from your knowing it will rain.

And intuitively it seems quite wrong to say that the barometer’s fall was respon-
sible for the rain itself,

Here are some similar cases.

I, I The shadow of a pole P is n feet long; and the sun is at angle a.

L: Whenever a pole casts a shadow of n feet with the sun at angle a,
the pole itself is m feet high.
: Pole Pis m feet high.

: Star S emits red-shifted light.
All stars with red-shifted light are rapidly receding,
Star S is rapidly receding.

Both of these seem impeccable cases of covering-law deductions. But, again, it
seems quite wrong to say that the pole is m feet high because its shadow is n feet
long, or that the star is rapidly receding because its light is red-shifted.

3.3.3. Explanations that are not Predictions, and Vice Versa

Let me make a general point about the two kinds of counter-example to the
coveting-law model raised in this section. The covering-law model is commit-
ted, as I pointed out earlier, to the view that every explanation is a potential pre-
diction, and vice versa. So if we can find explanations that are not potential
predictions, then we will have examples of explanations that do not fit the
covering-law model. The example of Katy and the chicken-pox was of this sort.
You cannot immediately predict that she will get it just from knowing she
played with another infected child. Because it insists that all explanations should
be potential predictions, the covering-law model has trouble admitting these
prima-facie plausible explanations.

Then we looked at the converse kind of example, predictions that are not in
fact explanations, and which therefore get counted as explanations by the
covering-law model when they should not be. You can predict the rain from
the barometer’s fall, or the pole’s height from the length of its shadow, or the
star’s recession from its red-shift. And so, because it accepts that all potential
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predictions are explanations, the covering-law maodel has trouble ruling out
these prima-facie non-explanations.

" 5.4. Probabilistic Explanation

Defenders of the covering-law model can make various responses to these
counter-examples. Let me first consider counter-examples of type (A), n:_:lmely,
intuitively satisfactory explanations, like that of Katy’s chicken-pox, which do
not fit the covering-law model. _ . .

One possible response here would be to argue that, if Katy’s ch.xckcn-pt.)x isn't
predictable for lack of any law that says she was sure to get it in the circum-
stances, then, despite first appearances, her playing with Miranda does not
explain it. (After all, other children in contact with the infection some'n'mes dp
not get chicken-pox. So why suppose that Katy's contact with Miranda is
in itself enough to explain her getting the disease?) This line would save the
covering-law model of explanation by denying that the apparent counter-
example was really a genuine example of an explanation.

However, this move seems unattractive. It would be very odd to deny that
Katy got chicken-pox because she played with Miranda. So most covering-l.aw
theorists of explanation, from Hempel onwards, have weakened the require-
ments of the covering-law model to allow that there can be explanatior_ls that
appeal to probabilistic laws, rather than exceptionless ones. A.&er a]l, in our
example it is presumably true that most children in contact with chicken-pox
get it themselves, and this means that we can at least anticipate that Katy w.ould
get it from Miranda with high probability, if not with certainty. Acco.rdm.gly
Hempel put forward the following model of 'inductive-statistical.axp]anauons. as
another species of covering-law explanations alongside ‘deductive-nomological
explanations’.

Initial conditions: Iy, I, ..., I
Probabilistic laws: L, to the effect that most I, ..., I;s are Es
Explained event: E.

Explanations fitting this schema are ‘inductive’ because the premisses do not
deductively imply the conclusion, but only indicate it has a high probability; and
they are ‘statistical’ because they appeal to probabilistic laws rather than excep-
tionless ones.

Note that Hempel’s ‘inductive-statistical’ model requires that the explana.ns
should give the explanandum a high probability. It is not clear that this is quite
the right requirement for probabilistic explanation. Suppose that John Smith
gets lung cancer. In explanation we are told that he has smoked fifty cigarettes
a day for forty years. Intuitively this seems like a good explanation. But note that
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the explanans here does not give the explananduma high probability. Bven peo-
ple who smoke fifty a day for a long period still have alow probability of getting
lung cancer in absolute terms. What is true, though, is that they have 2 much
higher probability of getting lung cancer than if they did not smoke. Because of
this, 2 number of theorists have suggested that Hempel’s requirement of high
probability be replaced by the different requirement that the initial conditions
merely increase the probability of the explanandum, compared to the probabil-
ity if those initial conditions were absent. (Wesley Salmon has dubbed this the
‘statistical-relevance’ model, as opposed to the ‘inductive-statistical’ model,
because the requirement is in effect that the initial conditions should be proba-
bilistically relevant to the explanandum.®)

This issue of probabilistic explanation raises a number of further questions
which cannot be resolved here. Most obviously, you might have been wonder-
ing whether the probabilistic laws appealed to in such explanations are sup-
posed to be reflections of genuine indeterminism or whether they simply reflect
our ignorance of the full set of initial conditions which do determine Katy’s
chicken-pox, John Smith’s cancer, etc. Different answers to this question will
lead to different views of probabilistic explanation. But there is little agreement
among philosophers on how it should be answered.

5.5. Causation and Explanation

Let me now consider the other kind of counter-example, instances of the
covering-law model which are not in fact explanations, such as the deduction of
the rain from the barometer’s fall, or the pole’s height from its shadow’s length,
or the star’s recession from its red-shift.

The obvious reason why these deductions are not in fact explanations is that
the-nitial conditions do not specify the cause of the explanandum event. Instead
they deduce the explanandum event from a symptom (like the barometer’s fall)
or an effect (like the shadow’s length, or the red-shift). :

The obvious remedy is 1o add to the coveringlaw account the further
requirement that in explaining particular events the initial conditions should
always include the cause of the explanandum event. [ think this is the right
move. But it calls for a number of comments.

5.5.1. The Direction of Causation

In a sense this move simply shifts the original problem into the analysis of cau-
sation. The barometer/pole/red-shift counter-examples arose because the

* See W. Salmon, Statistical Explanation and Statistical Relevance (Pitesburgh, 1971).
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original requirements of the covering-law model failed to ensure that the
‘causal arrow’, so to speak, pointed from the initial conditions to the explanan-
dum. We can remedy the defect by appealing to the existence of such a directed
arrow between causally related events, and requiring that genuine explanations
proceed in the same direction as this arrow.

But that causation does have such a direction is itself a problematic assump-
tion. Consider Hume'’s equation of causation with constant conjunction. This
in itself does not tell us, given two constantly conjoined events, which lies at the
tail of the arrow, and is therefore the cause, and which lies at the point, and is
therefore the effect.

So something needs to be added to Hume’s constant conjunction analysis to
put the direction into causation. How to do this is a matter of active controversy.
Hume himself argued that, given two constantly conjoined events, it is always
the earlier which is the cause and the later the effect. But this appeal to tempo-
ral precedence is not entirely satisfactory. (After all, the barometer's fali
precedes the rain, but still does not cause it. And cannot some causes be simul-
taneous with their effects?)

I do not propose to pursue this issue any further here. Even if it is unclear
how to account for causal direction, it is intuitively clear that causation has a
direction, and that requiring that explanations. follow this direction is the way
to rule out the barometer/pole/red-shift counter-examples.

5.5.2. Are All Explanations of Particular Events Causal?

Itis not clear that it is appropriate to impose the requirement that the explanans
should mention a cause on all explanations of particular events. Suppose we
explain why some frozen substance is water by citing the fact it is H,O; or sup-
pose we explain why something has a temperature t by citing the fact that the
mean kinetic energy of its molecules is k. These are arguably reasonable expla-
nations. But being made of H,O does not cause something to be water, so much
as constitute its being water. Similarly, having a mean molecular kinetic energy
of k does not cause the temperature of t, but again constitutes it.

Perhaps these are not really explanations in the same sense as most explana-
tions. They do seem slightly peculiar, at least to my ear.

Still, even if we do count them as mainstream explanations, it is of no great
importance in the present context. To rule out the barometer/pole/red-shift
counter-examples we need to require some stronger link berween explanans and
explanandum than demanded by the original coveringlaw model. Maybe
requiring a specifically causal link is too strong, because we will then rule out
the H,O/mean kinetic energy explanations too. If so, then the solution is sim-
ply to say that we need a metaphysical link of one sort or the other, in which the
explanans either causes or constitutes the explanandum.
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5.5.3. Teleological Explanations

Perhaps one reason why Hempel and other early proponents of the covering-
law model were unwilling to impose this kind of metaphysical link was that
there is one important class of explanations in which the explanans neither
causes nor constitutes the explanandum. These are the functional, or teleological,
explanations which play such a central role in biology, such as ‘Plants contain
chlorophyll so that they can photosynthesize’ or ‘Polar bears are white so that
they cannot be seen’. Indeed these explanations are striking precisely because
the item that gets explained (chlorophyll, whiteness) is the cause, not the effect,
of the item that does the explaining (photosynthesis, camouflage).

If we take these explanations at face value, then it is not open to us to require
that (non-constitutive) explanations always go from cause to effect. For these
explanations seem to go in just the other direction.

Until fairly recently most philosophers of science did take such explanations
at face value. Thus Hempel himself regarded teleological explanations as
simply another way, alongside normal causal explanations, of exemplifying the
covering-law model: the only difference is that in causal explanations the
explaining fact (lower temperature) temporally precedes the explained fact
(freezing), whereas in functional explanations it is the explained fact (white fur)
that comes temporally before the consequence (camouflage) which explains it.

Most contemporary philosophers of science, however, take a different view,
and argue that functional explanations, despite appearances, are really a sub-
species of causal explanations. On this view, the reference to future effects in
functional explanations is merely apparent, and such explanations really refer to
past causes. In the biological case, these past causes will be the evolutionary his-
tories which led to the natural selection of the biological trait in question. Thus
the functional explanation of the polar bears’ colour should be understood as
referring us to the fact that their past camouflaging led to the natural selection
of their whiteness, and not to the fact that they may be camouflaged in the
future.

If we take this line on functional explanations, then we can continue to
uphold the requirement that all (non-constitutive) explanations should flow
from cause to effect, and so deal with the barometer/ pole/red-shift difficulty in
the way suggested.
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