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Preface

This monograph represents what I believe to be a new approach to the
philoso[ffily of mathematics. Most of the literature in the philosophy
of mathcrim‘tics,.takéﬁ the following three questions as cencrai:
() How much of standard machematics is true? For example,
are conclusions arrived at using impredicative sct theory true?
(b) What entities do we have to postulate to account for the cruch
of (this part of) mathematics?
(c) What sort of account can we give of our knowledge of these
truths?

A fourth question is also sometimes discussed, though usually quite
cursorily:

(d) Whar sort of account is possible of how mathematics is applied

to the physical world?

Now, my view is that question (d) is the really fundamental one. And
by focussing on the question of application, [ was led to a surprising
result: that to explin even very complex applications of mathematics
to the physical world (for instance, the use of differential equations in
the axiomatization of physics) it is not necessary to assume that the
mathematics that is applied is true, it is necessary to assume little
more than that mathematics is consistent. This conclusion is not based
on any general instrumentalist stratagem : rather, it is based on a very
special feature of mathematics that other disciplines do not share.

The fact thac the application of mathematics doesn't require that
the mathemarics that is applied be true has important implications for
the philosophy of mathematics. For what good argument is. there for
regarding standard mathematics as a body of truths? The fact that-
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standard mathematics is logically derived from an apparenty con-
sistent body of axioms isn't cnough; the question is, why regard the
axioms as truths, rather than as fictions that for a variety of reasons
mathematicians have become interested in? The only non-question-
begging arguments [ have cver heard for the view that mathematics is
a body of truths all rest ultimately on the applicabilicy of mathematics
to the physical world; so if applicability to the physical world isn't a
good argument either, then there is no reason to tegard any part of
mathematics as true. This is not of course to say that {_;‘mrc is something
wrong with mathematics; it’s simply to say that ma’ihq{mtiqusn't the
sort of thing that can be appropriately evaluated in termis of truth and
falsehood. Questions (a)—(c) are thus trivially answered: no part of
mathemarics is true (but you can use impredicative reasoning and other
controversial reasoning all you like in mathematics as long as you're
pretty sure it's consistent); consequently no entties have to be pos-
tulated to account for mathematical truch, and the problem of account-
ing for the knowledge of mathematical truths vanishes. (Of course,
the problem of accounting for our knowledge of what mathematical
conclusions follow from what mathematical premises still remains.
But that is logical knowledge, not mathematical knowledge: it isn't
knowledge of any special realm of mathematical entities.)*

The hardest part of showing that the application of mathematics
doesn’t require that the mathematics thac is applied be true is to show
that mathematical endities are theoretically dispensable in a way that
theoretical entities in science are not: that is, that one can always re-
axiomatize scientific theories so that there is no reference to or quan-
fication over mathematical entities in the reaxiomatization (and one
can do this in such a way that the resulting axiomatization is faicly
simple and attractive). To show convincingly that such nominalistic
reaxiomatizations of serious physical theories are possible requires a

* In these first two paragraphs I have used the term ‘mathematics’ a ‘bit more
narrowly than in the text: in these paragraphs, only sentences containing terms
referring to mathematical entities or variables ranging over mathematical
cntitics count as part of mathematics. (Compare note 1 of the text.)

Vil

- PR

%
?,
3
3
;
3
g

rather detailed technical argument. In this monograph [ have in fact
given such an argument (in the case of one physical theory I judge to be
fairly typical). But I have tried to make the main ideas of my approach
accessible to those without the background or the patience to follow all
of the technical details.

The motivation for this project did not come solely from consider-
ations about the philosophy of mathematics or'about ontology: certain
ideas in the philosophy of science (such as the dc&i@bilit}f of what [ call
‘intrinsic explanations’ and the desirability of elimipating certain sorts
of ‘arbitrariness’ or ‘conventional choice’ from our gltimate formulation
of theories) also played a key role. These ideas from the philosophy of
science are touched on in Chaprer 5; they vield support, independent
of ontological considerations, for the account of the application of
mathematics being suggested here. I also discuss (mostly in Chaprer 9
but to some extent also in Chapter 4) some issues about logic and
about ontological commitment: in particular, the relativity of
ontological commitment to the underlying logic. i.c. the fact that one
can often reduce one’s ontological commitments by cxpanding one’s
logic. This is a fact about ontological commitment that has not been
sufficiently discussed by philosophers writing on ontological questions,
and onc of the issues I address myself to in the tinal chapter is under
what circumstances if any it is reasonable to cxpand one's logic in
order to reduce one’s ontology.

I would like to thank the University of Southern California, the
National Science Foundation and the Guggenheim Foundaton for
their gencrous support that provided me with the time needed for
rescarch and writing of this project. At a less material level, [ would
like to thank John Burgess and especially Scott Weinstein for helping
me to get straight the relation between the consistency of mathemat-
ics and its conservativeness (cf. the Appendix to Chapter 1); and
to Burgess, Tony Martin, and Yiannis Moschovakis for helpfully
answering various questions that arose when I attempted to prove a
false claim about the system N, that is discussed in Chapter 9. Several
readers of an earlier draft made helpful comments that enabled me to
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clarify and improve my arguement: among them I would like especially
to mention Solomon Feferman, Michael Friedman, David Hills, Janet
Levin, Colin McGinn, and Charles Parsons. Finally, I would like to
express a general indebtedness to Hilary Putnam: in philosophy of
mathematics as in much else, his work has deeply influenced the way
I think about things, even where (as here) the conclusions we have
reached are very different.
Here is a chapter-by-chaprer description of what follows:

Prelxmr}ary Remarks. {a) States the doctrine to be advocated (and to be
called n.omlnahsm) namely the vigw that there are no mathematical
entities; (b‘\ sketches the most serious objection that has been made to
this doctrine: roughly, that mathematical entities are indispensable to
practical affairs and to science; {c) describes the strategy most nominalists
have adopted for trving to ger around this objection; and (d) describes
an alternative strategy for overcoming the objection, which s the strategy
to be employed in this book.

t Why the Utility of Mathematical Entities is Unlike the Utility of
Theoretical Entities. In this chapter [ argue that it is legitimate to use
mathematics to draw nominalistic conclusions (i.e. conclusions
statable without reference to mathematical entities) from nominalistic
premises, without assuming that the mathematics used in this way is
true, but assuming little more than that it is consistent. More preciscly,
what one assumes about mathematics (and che relationship of this
assumption to the assumption that mathematics is consistent is dis~
cussed in the Appendix to the chapter) is that mathematics is conservative:
any inference from nominalistic premises to a nominalistic conclusion
that can be made with the help of mathemarics could be made (usually
more long-windedly) without it. This is a fundamental difference
between the use of mathematical entities and the use of the theoretical
entities of science: no such conservativeness property holds for the
latter. The utility of theoretical entities in science is due solely to their
theoretical indispensability: without theoretical entities, no (sufficiently
attractive) theory is possible. At first blush, it appears that mathematical
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entities are theoretically indispensable too, for they seem to be needed
in axiomatizing science; it appears, then, that the conservativeness of
mathematics accounts for only part of its utlity. In later chapters
however I argue that mathematical entities are not theoretically in-
dispensable, and that the entire utility of mathematics can be accounted
for by its conservativeness, without assuming its truth,

First Hllustration of Why Mathematical Entities are Useful: Arithmeric
This chapter and the next provide elementary illustrations of the kind
of apphcanon of mathematics that can be accounted for by the
con§ervanvcncss of mathematics alone, without invoking the as-
sumption shat the mathematics bemg applied is true. This chaprer
concerns the application of the arithmetic of natural numbers.

3 Second Illustration of Why Mathematical Entities are Useful: Geomertry
and Distance. Here I show that the use of real numbers in gcometry
can be accounted for by the conservativeness of mathematics, without
assuming the truth of the theory of real numbers. This illustration of
the ideas of Chapter 1 will play a major role in cnsuing chapters. To
give a bit more detail: [ discuss Hilbert’s axiomatization of Euclidean
geometry, which, since it docsn’t involve real numbers, shows that
real numbers are theoretically dispensable in geometry: than [ discuss
two theorems that Hilbert proved about his axiomatization of geomerry,
namely his representation and uniqueness theorems, and show how
the representation theorem exphins the utility of real numbers in
geometric reasoning (without requiring that the theory of real numbers
be truc) while the uniqueness theorem establishes that the axiomatiz-
ation without numbers has cerrain quite desirable properties.

4 Nominalism and the Structure of Physical Space. Here it is argued that
the Hilberr theory of the previous chapter not only dispenses with real
numbers, but is {or can be made with a little rewriting) a genuinely
nominalistic theory of the structure of physical space. Arguing this
involves a brief discussion of some questions in the philosophy of
space and time, and an issuc in the philosophy of logic that arises
again in Chapter 9.
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s My Strategy for Nominalizing Physics, and its Advantages. Here | stratcgy of nominalization that is used in more complicated contexts

suggest that the Hilbert theory of geometry, and its representation and later on in the chaprer.

uniqueness theorems, providc a gencral model of how physical 9 Logic and Ontology. There are two respects in which the treatment of
theories are to be nominalized. Several features of Hilbert's version of physics in the foregoing chapters goes bevond first-order logic, and
geometry are cited; it is argued that these features are highly advan- this final chapter discusses what morals are to be drawn trom this. It is
i tageous ones, and a decision is made to require of an adequate nominaliz- : argued first that this extra logic does not violate nominalism; second,
% ation of physics that it have analogous advantages. [t is also pointed out that usc of this extra logic is preferable to usc of set theoretic surrogates
that the other nominalistic approaches which were contrasted to my for the logic (which would violate nominalism); third, thac usc of this
approach in the Preliminary Remarks do not lead to physical theories extra logic is probably dispcnsabjy anyway. The first two of these
with these advantageous features. : ‘ . . points involve issues about ontological commitment that are of
6 A Nominalistic Treatment of Newtofian” Space-time. This chapter interest independently of the theory biing, presented in this monogmph

extends the Hilbert treatment of space to space~time, emphasizing the :
advantages of the resulting theory over more usual approaches to
. space-time. (The key advantages of my approach, aside from its being
! nominalistic, are that it is more thoroughly ‘intrinsic’ and (closely
related) that it avoids use of a certain kind of ‘arbitrary choice’ of scale,
rest frame, coordinate system, ctc.) This is the first of the chapeers that
have a fairly technical subject marter, but it is written in an informal
enough way so that most readers should be able to get the main idea

of the approach I am following and its advantages.

7 A Nominalistic Treatment of Quantities, and a Preview of a Nominalistic
Treatment of the Laws involving them. Here I discuss very bricfly how
quantities like tcmp(.raturc are to be dealt with nominalistically. [ also
outline the strategy that is to be used in the next chaprer for dealing
nominalistically with laws involving these quantities, such as differential
equations. This chapter, like the last, deals with rechnical material, but
is informal enough so that most readers should get the gencral idea.

8 Newtonian Gravitational Theory Nominalized. This chapter is quite
technical: it is a detailed sketch of how one particular theory is to be
formulated nominalistically, and how the adequacy of this formulation
is to be proved. I suspect that many readers will not be interested in
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Preliminary Remarks

Nominalism is the doctrine that there are no abstract entities. The
derm ‘abseract entity’ may not be entirely clear, bue one thing that does
seem clear is that such alleged cncitics as numbers, functions, and segs
are abstract—that is, they would be abserace it they existed. In defend-
ing nominalism therefore [ am denving that numbers, tunctions, sets,
or any similar cntities exist.

Since I deny that numbers, functions, sets, ctc. exist. [ deny thae it is
legitimate to use terms that purport o reter to such entities. or variables
that purport to range over such cntities, in our ultimate account of
what the world is really like,

This appears to raise a problem: for our ulimate account of what
the world is really like musc surely include a physical theory; and in
developimg physical theorics one needs to use mathematies: and
mathematics is full of such references to and quantifications over
numbers, functions, scts. and the like. It would appear then thac
nominalism is nor a position that can reasonably be maintained.

There are a number of prima facie possible ways to try to resolve this
problem. The way that has proved most popular among nominal-
istically inclined philosophers is to try to reinterpret mathemarics—
reinterpret it so that its terms and quantifiers don’t make reference to
abstract entitics (numbers, functions, ctc.) but only to entities of other
sorts, say physical objects, or linguistic expressions, or mental
constructions.

My approach is different: [ do not propose to reinterpret any part
of classical mathemarics; instead, I propose to show that the mathe-
matics needed for application to the physical world does not include

I



2 SCIENCE WITHOUT NUMBERS

anything which even prima facie contains references to (or quantifications
over) abstract entities like numbers, functions, or sets. Towards that part
of mathematics which does contain references to (or quantifications
over) abstract entities—and this includes virtually all of conventional
mathematics—I adopt a fictionalist attitude: that is, I see no reason to
regard this part of mathematics as true.!

Most recent philosophers have been hostile to fictionalist interpret-
ations of mathematics, and for good reason. If one just advocates
fictionalism about a portion of mathematics, without showing how
that part of iimthcmatics i§" dispensable in applications, then one is
engaging in intellzctual doublethink: one is merely taking back in one’s
philosophical moments what one asserts in doing science, without pro-
posing an alternative formulation of sciencc that accords with one’s
philosophy. This (Quinean) objection to fictionalism abour mathe-
matics can only be undercut by showing that therc is an alternadive
formulation of science that does not require the usc of any part of
mathematics that refers to or quantifics over abstract entitics. I believe
that such a formulation is possible; consequently, without intellectual
doublethink, I can deny that there are abstrace entities.

The task of showing that onc can reformulate all of science so that
it does not refer to or quantify over abstract entitis is obviously a very
large one; my aim in this monograph is only to illustrate what 1
believe to be a new strategy toward realizing this goal, and to make both
the goal and the strategy look attractive and promising. My attempt
to make the strategy look promising ultimately takes the following
form: I show, in Chapter 8, how in the context of certain physical
theories (field theories in flat space-time?) one can develop an analogue
of the calculus of several real variables that does not quantify over real
numbers or functions or any such thing. Although I do not develop
this analogue of calculus completely (e.g. I do not discuss integration),
I do sketch enough of it to show how a nominalistic version of the
Newtonian theory of gravitation could be given. This nominalistic
version of gravitational theory has all the nominalistically-statable
consequences of the usual platonistic (i.e. non-nominalistical) versions

Leeae ."’. b pepesiseeenes. |

L e —— - —

PRELIMINARY REMARKS 3

of the theory. Moreover, [ believe that the nominalistic reformulation
is mathematically attractive, and thac there are considerations other
than ontological ones that favour it over the usual platonistic formu-
lations.

I must admit that the formulation of gravitational theory which [
arrive at will not satisty every nominalist: [ use several devices which
some nominalists would question. In particular, nominalists with any
finitist or operationalist tendencies will not like the way I formulate
physical theories, for my formulations will be no more finitist or
operationalisg than the usuat platonistic formulations of these theories
are. To illusrrato: the - distinction [ have in mind between nominalist
concerns on the one hand and finitist or operationalist concerns on
the other, consider an cxample. Somcone might object to asserting
that between any two points of a lighe ray (or an electron, if electrons
have non-zero diameter) there is a third point. on the ground that this
commits one to infinitely many poines on the light ray (or the electron)
or on the ground that it is not in any very direct sense checkable. But
these grounds for objccting to the asscrrion are not nominalistic grounds
as [ am using the term ‘nominalist’, tor they arise not trom the nature
of the postulated entities (viz. the parts of the light ray or of the clectron)
but from the seructural assumptions involving them (viz. that there are
infinitely many of them in a finitc stretch). I am not very impressed
with finitist or operationalist worries, and consequently [ make no

pologics for making some fairly strong structural assumptions about
he basic entities of gravitational physics in whac follows. It is not that

have no sympathy whatever for the program of reducing the struc-
ural assumptions made abouct the entities postulated in physical
heories—if this can be done, it is interesting. Bur as far as [ aware,
it has not been successfully done even in platonistic formulations of
physics: that is, no platonistic physics is available which uses a mathe-
matical system less rich than the real numbers to represent the positions
of the parts of a light ray or of an elcctron. Consequently, although I
will make it a point not to make any structural assumptions about
entities beyond the structural assumptions made in the usual platonistic
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theories about these entities, [ will also feel no compulsion to reduce
my structural assumptions below the platonistic level.* The reduction
of structural assumptions is simply not my concern.

Although I feel no apologies are in order for my use of structural
assumptions that would offend the finitist or operationalist, there is
another device I have used which I do feel slightly apologetic about.
But I try to argue in the final chapter that it is less objectionable than
it might at first seem, and that it is probably eliminable anyway.

I would like to make clear at the outset that nothing in this mono-
graph purports to be a positive argument foi- nominalism:" My goal
rather is to try to counter the most compelling rguinents that have
been offered against the nominalist position. It seems to me that the
only non-question-begging arguments against the sort of nominalism
sketched here (that is, the only non-question-begging arguments for
the view that mathematics consists of truths) are all based on the
applicability of mathematics to the physical world. Notice that I do
not say that the only way to arguc that a given mathematical axiom is
true is on the basis of ifs application to the physical world: that would
be incorrect. For instance, if one grants that the clementary axioms of
set theory are true, one can with at least some plausibility argue for
the truth of the axiom of inaccessible cardinals on the grounds that
this axiom accords with the general conception of sets that underlies
the more elemencary axioms. More generally, if we assume that the
concept of truth has non-trivial application in at least one part of pure
mathematics (or to be more precise, if we assume that there is at least
one body of pure mathematical assertions that includes existential
claims and that is true), then we are assuming that there are mathemat-
ical entities. From this we can conclude that there must be some body
of facts about these endries, and that not all facts about these entities
are likely to be relevant to known applications to the physical world;
it is then plausible to argue that considerations other than application
to the physical world, for example, considerations of simplicity and
coherence within mathematics, are grounds for accepting some pro-
posed mathematical axioms as true and rejecting others as false. This is
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PRELIMINARY REMARKS 5

all fine; but it is of relevance only after one grants the assumption that
for some part of mathematics the concept of truth has non-trivial
application, and this is an assumption that the nominalist will not grant.

There can be no doubt that the axioms of, say, real numbers are im-

portant, or that they are non-arbitrary; and an explanation of their non-
arbitrariness, based on their applicability to the physical world but
compatible with nominalism, will be given in Chapters 1-3. The
present point is simply that from the importance and non-arbitrariness
of these axioms, it doesn't obviously follow that these axioms are true,
i.e. it doesn’t obviously follow that there ai}é mathemarical entities
that these axioms correctly describe. The existence .of such entities
may in the end be a reasonable conclusion to draw from the importance
and non-arbitrariness of the axioms, but this needs an argument.
When the debate is pushed to this level, I believe it becomes clear that
there is one and only onc serious argument for the existence of
mathematical entitics, and that is the Quincan argument that we need
to postulate such entitics in order to carry out ordinary inferences about
the physical world and in order to do science.* Consequently it seems
to me that if I can undercut this argument for the existence of math-
ematical entities, then the position that there are such entities will
look like unjustifiable dogma.

The fact that what [ am trying to do is not to provide a positive
argument for nominalism but to undercut the only available argument
for platonism must be borne in mind in considering an important
methodological issue. Although in this monograph I will be espousing
nominalism, [ am going to be using platonistic methods of argument: [
will for instance be proving platonistically, not nominalistically, that a
certain nominalistic theory of gravitation has all of the nominalistically-
statable consequences that the usual platonistic formulation of the
Newtonian theory of gravitation has. It might be thought that there
was something wrong about using platonistic methods of proof in an
argument for nominalism. But there is really lictle difficulty here: if Tam
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successful in proving platonistically that abstract entities are not needed
for ordinary infcrences about the physical world or for science, then
anyone who wants to argue for platonism will be unable to rely on the
Quinean argument that the existence of abstract entities is an indis-
pensable assumption. The monograph shows that any such argument
would be inconsistent with the platonistic position that is being argued
for. The would-be placonist, then, will be forced into either acceptng

. abstract objects without argument or elsc relying on other arguments

for platonism, arguments which in my opinion are quite unpersuasive.

The upshot then (if [ am right in my negative appraisal of alternative

arguments for platonism) is that platonism is left in an unstable pos-
ition: it entails its own unjustifiabilicy.’

It may be of course that my negative appraisal of alternative ar-
guments for platonism is wrong. Interestingly cnough, the platonist
who bases his case for platonism on some such alternative argument
may even find what I have to say welcome; for independently of
nominalistic considerations, [ believe that what I do here gives an
attractive account of how mathematics is applied to the physical
world. This is I think in sharp contrast to many other nominalistic
doctrines, e.g. doctrines which reinterpret mathematical statements as
statements about linguistic entities or about mental constructions.
Such nominalistic doctrines do nothing toward illuminating the way
in which mathematics is applied to the physical world. (I will return
to this point in Chapter 5.)

i
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Why the Utility pf Mathematical Entities is
" Unlike the Utility of Theoretical Entities

No one can sensibly den that the invocation of mathemacical entities
in some contexts is usctul. The question arises as to whether the utdlicy
of mathematical existence-assertions gives us any grounds for belicving
that such existence-assertions are true. [ claim that in answering this
question one has to distinguish two different ways in which mathemat-
ical existence-assertions might be usetul; I grane char if such assertions
arc uscful in a certain respect, then that would indeed be evidence that
they are true; but the most obvious respect in which mathematical
existence assertions are usetul is, [ claim, quitc a different one, and [ will
argue that the utility of such assertions in this respect gives no grounds
whatever for belicving the assertions to be true.

To be more explicit, [ will argue that the uality of mathematical
entities is structurally disanalogous to the utility of theoretical entities
in physics. The utility of theoretical encities lies in two facts:

(a) they play a role in powerful theories from which we can deduce
a wide range of phenomena; and

7



8 SCIENCE WITHOUT NUMBERS

(b) no alternative theories are known or seem ac all likely which
explain these phenomena without similar entities.

[The unsympathetic reader may dispute (b): if any body of sentences
counts as a ‘theory’ and any deduction from such a ‘theory’ counts as
an explanation, then there clearly are alternatives to the usual theories
of subatomic particles: e.g., take as your ‘theory’ the set T* all of the
consequences of T that don’t contain reference to subatomic particles
(where T is one of the usual theories thar does contain reference to
subatomnic particles); or if you wanta recursively axiomatized ‘theory’,
let T** be the Craigian reaxiomatization of the theory T* just
described. Since I don't know any formal conditions to impose which
would rule out such bizarre trickery, let me simply say that by ‘theory’
[ mean reasonably attractive theory; ‘theories’ like T* and T** are
obviously uninteresting, since they do nothing whatever toward
explaining the phenomena in question in terms of a small number of
basic principles.] The upshot of (a) and (b) is that subatomic particles
are theoretically indispensable; and I belicve that that is as good an
argument for their cxistence as we need. Now, later on in the mono-
graph I will argue that mathematical entitics are not theoretically
indispensable: although they do play a role in the powerful theories
of modemn physics, we can give artractive reformulations of such
theories in which mathematical entities play no role. If chis is right,
then we can safely adhere to a fictionalist view of mathematics, for
adhering to such a view will not involve depriving oursclves of 2
theory that explains physical phenomena and which we can regard as
literally true.

But the task of arguing for the theoretical dispensability of math-
ematical entities is a matter for later. What [ want to do now is to
give an account, consistent with the theoretical dispensability of
mathematical entities, of why it is useful to make mathematical
existence-assertions in certain contexts.

The explanation of why mathematical entities are useful involves a
feature of mathemadics that is not shared by physical theories that
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MATHEMATICAL AND THEORETICAL ENTITIES 9

postulate unobservables. To put it a bit vaguely for the moment: if
you take any body of nominalistically stated assertions N, and supple-
ment it with a mathemadcal theory S, you don’t get any
nominalistically-statable conclusions that you wouldn’t get from N
alone. The analog for theories postulating subatomic particles 1s of
course not true: if T is a theory that involves subatomic particles and
is ac all inceresting, chen there are going to be lots of cases of bodies
P of wholly macroscopic assertions which in conjunction with T
yield macroscopic conclusions that they don’t yield in absence of T;
if this were not so, theories about sysatomic particles could never be
tesced. . ) '

I'll state these claims more precisely in a moment, but first I should
say that the claim about mathematics would be almost torally mivial
if mathematics consisted only of theories like number theory or pure
set theory, i.c. ser theory in which no allowance is made for sets with
members that are not themselves sets. Bue these theories are by them-
selves of no interest from the point of view of applied mathematics,
for there is no way to apply them to the physical world. That is, there
is no way in which they are even prima facie helpful in enabling us to
deduce nominalistically-statable consequences from nominalistically-
statable premiscs. In order to be able to apply any postulated abstract
entities to the physical world, we necd impure abstract entities, c.g.
functions that map physical objects into pure abstract entities. Such im-
pure abstract entitics serve as a bridge between the pure abstract entities
and the physical objects; without the bridge, the pure objects would be
idle. Consequently, if we regard functions as sets of a certain sort, then
the mathematical theories we should be considering must include at
least 2 minimal amount of set theory with urclements (a urelement
being a non-set which can be the member of sets). In fact, in order to be
sufficiently powerful for most purposes, the mathematical theory
must differ from pure set theory not only in allowing for the possibilicy
of urclements, it must also allow for non-mathematical vocabulary to

.~ __appear in the comprehension axioms (i.c. in the instances of the axiom
g schema of separation or of replacement). So the ‘bridge laws’ must
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include laws that involve the mathematical vocabulary and the physical
vocabulary together.

Something rather analogous is true of the theory of subatomic
particles. One can artificially formulate such a theory so that none of
the non-logical® vocabulary that is applied to observable physical
objects is applied to the subatomic particles; in general it seems to me
pointless to formulate physical theorics in this way, but to press the
analogy with the mathematical case as far as it will go, let us suppos:
it dene. If it is done, and if we suppose that T is a physical theory
stated entbrely in this vocabulary, then of course, it will be the case that
if we add T to a bunch of macroscopic assertions P, we will be able to
derive no results about observables that weren't derivable already. But
that is for a wholly uninteresting reason: it is because the theory T by
itsclfis not even prima facie helpful in deducing claims about observables
from other claims about observables. In order to make it even prima
facie helpful, we have to add ‘bridge laws’, laws which connect up the
entities and/or the vocabulary of the (artificially formulated) physical
theory with observables and the properties by which we describe them.
So far, then, like the mathematical case. But there is a fundamental
difference between the two cases, and that difference lies in the nature of the
bridge laws. In the case of subatomic particles, the theory T, interpreted
now so as to include the bridge laws (and perhaps also some assump-
tions about initial conditions), can be applied to bodies of premises
abour obscrvables in such a way as to yield genuinely new claims
about obscrvables, claims that would not be derivable without T.
But in the mathematical case the situation is very different: here, if we
take a mathematical theory that includes bridge laws (i.e. includes
assertions of the existence of functions from physical objects into ‘pure’
abstract objects, including perhaps assertions obtained via a compre-
hension principle that uses mathematical and physical vocabulary in
the same breath), then that mathematics is applicable to the world,
i.e. it is useful in enabling us to draw nominalistically-statable con-
clusions from nominalistically-statable premises; bur here, unlike in the
case of physics, the conclusions we arrive at by these means are not genuinely
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new, they are already derivable in a more long-winded fashion from the
premises, withont recourse to the mathematical entities.

This claim, unlike the one I will make later about the theoretical
dispensability of mathematical entities, is pretty much of an incontro-
vertible fact, but one very much worth emphasizing. So first let me
state the point more precisely than I have done.

A first stab at purting che point preciscly would be to say that for
any mathematical theory S and any body of nominalistic asscrtions
N, N.+ S is 2 conservative extension of N. However, this formulation
isn't quite right, and it is worth taking the trouble to put the point’
accurately. The problem with this formulation is that since N is a
nominalistic theory, it may say things that rule out the existence of
abstract entities, and so N +S may well be inconsistent. But it is
clear how to deal with this: first, introduce a 1-place predicate ‘M(x)",
meaning intuitively ‘x is a mathematical cntity’; sccond, for any
nominalistically-stated assertion A, let A* be the assertion that results
by restricting each quantifier of A with the formula ‘not M(x;) (for
the appropriate variable ‘x;);? and third, for any nominalistically-
stated body of assertions N, let N* consist of all assertions A* for A
in N. N* is then an ‘agnostic’ version of N: for instance, if N says
that all objects obey Newton's laws, then N* says thac all non-
mathematical objects obey Newton's laws, but it allows for the possibility
that chere are mathematical objects that don’t. {Actually N* is in one
respect foo agnostic: in ordinary logic we assume for convenicnce that
there is at least one thing in the universe, and in the context of a theory
like N this means that there is at least one non-mathematical thing.
So it is really N* + ‘3x — M(x)’ that gives the agnostic content of N).
Whether a similar point needs to be made for our mathematical theory
S depends on what we take S to be. If S is simply set theory with urele-
ments, no restriction on the variables is needed, since the theory
already purports to be about non-sets as well as sets: we merely need to
connect up the notion of set that occurs in it with our predicate ‘M,
by adding the axiom * Vx(Set (x) = M(x))’. If in addition the mathemat-

~ical theory includes portions like number theory, considered as
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independent disciplines unreduced to set theory, then we must restrict
all variables in them by a new predicate ‘Number’, and add the
axioms ‘ ¥x(Number (x) = M(x))’ and ‘Ix(Number (x))’. Presumably,
however, everyone agrees that mathematical theories really ought to
be written in this way (that is, presumably no one believes that all
entities are mathematical), so I will not introduce a special notation for
the modified version of S, I'll assume that S is written in this form from
the start. (The wnalogous assumption for N would be inappropriate:
the nominalist wants to assert not N*, but the stronger claim N.)

Having dealt with these tedious points, I can now state accurately
the claim made at tie end of the next to last paragraph.

Principle C (for ‘conservative’): Let A be any nominalistically statable®
assertion, and N any body of such assertions; and let § be any
mathematical theory. Then A* isn't a consequence of N* +§ +
‘Ix — M(x)’ unless A is a consequence of N.

Why should we belicve this principle? Well, it follows® from a

slightly stronger principle that is perhaps a bit more obvious:
Principle C': Let A be any nominalistically-statable assertion, and
N any body of such assertions. Then A* isn’t a consequence of
N* + S unless it is a conscquence of N* alone.

This in turn is equivalent (assuming the underlying logic to be compact)
to something still more obvious-sounding:

Principle C” Let A be any nominalistically-statable assertion. Then
A* isn’t a consequence of S unless it is logically truc.

Now I take it to be perfectly obvious that our mathematical theories
do satisfy Principle C”. After all, these theories are commonly regarded
as being ‘true in all possible worlds’ and as ‘a priori true’; and though
these characterizations of mathematics may be contested, it is hard to
see how any knowledgeable person could regard our mathematical
theories in these ways if those theories implied results about con- -
crete entities alone that were not logically true. The same argument can
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be used to directly motivate Principle C', thereby obviating the need
of the compactness assumption: if mathematics together with a body
N* of nominalistic assertions implied an asscrtion A* which wasn't a
logical consequence of N* alone, then the truth of the mathemarical
theory would hinge on the logically consistent body of assertions
N* + — A* not being true. But it would scem that it must be possible,
and/or not a priori false, that such a consistent body of assertions
about concrete objects alone is truc; if so, then the failure of Principle
C would show that mathematics couldn’t be ‘true in all possible
worlds' andfor ‘a priori true’. The fact that so many people think it
does have these charactecistics seems like some evidence that it does
indeed satisfy Principle C’ and therefore Principle C.

This argument isn’t conclusive: standard mathematics might turn out
not to be conservative {i.e. not to satisty Principle C), for it mighe
conceivably turn out to be inconsistent, and if it is inconsistent it
certainly isn't conservative. We would however regard a proof cthat
standard mathematics was inconsistene as extremely surprising, and
as showing that standard mathematics needed revision. Equally, it
would be extremely surprising if it were to be discovered that standard
mathematics implied that there are at least 10° non-mathematical
objects in the universe, or that the Paris Commune was defeated; and
were such a discovery to be made, all but the most unregenerate ration-
alist would take this as showing thar standard mathematics needed re-
vision. Good mathematics is conservative; a discovery that accepted
mathematics isn’t conservative would be a discovery that itisn’t good.

Indeed, as some of the mathemarical arguments in the Appendix to
this chapter show, the gap between the claim of consistency and the
full claim of conservativeness is, in the case of mathematics, a very
tiny one. In fact, for pure sct theory, or for sct theory thac allows for
impure sets but doesn’t allow empirical vocabulary to appear in the
comprehension axioms, the conservativeness of the theory follows
from its consistency alone. For full set theory this is not quite true; but

——a large part of the content of the conscrvativeness claim for full set
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application) follows from the consistency of st theory alone (and still
more of the content follows from slightly stronger assumptions, like
that full set theory is ~consistent). These claims are demonstrated in
the Appendix to this chapter. In any casc, I think that the two previous
paragraphs show that the same sort of quasi-inductive grounds we
have for belicving in the consistency of mathematics extend to its
conservativeness as well. As we saw carlicr, this means that there is a
marked disanalogy between mathematical “theorics and physical
theories about unobscrvablc cntitics: physical theories about un-
obscrvables arc certainly not conservative, they give rise to genuinely
new conclusions about observables.

What the facts about mathematics 1 have been emphasizing here
show is that cven somcone who doesn’t believe in mathematical
entities is free to usc mathematical existence-assertions in a certain
limited context: he can usc them freely in deducing nominalistically-
stated conscquences from nominalistically-stated premiscs. And he can
do this not because he thinks those intervening premises are true, but
because he knows that they preserve truth among nominalistically-
stated claims.!?

This point is not of course intended to license the use of mathematical
existence asscrtions in axiom systems for the particular sciences: such
a usc of mathematics remains, for the nominalist, illegitimate. (Or more
accurately, a nominalist should treat such a use of mathematics as a
temporary expedient that we indulge in when we don’t know how to
axiomatize the science properly, and that we ought to try to climinate.)
The point 1 am making, however, does have the consequence that
once such a nominalistic axiom system is available, the nominalist is free
to usc any mathematics he likes for deducing conscquences, as long as
the mathematics he uses satisfics Principle C.

So if we ignorc for the moment the role of mathematics in
axiomatizing the sciences, then it looks as if the satisfaction of Principle
C is the really cssential property of mathematical theorics. The fact
that mathcmatical theories have this property is doubtless one
motivation for the platonist’s assertion that such theories are ‘truc in
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all possible worlds’. It does not appear to me, however, that the
satisfaction of Principle C provides rcason for regarding a theory as
truc at all (even in the actual world). Certainly such speculations, typical
of extreme platonism, as to for instance whether the continuum
hypothesis is ‘really truc’, seem to Jose their'point once one recognizes
conscrvativeness as the essential requirement of mathematical theories:
for the usual Godel and Cohen relative consistency proofs about set
theory plus the continuum hypothesis and set theory plus its denial are
easily modified into relative conservativeness proofs. In other words,
assuming that standard sct theory satisfies Principle C, so does standard
set theory plus the continuum hypothesis and standard set theory plus
its denial; so it follows that cither theory condd be wsed withont harw in
deducing conscquences about concrete entitics from nominalistic theorics. The
same point made about the continuum hypothesis holds as well for
less recherché mathematical assertions. Even standard axioms of number
theory can be modified without endangering Principle C; similarly
for standard axioms of analysis. What makes the mathematical
theories we accept better than these alternatives to them is not that
they are true and the modifications not true, but rather that they are
more useful: they are more of an aid to us in drawing consequences
from those nominalistic theorics that we are interested in. If the world
were different, we would be interested in different nominalistic
theories, and in that case some of the alternatives to some of our
favoritc mathematical theories might be of more use than the theories
we now accept.’! Thus mathematics is in a sense empirical, but only
in the rather Pickwickian sense that is an empirical question as to which
mathematical theory s useful. Te is in an equaily Pickwickian sense,
however, that mathematical axioms are a priori: they are not a priori
true, for they are not true at all,

The view put forward here has considerable resemblance to the
logical positivist vicw of mathematics. One difference that is probably
mostly verbal is that the positivists usually described pure mathematics
as analytically true, whereas 1 have described it as not true at all; this
difference is probably mostly verbal, given their construal of ‘analytic’
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as ‘lacking factual content’. A much more fundamental difference is
that what worried the positivists about mathematics was not so much
its postulation of entitics as its apparently non-cmpirical character, and
this was a problem not only for mathematics, but for logic as well,
Hence they regarded logic as analytic or contentless in the same sense
that mathematics was. 1 believe that this prevented them from giving
any clear explanation of what the ‘contentlessness’ of mathematics
(or of that part of mathematics that quantifies over abstract entities)
consists in. The idca of calling a logical or mathematical assertion
‘contentless’ was supposed to be that 2 conclusion arrived at by a
logical or mathematical argument was in some sense ‘implicitly con-
tained in’ the premises: in this way, the conclusion of such an argument
was ‘not genuinely new’. Unfortunately, no clear explanation of the
idea that the conclusion was ‘implicitly containcd in’ the premises was
ever given, and I do not believe that any clear explanation is possible.
What I have tried to do in this chapter is to show how by giving up
(or saving for separate explication) the claim that logic (and that part
of math that doesn’t make reference to abstract entities) doesn’t yield
genuinely new conclusions, we can give a clear and precise sense to the
idca that mathematics doesn't yield genuinely new conclusions: more
precisely, we can show that the part of math that does make reference
to mathematical entities can be applied without yielding any genuinely
new conclusions about non-mathematical entities.

APPENDIX: On Conservativeness

It may be illuminating to give two mathematical arguments for the
conservativencss of mathematics. The first argument proves, from a
set-theoretic perspective (more specifically, from the perspective of
ordinary sct theory plus the axiom of inaccessible cardinals) that
ordinary set theory (and hence standard mathematics, which is
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reducible to ordinary set theory) is definitely conscrvative. The second
argument is a purcly proof-theorctic one: it establishes a slightdy
restricted form of the conservativeness claim on the basis merely of
the assumption that standard sct theory is consistent. This is illumin-
ating in showing that the assumption of-the conservativeness of set
theory is much ‘closcr to’ the assumption that set theory is consistent
than to the assumption that it is true.

As a preliminary, let’s introduce some notation. Let ZF be standard
Zermelo-Fracnkel set theory (including the axiom of choice); let
restricted ZFU be ZF modified to allow for the existence of urelements,
but not allowing for any non-set-theorctic vocabulary to appear in
the comprehension axioms (for definiteness, we may stipulate that it
contains as an axiom that there is a set of all non-scts); and if V is a
class of expressions, let ZFUy be restricted ZFU together with any
instances of the comprehension schemas in which the vocabulary in
V as well as the set-theoretic vocabulary is allowed to appear. What
I earlicr called “full sct theory’ isn’t really a single theory: rather, to
‘apply full sct theory’ in the context of a theory T is to apply ZFUy(q),
where V(T) is the vocabulary of T. Conscquently, what we want to
prove is that for any theory T, ZFUyy, applics conscrvatively to T.
That is, we want to prove

(Co) If T is any consistent body of assertions, then ZFUy(g) + T*

is also consistent.

(The T here is the N4 — A of Principlc C’). This in fact will suffice
for proving the conscrvativeness of ZFUyq, + S, for any mathematical
theory S: for standard mathematical theories are embeddable in ZF.

So much for preliminarics. How then do we prove that (Cg) holds?
The obvious set-theoretic linc of proof is this:

Supposc T is consistent; then it has a model M of accessible cardinality,
say with domain D. Pick any entity ¢ not in D. (c is to be thought of
as the empty set.) Let Do be Du {¢}; Let D, consist of all non-cmpty
subsets of Dy; let D, consist of all non-cmpty subscts of DouD,y;
and so on. Let D, be DguD,UD,u...; let D, ., consist of all

cwon o woe ~a

TR Ao s emen -



18 SCIENCE WITHOUT NUMBERS

non-cmpty subscts of D,,; and so on. Continuing in this way until you
reach an inaccessible cardinal, you get—if certain initial precautions!2
are taken on the choice of D and e—a model of ZFUyq, + T*.
(It is a model of ZFUy,+ T* rather than merely of ZFU + T*
because at cach stage you've added every set of things available at
previous stages.) So ZFUyy, + T* is consistent. Q.E.D.

Now let us tum to the proof-theoretic linc of argument for con-
servativeness; the point of doing this is to make clear how narrow the
gap between the consistency of mathematics and its conservativeness is.

Indeed, in the case of mathematical theories which don’t allow for
impure abstract entities (e.g. number theory by itself, or ZF), con-
sistency implics conservativeness: this is an obvious conscquence of
the Robinson joint consistency theorem.!® The same result holds also
in the more intércsting case of restricted ZFU: here onc nceds, in
addition to the Robinson theorem, the well-known fact that if ZFU
is consistent then one can’t prove any result about how many non-
scts there are.'® But in the really interesting case of full ZFU, this
whole line of argument via the joint consistency theorem is blocked
by the fact that the empirical vocabulary that appears in the thecory T
also appears in the set-theoretic axioms.

The simplest thing to do in this casc is to mimic proof-theoretically
the sct-theoretic argument given two paragraphs back: doing so, it
becomes an argument that under certain conditions ZFUyq,+T* is
interpretable within ZFUy,;), and in fact within ZF. (We don’t need
the inaccessible cardinal assumption anymore.) If the ‘certain con-
ditions” were merely that T is consistent, then we'd know that (Co)

holds as long as ZF is consistent, and this is what we wanted. Un-
fortunately however we need the stronger assumption that T is
provably consistent within ZF; that is, the best we can show is that if
ZF is consistent, the following holds:*$

(C,) ¥Tis any body of asscrtions whose consistency is provable in
ZF, then ZFUy g, + T* is consistent.

This is a restricted version of conscrvativeness: it says that full set
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theory applies conservatively fo theories which are modellable in ZF.
In actual applications this is probably as much of the conscrvativeness
claim as we ever need. For instance, later on in the book we will want
to know that mathematics applies conscrvatively to a nominalistic
version of Newtonian gravitation theory, Ng. But it is completcly
obvious that if Ny is consistent then it is modellable in ZF (and the
same would presumably be true for other nominalized physical
theorics); so the conservativeness result we actually need follows
merely from the consistency of ZF.

Scott Weinstein (besides clearing up a number of confusions I had
gotten into concerning the issues of the last paragraph) pointed out
to me that if you strengthen the consistency assumption about ZF

slightly, to w-consistency (or cven something a bit weaker than that
known as 1-consistency), you can strengthen (C,) in an attractive way:

you can then prove

(Cy) If T is any consistent and recursively enumerable body of
. . 16
assertions, then ZFUy g, 4+ T* is consistent.

It is all the morc obvious that this would be sufficient for practical
applications. .

Philosophers discussing sct theory tend to discuss two of its prop-
ertics: its consistency, and its (alleged) truth. The argument of this
monograph is that the latter is completely irrclevant, and: tha't the
former is perhaps a bit too weak—it is too weak unless one is satisfied
with (C,) instead of the full (Co). [Of coursc, for the kind of set th.cory
philosophers tend to discuss—pure st theory, i.c. ZF—there is no differ-
ence at all between consistency and conservativeness (or rather, though
they differ conceptually, they arc provably equivalent). I'But pure sct
theory isn't what is of interest, since as remarked before 1-t can never
be applicd to the physical world, so this is not much of a justification
for ignoring conservativeness.] But though we perhaps need to
assume 2 bit more than consistency, we don't need to assume all that
much morc; and in any case it scems pretty obvious that the stronger
property of conservativeness does in fact obtain.
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First Ilustration of Why Mathematical
Entities are Useful: Arithmetic

I have explained why it is legitimate for a nominalist to use mathematics
in making inferences between nominalistically-stated sentences; but
I haven't said anything about why or in what way it is uscful for him
to do so. Itis important to have a rather vivid understanding of the way

_ that mathcmatics is uscful in such contexts if onc is to grasp my strategy

for nominalizing physical theories, and so I will devote both this
chapter and the next to the matter.

Suppose N is a body of nominalistically-statcd premises; in the case
that will be of primary intcrest, N will consist of the axioms of a
nominalistic formulation of somc scicntific theory. I think that the key
to using a mathematical system S as an aid to drawing conclusions
from a nominalistic system N lics in proving in N* + S the equivalence
of a statement in N* alone with some other statement (which I'll call
an abstract comnterpart of the statement in N*) which quantifies over
abstract entitics. Then if we want to determine the validity of an
inference in N* (or cquivalently, of an inference in N), it is unnccessary
to proceed directly; instead we can if it is convenient ‘ascend’ from one

20
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or more statements in N* to abstract counterparts of them, then use
S to prove from thesc abstract counterparts an abstract counterpart of
some other statement in N*, and ‘descend’ back to that statement in
N*. T will illustrate how this procedure works in certain concrete
cascs; but again I must emphasize that the only thing required for the
procedure to be legitimate is not that S bg true but mercly that N*+ §
be a conservative extension of N*, a condition which will always be
met if Principle C of the previous chapter is satisfied.

My first illustration of this gencral procedure will be a very simple
one: here, the mathematical theory S to be applied is simply the
arithmetic of natural numbers (or more precisely, arithmetic plus a
small amount of set theory, since ari:hgnc:ic without such things as
functions from concrete entitics to numbers can never be applied).

Let N be a theory that contains the identity symbol and the usual
axioms of identity, but docs not contain any terms or quantifiers for
abstract objects. In particular, N will not contain singular terms like
‘¢7’. Tt will, however, be convenient to suppose that N contains,
besides the usual quantifiers ‘¥ and ‘T, also quantifiers like “34,'
(meaning ‘there arc exactly 87) and ‘3,4, (meaning ‘there are at
least 87'). The logic is still of course, recursively axiomatizable—c.g. we
could merely add to standard logic the axioms

3, oxA(x)« 3xA(x)
3, xAX) - Ix[AQR) A 3, 5v(y # x A AR

where k is the decimal numeral that immediately succeeds j, and
IxAR)e 3, xA(x) A 3, XA ),

where k and j arc as above. In supposing that N contains this cxtra
structure, we are not enriching cither the expressive or the deductive
power of N, we are merely ensuring that we can say simply what can
be said only in a very roundabout way on the usual but artificial
limitation to the two standard quantificrs plus identity. In particular,
I must emphasize that by giving N this extra structure, I am not
giving it any arithmetic: it contains no singular terms or quantifiers
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for numbers or any other abstract entitics: the numeral ‘87" occurs in
it not as a name, but mercly as part of an operator symbol. Our goal
is to show how inferences in N can be facilitated by introducing a
system S that does contain arithmetic.

To sec this, consider the following argument in N:

1 there arc exactly twenty-onc aardvarks (i.e., 3,,xA(x));
2 on each aardvark there are exactly threc bugs;
3 cach bug is on exactly one aardvark; so

4 there arc exactly sixey-three bugs.

Is this valid? If one reasons in N, it will take a lot of work to find out—
the inference needed for getting from' the premises to the conclusion
is long and tedious. (Though not nearly as bad as it would have been
if we hadn’t introduced the numerical quantificrs!) But if we have at
our disposal a mathematical system S that includes the arithmetic of
the natural numbers plus some set theory, things are considerably
simplificd. For then we can take, as an abstract counterpart of the first
premise, the claim '

r

1" The cardinality of the set of aardvarks is 21;

‘s : : .
1’ is an abstract counterpart of 1 because the equivalence of 1° and 1 is

. 7 -
provable in N + S.!7 Abstract counterparts of the other premises, and
of the conclusion, are as follows:

’

2’ All sets in the range of the function whosc domain is the set of
aardvarks, and which assigns to each entity in its domain the set
of bugs on that entity, have cardinality 3.
3° The function mentioned in 2’ is 1-1 and its sange forms a
partition of the sct of all bugs.
4’ The cardinality of the set of all bugs is 63.

But now in S we can prove:
(3) 1If all members of a partition of a set X have cardinality a, and

the cardinality of the set of members of the partition is §, then
the cardinality of X is a- 8.
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(b) The range and domain of a 1-1 function have the same car-
dinality; and
(¢) 3-21=63.

But 1’, 2', and 3, in conjunction with (a)-(c), entail 4'; and since
1'-4" arc abstract countcrparts of 1-4, i.c. their equivalence with 1-4
is provable in N + §,'7 we have proved 4 from 1-3 in N+ 5. So, by
Principle C, 4 must follow from 1-3 in N alonc. Itis by some argument
such as this that we know that 4 follows from 1-3 in N; certainly it
isn't on the basis of having gone through a derivation in N that we
know this.

The above illustration'® of the application of mathematics is a very
special one. Its special nature is illustrated by the fact that nothing was
assumed about the theory N other than that it contained the logic of
identity (supplemented with the numerical quantifiers; but these are
in principle superfluous). This is not typical of the application of
abstract entitics in general, though it is typical of the application of
the arithmetic of natural numbers. The fact that the natural numbers
can find uscful application outside the context of any powerful and
specialized theorics is what is behind the widely shared fecling that
the arithmetic of natural numbers has a very special cpistemological
place. (Cf. for instance Kronecker's remark ‘God created the natural
numbsers, all the rest is the work of man.’)

But the fact that the arithmetic of natural numbers has this special
status is not sufficicnt grounds to grant that it is truc. For I have ex-
plained its special status insrumentally: its special status arises from
its utility, and since we've shown that it is always in principle climinable
(i.c. you don’t get any results with it that you couldn’t get without it),

its utility is no grounds for believing it true.
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Second Illustration of Why Mathematical
Entities are Useful: Geometry and Distance

Let us turn now to more complicated applications of abstract entities.
Here, too, the situation fits the general description given in the second
paragraph of Chapter 2: abstract entities are useful because we can use
them to formulate abstract counterparts of concrete statements; then
in proving a conclusion in N* from premises in N*, we can at any
convenient point ‘ascend’ from concrete statements to their abstract
counterparts, proceed at the abstract level for a while, and then
finally *descend’ back to the concrete.

In the cases of application of mathematics that I will now turn to—
which are the cases most important for physical theory—the key to
carrying out the general strategy of finding ‘abstract counterparts’ is
proving a representation theorem. Supposc that using some mathematical
theory S which satisfies Principle C of Chapter 1, we can prove the
existence of some mathematical structure # with certain specified
properties. If we can then, using N* + S, prove the cxistence of one
or more homomorphisms (structure-preserving mappings) from
concrete objects (or k-tuples of concrete objects) into that mathematical

24
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structure &, then such a homomorphism will serve as a ‘bridge’ by
which we can find abstract counterparts of concrete statements.
Conscquently, premises about the concrete can be ‘wranslated into’
abstract counterparts; then, by rcasoning within S, we can prove
abstract counterparts of further concrete ‘statements, and then use the
homomorphism to descend to the concrete statements of which they
arc abstract counterparts. The concrete conclusions so reached would
always be obtainable without the ascent into the abstract {provided
that the mathematical theory S satisfies Principle C); but the ascent
into the abstract is often a tremendous saving of time and effort.

Let me illustrate this with an example: Hilbert's axiomatization of
Euclidean geomerry.'® Any fully formulated physical theory will
include a theory of physical space (or better, of space-time; but since
our concern for the moment will be with Euclidean geometry, let's
just consider space). Euclidean geometry, considered as a theory of
physical space (which is how Euclid originally conceived it) is actually
false, but that doesn’t matter for my purposes: a false theory is still a
theory, and we can usc such a theory to illustrate the applicability of
mathematical systems like the system of real numbers. Hilbert's
formulation of the Euclidean theory is of special interest here because
(besides being rigorously axiomatized) it does not employ the real
numbers in the axioms; nevertheless, it explains why the system of real
numbers can be usefully applied in geometric reasoning.

Without purporting to be very precise, we can say that Hilbert's
theory is one in which the quantifiers range over regions of physical
space, but do not range over numbers. The predicates of the theory
include several, such s ‘s poiit’, which need not concern us. In
addition they include the following:

() a three-place predicate betireen, where ‘y is between x and 2°
(symbolically, ‘y Bet x2°) is understood intuitively to mean that
y is a point on the linc-segment whose endpoints are x and 2
(the casc where y=x or y=2z is allowed, i.c. we're dealing
with what I'll call inclusive betwecnness);
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(b) a four-place predicate of segment-congrience, which I'll write as
‘xy Cong zw’, understood intuitively to mean that the distance
from point x to point y is the same as the distance from point
z to point w;

and perhaps also

(c) a six-place predicate of angle-congruence, which I'll write as
‘xyz A-Cong tuv’, understood intuitively to mcan that the
angle formed by points x, y, and z with vertex at y is the same
size as the angle formed by points to t, u, and v with vertex at u.

(The last of thesc predicates doesn’t actually nced to be taken as
primitive, it can be defined in terms of the others) Now, I have
exphined (b) and (c) intuitively in terms of distance and angle-size.
But these explanations are not part of the theory: in fact the notions
of distance and angle-size can’t be defined in the theory (as is obvious
from the fact that the theory doesn’t quantify over real numbers).
The fact that these quantitative notions arc not definable in the theory
might appear to raise a problem for Hilbert's formulation, for much
of the reasoning in a typical book on Euclidean gcometry proceeds in
terms of the lengths of linc-segments and/or the size of angles: in fact,
many of the theorems are explicitly theorems about lengths (c.g.

~ Pythagoras’s theorem). Does this mean that Hilbert Icft something

out? No, for he proved the kind of theorem I'm calling a representation
theorem: he proved (in a broader mathematical theory) that given any
model of the axiom system for space that he had laid down, there
would be at lcast onc function d mapping pairs of points onto the
non-ncgative real numbers, satisfying the following ‘*homomorphism
conditions’:

(a) forany points x, y, z, and w, xy Cong zw if and only if d(x,y) =
d(z,w);
and (b) for any points x, y, and z, y is between x and z if and only
if d(x,y) + d(y,2) = d(x,2).
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So if we take d to represent distance, segment-congruence becomes
‘equivalent’ to just the claim about distance we'd expect, and similarly
for berweenness. (Hilbert also proved the existence of a function m
mapping triples of points into numbers, satisfying analogous con-
ditions: m was a represcntation for angle-sizes.) Given these results it
was casy to show that the standard Euclidean theorems about lengths
and angle-sizes would be true if restated as theorems about any
functions d and m meeting the given conditions. So in the geometry
itself we can’t talk about numbers, and hence we can't talk about
distances or angle-sizes; but we have a metatheorctic proof which
associates claims about distances or anglesizes with what we can say in
the theory. Numerical clims then, are abstract counterparts of purcly
geometric claims, and the equivalence of the abstract counterpart with
what it is an abstract counterpart of is established in the broader math-
ematical theory.

Incidentally, in addition to the representation theorems Hilbert
established smiquencss theorems, onc for distance, one for angle-size:
c.g- the uniqueness theorem for distance says that if d; and d; are two
functions mapping pairs of points into non-ncgative reals, both of
which satisfy the two conditions just laid down, then d; and d, differ
only by a positive multiplicative constant; and conversely, that if
d, and d, differ only by a positive multiplicative constant, then d,
satisfics (a) and (b) if and only if d; docs. Thus the fact that gcometric
laws, when formulated in terms of distance, are invariant under
multiplication of all distances by a positive constant, but are not in-
variant under any other transformation of scale, reccives a satisfying
explanation: it is explined by the futringe farte ahont physical space,

i.c. by the facts about physical space which arc laid down without

L

reference to numbers in Hilbert's axioms. This is 2 point that will bo—"

important later, but for now let's go back to the representation
thecorem.

Hilbert’s representation theorem, I've said, shows that statements that
talk about space alone, without reference to numbers, are cquivalent to
certain ‘abstract counterparts’ which do talk about numbers. Because

2 ALY R
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28 SCIENCE WITHOUT NUMBERS

of this, we can use the theorem as a device for drawing conclusions
about space (conclusions statable without rcal numbers) much more
eas.ily than we could draw them by a dircet proof from Hilbert's
axioms. For instance, it is not difficult to say intrinsically (sec Figure 1):

() thatay, a;, a; and b,, b,, by form right triangles with right
angles at a, and b,;

(b) that ﬁrc is a segment cd such that a,a, is twice the length of
cd, 2,a; is five times the length of cd, b,b, is three times the
length o@ and b,b, is four times the length of cd. (E.g. we
say that a,a, is twice the length of cd by saying that there is a
point x between a, and a, such that a,x Cong cd and xa, Cong

cd)

FIGURE 1

an might then wonder whether 2,2, is longer than b5, If one
trics to answer this without using the representation thcorcx;n. it will
-bc very difficult. But if onc uscs the representation theorem, one can
u.wokc Pythagoras's ihcorcm to quickly establish that a,a; is (/29
times the length of cd and that b,b, is five times the length of cd
and therefore that a,a, is indced longer than b, b,. )

. So invoking real numbers (plus a bit of sct theory) allows us to make
inferences among chims not mentioning real numbers much more
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quickly than we could make those inferences without invoking the
reals. And the inferences we make in this way will be correct every
time. Prima facie, this might scem to be good evidence that the theory
of real numbers (plus some set theory) is true: after all, if it weren’t
true, invoking it in arguments in this way ought to sometimes lead
from otherwise true premises to a false conclusion. But we've scen in
Chapter 1 that this prima facie plausible argument is deeply mistaken:
the fact that the theory of real numbers (plus set theory) has this
truth-preserving property is a_ fact that can be explained without
assuming that it is frue, but merely by assuming that it is conservative,
which is a different matter cmirel'yl; in fact, as remarked in the
Appendix, we really need only to assume 2 restricted form of con-
servativeness, which follows from the dmsismu'y of sct theory alone.

i X XN E N
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Nominalism and the Structure of

Physical Space

The reader might reasonably wonder about the asscrtion at the very
end of the previous chapter: after all, Principle C says that when
mathematical thcories are added to nominalistic theories, you can
never deduce any nominalistic consequences you couldn’t deduce
otherwise; but I haven’t vet claimed that Hilbert’s formulation of the
Euclidean theory of space is genuinely nominalistic, 1 have claimed
only that it docsn’t quantify over real smmbers. Now, this worry can
be casily alleviated: for whether or not Hilbert's theory ought 0 be
counted nominalistic on philosophical grounds, there can be no doubt
that (if set theory is consistent) our mathematical theories apply to it
in a conservative fashion. I will cxplain this, but first I want to raise
the more controversial question of whether Hilbert’s formulation of
the Euclidean theory of physical space can be counted as genuinely

nominalistic on philosophical grounds. This question raises scveral
important issucs.

.

3o

NOMINALISM AND THE STRUCTURE OF SPACE 31

Some of these issucs can be brought out by considering the following
objection. ‘Hilbert’s axiomatization of geometry just builds into
physical space all the complexity and structure that the platonist
builds into the real number system. For instance, Hilbert's axiomatiz-
ation requires physical space to be uncountable, and in fact requires
lines in physical space to be isomorphic to the real numbers. And there
doesn’t seem to be a very significant difference between postulating
such a rich physical space and postulating the real numbers.”

In reply to this, let me first remind the reader that as 1am concciving
nominalism, the nominalistic objcction 1o using real nunibers was not
on the grounds of their uncountability or of the structural assumptions
(c.g- Cauchy completeness) typically made about them. Rather, the
objection was to their abstracmess: cven postulating one real number
would have been a violation of nominalism as I'm concciving it.
Converscly, postulating uncountably many physical cntities (c.g. un-
countably many parts of a physical object, or of a light ray, or, as here,
of physical space itsclf) is not an objection to nominalism; nor does it
become any morc objectionable when onc postulates that these physical
entitics obey structural assumptions analogous to the oncs that platonists
postulate for the real numbers.

Perhaps it is a bit odd to usc the phrase “physical entity” to apply to
space—time points.?® But however this may be, space-time points
are not abstract cntitics in any normal sense. After all, from a typical
platonist perspective, our knowledge of mathematical structures of
abstract entitivs (.. the mathematical structure of real numbers) s
a priori; but the structure of physical space is an empirical matter.
That is, most platonists who believe current physical theory believe
that it is a priori truc that there are real numbers obeying the usval
laws, and that it is a high-level empirical hypothesis (not easily dis-
confirmed, but subject to revision by the development of an alternative
physical theory) that there are lines in space which (locally anyway) are
isomorphic to the real numbers. No platonist would identify the real
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numbers with the points on any physical line: for one thing, it would
be arbitrary which such line one picked to identify the real numbers
with, and arbitrary which point on the line to identify with o and
which with 1; but more fundamentally, to make any such identification
would be to identify the rcal numbers with something we can know
about only empirically. (Occasionally it is suggested by those secking
a satisfactory formulation of quantum mechanics that we ought to
view space and time as quantized. To my knowledge, no such pro-
posal has ever been worked out very far; but if one were, and if it turned
out to make the best sense of the evidence and best solve the inter-
pretational difficulties of quantum theory, we would have strong
empirical reasons to believe that between any two space-time points
there were only finitcly many others. Surcly however we ought not
to count such a development as an empirical discovery that there are
only finitcly many real numbers between o and 1.)

Even ignoring these points, there is a further reason that postulating
physical space isn’t like postulating rcal numbers: and that is that the
ideology that gocs with the postulate of points of space is less rich than
that which goes with the postulatc of the real numbers. With the
postulate of rcal numbers goes the operations of addition and mul-
tiplication: no such operations arc dircctly defincd on space-time
points in Hilbert's theory; indeed none are even implicitly definable
since any introduction of an addition or multiplication function on
space-time points would have to rcly on an arbitrary choice of one
point to serve as 0 and another to scrve as 1. Somcthing like addition
can be reconstructed within Hilbert’s theory, but it is addition of
intervals rather than of points (and it doesn’t give an addition function
but rather a non-functional relation, ‘interval x is the same length
as the sum of intervals y and 2'). With multiplication, we can’t even
reconstruct the relation of onc interval being the product of two others:
any introduction of such a product relation on intervals would have
to depend on an arbitrary choice of onc interval to serve as ‘the unit
interval’, and no such notion is employed in the Hilbert theory.
The best onc can do with the Hilbert primitives is to reconstruct
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comparisons of products of intcrvals, and it takes quite a bit of work to
reconstruct such comparisons in a suitably gencralizable way.?* These
obscrvations make it clear that the objection that we arc using the
space-time points as if they were real numbers is quite erroncous. .,
These points arc further reinforced by the fact that the usual theory
of real numbers includes not only the first-order theory that invokes
only the functions of addition and multiplication: it includes also the
apparatus of quantification over functions defined on the real numbers,
and also cnough higher-order seis to enable us to define the continuity,
diffcrentiability, ctc. of such functions. No such apparatus is invoked
in the theory that takes space-points as the objccts of quantification:
theugh we will evenrually see that the invariant content of many ¢
statements of continuity, differentiability, ete. of functions is ex-
pressible in the system to be developed, it is to be expressed without
referring to or quantifying over functions or anything like functions.
Onc might think that if the system of space-time points was as
distinct from the system of rcal numbers as I've been saying, then it
would be a remarkable coincidence that points on a physical line
should happen to have preciscly the structure of such an important
mathematical system as the real numbers, and that important math-
cmatical operations (c.g. differentiation) on functions of real numbers
should have analogs which play an important role in the physical
theory. Surely, it could be argued, this can’t be a coincidence: doesn’t
this show then that the physical theory is really platonism in disguisc?
The trouble with this objection is that it completely ignores history:
the theory of real numbers, and the theory of differentiation ctc. of
functions of real numbers, was developed precisely in order to deal
with physical space and physical time and various theorics in which
spacc andfor time play an important role, such as Newtonian mechanics.
Indeed, the reason that the real number system and the associated
theory of diffcrentiation ctc. is so important mathematically is preciscly
that so many of the problems to which we want to apply mathematics
involve spacc andfor time. It is hardly surprising that mathematical
theorics developed in order to apply to space and time should postulate
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mathematical structures with some strong structural similaritics to the
physical structures of space and time. It is a clear casc of putting the
cart before the horse to conclude from this that what I've called the
physical structurc of space and time is really mathematical structure in
disguise.

So in summary: there is indecd a good deal in common between on
the onc hand the structure of physical space that both 1and the platonists
postulate and on the other hand the structure of mathematical objects
postulated by platonists; and there is an obvious reason why there
should be this commonality of structure, given that the mathematics
was developed to deal with physical space (and time). Still, there are
many ways in which the physical strueture is less rich than the math-
ematical structure (c.g. no addition rclation defined on points; no
multiplication rclation defined on points or even on intervals; no
functions, scts of functions, ctc.). And the physical structurc is all an
empirical postulate, subject to revision by experience in a way that
mathcmatics is not.

There are, to be sure, certain views of space-time according to
which the quantification over space-time points or spacc-time regions
really would be a violation of nominalism. I'm speaking of relationalist
views of spacc-timc, as opposed to the substantivalist view. According
to the substantivalist view, which I accept, space-time points (and/or
space-timc regions) arc entitics that exist in their own right. In con-
trast to this are two forms of rclationalist view. According to the first
(reductive relationalism), points and regions of space-time arc some sort
of sct-theorctic construction out of physical objects and their parts;
according to the second {climinative relationaliem), it is illegitimate to
quantify over points and regions of space-time at all.?? It is clear that
reductive rclationalism is unavailable to the nominalist: for according
to that form of relationalism, points and regions of space-time are
mathematical entities, and hence entities that the nominalist has to
rcject. So a nominalist must cither be a substantivalist or be an climin-
ative relationalist, and only in the first case can he find Hilbert's theory
acceptable.
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It is my view however that indcpendently of nominalism, a sub-

stantivalist view is preferable to cither form of relationalist view, for a
number of reasons most of which cannot be discussed here. I will
merely say thatI don't think that any relationalist programme, of cither
a reductive or an climinative sort, has ever been satisfactorily carried
out, cven given a full-blown platonistic apparatus of scts. The problem
for relationalism is especially acute in the context of physical theories
that take the notion of a ficld scriously, c.g. classical clectromagnetic
theory. From the platonistic point of view, a ficld is usually described
as an assignment of some property, or some number or vector or
tensor, to cach point of space-time; obviously this assumes that
there arc space-time points, so a relationaiist is gomg to have to
cither avoid postulating ficlds (a hard road to take in modern physics,
I'believe) or elsc come up with some very different way of describing
them. The only alternative way of describing ficlds that 1 know is the
one I usc later in the monograph in conncction with the gravitational
potential field in Newtonian mechanics: it does without the propertics
or the numbers or vectors or tensors, but it does not do without the
space-time points.** In general, it scems to me that recent developments
in both philosophy and physics have made substantivalism a much
more attractive position than it once was; it certainly has been adopted
by the majority of the ‘new wave’ of space—time theorists. (For two
good discussions, scc John Earman, ‘Who's afraid of Absolute Space?
and Michael Fricdman, Foundations of Space~Time Theories**). In any
casc, substantivalist views of space-time arc certainly possible, and on
such a substantivalist view it is perfectly nominalistic to quantify over
SPACC-thne points andfur spuce-time regions.

This doesn’t justify quantifying over points or regions of space
actually, if a point or region of space is construed as an entity that
endures through time. And indeed, there are real difficulties about
quantifying over points or regions of space on any such construal, for
on such a construal it would scem to make objective sense to ask
whether two non-simultancous events are at the same point of spacc,
and hence 1o ask whether a given object is at absolute rest. The notion
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of absolute rest is one that positivists have quite rightly objected to, in
my view: this is a point 1 will return to bricfly in the .ncxt.chaptcr.
Fortunately, however there is a way to construc quanuﬁca.non over
points and regions of spacc so that it involves no commitment ‘to
absolute rest, in any physical theory in which a notion of simultancity
is availablc: simply regard a claim about spacc as an abbreviation fOt.thc
assertion that the claim holds for each of the spatial slices of space-time
‘(i.c. the stices generated by the simultancity relation). S.o the clgtm\
that physical space is Euclidean is translated into the cleim that each

of the spatial slices of space-time is Euclidean. It is trivial to rewrite

Hilbert’s axiomatization of the gcometry of space so that thatis explic.itly
what it says; if we do so, then the objects in the domain of the quantifier
are really space-time points rather than points of space, and t?xcrc can
be no danger of viewing the theory as being committed to the idea th.:.
absolutc rest is a physically significant notion. ([ won’t bother to explain
how to rewrite Hilbert's theory in this way however, since the theory
that resulted would be of less use than a stronger nominalistic theory
about space-time structure to be set out in Chapter 6.)

1

I have allowed our nominalist to quantify over points or regions of
space-time. Is there any reason why he shouldn't qu:?nflfy over both
points and regions? Some philosophers would be willing to fxcccpt
the existence of certain kinds of regions—say, regular open regions—
but not of points. This is not a view [ objeet t0; it may well be po.ss1ble
to find nominalistic systems similar in many respects to the Hilbert
system (and to the systems to follow later on in.thc l.aook), but that
quantify over arbitrarily small regular open regions instcad of over
points; and if it is possible, then the nominalist has no r-cason to object
to dispensing with points in favor of regular open regions. But 1 :?lso
do not scc that the nominalist has any particular reason to forego Po‘f’ts
for arbitrarily small regular open regions—the desire for such purity
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is a quasi-finitist desire, not a nominalist desire. Since the desire to
forego points is not one I share, and since it appears to be mathematically
difficult, I will make no attempt 1o satisfy that desire in this book.
How about the converse question: given a nominalism in which we
quantify over spacc-time points, is there any added difficulty in
quantifying over regions? If our nominalist accepts Goodman's
calculus of individuals,®* then the introduction of points carries with
it the introduction of regions: for a region is just a sum (in Goodman's
sense) of the points it contains.?® And even if one does not accept the
caleulus of individuals in general—even if one thinks that there are
cntities that can’t meaningfully be ‘summed’—there scems to be
litle motivation for allowing points and yet disallowing regions:
in fact, it scems artractive to regard points of space-time as a special
casc of regions, namely as regions of minimal size. So it seems to me
that regions are nominalistically acceptable. (I should note however
that only fairly ‘regular’ regions are directly used in the monograph, so
a nominalist who would balk at the use of highly ‘irregular’ regions
nced not balk at the uses to which regions will actually be put.)??

If these claims about what should count as nominalistic are accepted,
then there is at Jeast an important sense in which Hilbert’s formulation
of the Euclidean theory of space is or can with a little rewriting be
made nominalistic. Hilbert's theory is usually formulated as a second-
order theory, in which the first-order variables range over points,
lines, and planes; in other words, the first-order variables range over
regions of various kinds. Consequently, the second-order variables
range over sefs of points, lines, and planes, and that docsn’t Jook very
reminalistic, However, only one second~order axiom is really needed,
the Dedekind continuity axiom; and in this axiom onc quantifics only
over non-empty scts of points. This is important, for in the absenee of
any further use of sets, there is no substantive difference between a set
of points on the one hand and a Goodmanian sum of points or a region
on the other. So we can regard the sccond-order quantifiers in Hilbert’s
theory as ranging over regions. (And we can then if we like restrict
the range of the first-order quantificrs to points, cither by using
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sccond-order quantifiers whenever we want to spcak of lines and
planes, or by paraphrasing claims about lines and planes in terms of
chims about points and the relation of betweenness.) If we write
Hilbert’s theory in this way, then the quantifiers (both first-order and
second-order) range only over regions of spacc; and ['ve argucd that
regions of space are nominalistically acceptable entities. So if we write
Hilbert's formulation of the Euclidean theory of space in this way, it has a
purely nominalistic ontology.

It docs, admittedly, have a logic that one might find objectionable:
it involves what might be called the complete logic of the partjwhole
relation, or the complete logic of Goodmanian sums, and this is not a
recursively axiomatizable logic. To clarify this, note that the theory
as I've suggested it be written is still a second-order theory, that is, it
still involves second-order logic: it is merely that because of the nature
of the objects in the range of the first-order quantificrs (viz. because
they do not overlap), and because also we haven't invoked variables
for functions or for predicates of more than one place, no nominalist-
ically dubious entities need be invoked to serve in the range of the
sccond-order quantificrs.  This ontological difference is  perhaps
sufficiently striking so that we ought not to call the logic ‘sccond-order
logic’ anymore, but something clsc, such as ‘the complete logic of
Goodmanian sums'; nonetheless, the consequence relation is still like
that of second-order logic, which is not recursively axiomatizable.
Conscquently, insofar as onc objects to the strength of the sccond-
order conscquence relation, one will object to this version of Hilbert's
formulation of the Euclidean theory of space.

I share the feeling that the invocation of anything like a sccond-
order consequence relation is distasteful, and will discuss the possibility
of climinating it in the final chapter of the book. For now, let me simply
note that for platonistic theories too, the most natural and intuitive for-
smulation of a theory is often a sccond-order formulation. For instance,
intuitive sct theory—by which I mean not the intuitive Cantorian
set theory that was shown inconsistent, but the intuitive sct theory
that underlics the Zermelo-Fracnkel and similar axiomatizations—is 2

- e———
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sccond-order theory: c.g. it will include as an axiom or a theorem the
sccond-order scparation principle

VP Vx 3y Vz(zey s zex A P(z)).

To get a first-order axiomatization we have to weaken the theor
rc}?lacing the second-order axiom or axioms by schemas of ﬁrst-orer'
axioms, namely the schema of replacement andfor scparation. This
first-order weakening of intuitive set theory has a lot of ‘non-standard’
modcls (¢.g. models in which scts that are really infinite satisfy the
formula that is usually regarded as defining finiteness): such models
arc ‘non-standard’ prccisely because they are nor models of sccond-
order sct theory.*® Similarly, the second-order Hiibert axiomatization
of geometry can be weakened to a first-order system, in cither of two
ways: a scvere weakening which drops the use of regions entircly has
bc?n studied by Tarski?? and a less severe weakening to a ﬁrst—Zrdcr
axiomatization will be mentioned in the final chapter. But these first-
order weakenings of the Hilbert system all have non-standard modcls
These non-standard models together with the non-standard modc];
of first-order sct theory make the question of the relation between the
first-order nominalistic theory and the first-order platonistic theory
harder 1o scule; a representation theorem like Hilbert's is much casici
to state and prove if it is taken as relating the intuitive (second-order)
flominalistic geometry to the intuitive (sccond-order) set theory than
if it is taken as relating their first-order weakenings. For this reason 1
will’put off the issuc of first-order axiomatization until the final chapter
Sinccl ::m putting that off, it is necessary to make sure that nothing ix;
iy senisaiks in the previous chapier, about the philosophical significance
of Hilbert’s representation theorem, turned on the false a;sut11 tion
thflt Hilbert’s axiomatization was first order. The only remark \S\ich
might scem suspect from this point of view came at the very end of
the chapter. After pointing out that mathematical entities {real numbers
together with functions from space-time points into the reals) can
uscfully be employed in conncction with Hilbert's axiomatization, and
that when they are employed we are never led to a false conch'xsion
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about space from true premises, I raised the question of whether this
fact is evidence that the theories which postulatc mathematical entities
are true. My answer was no: we could, I chiimed, explain the truth-
preservingness of mathematics in this context entirely by its con-
servativeness, which is a much weaker (or more accurately, a quite
different) property; in fact, I remarked that we really only need to

assume a restricted form of conservativeness, which follows from the

consistency of mathematics alone. This, howcver, raises a question:
is the consistency of mathematics (i.c. the consistency of set theory,

since mathematics reduces to set theory) sufficient to entail that

mathematics can be employed in reasoning about second-order theories
in a truth-preserving way? The answer is that the semantic consistency
of second-order set theory.is sufficient for this conclusion: in fact, the
main arguments of the Appendix to Chapter 1 go over with litde
alteration when all the theories are taken to be second order.®® The
upshot is that in the context of reasoning about Euclidean gecomerry
at lcast, the nominalist can invoke the theory of rcal numbers (with
the attendant functions) as much as he likes, for he is guaranteed that
he can never be led into error by so doing.

5

My Strategy for Nominalizing Physics, and

So far, L have not tried to argue that we can come up with nominalistic
theorics to replace platonistic ones: 1 have mercly argucd that if we had
a nominalistic theory, then it would be legitimate to introduce
mathematics as an auxiliary device that aids u< in drawing inferences;
and I have tricd to indicate why that auxiliary device would be uscful,
and to show that its uscfulness as an auxiliary device is no grounds
whatever for supposing that it consists of a body of truths. The real
question then is whether an attractive nominalistic formulation of
physics is possible. 1 say an attractive nominalistic formulation, because
if no attractivencss requirement is imposed, nominalization is trivial;
simply take as axioms of your physical theory all the nominalistically-
statable consequences of the platonistic formulation of the theory.
(Or, if you want a recursive set of axioms, take the Craigian tran-
scription of the set of nominalistically-statable conscquences.)

Obviously, such ways of obtaining nominalistic theorics are of no =

interest. The way that I will suggest of obtaining nominalistic theories
is very different from this.

41
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In order initially to motivate the idea that an attractive nominalistic
formulation of physics is possible, lct us return to Hilbert’s axiom-
atization of gcometry. There arc two approaches to axiomatizing
geometry, sometimes called the metric approach and the synthetic
approach. In the metric approach we take as primitive a particular
function-symbol d, which we regard as denoting a particular mapping
of pairs of points of space into the real numbers. Then if we regard
the mathematical laws of rcal numbers, functions, and so forth as
independently given, we can use d to lay down a relatively simple set
of axioms for the geometry. The synthetic approach is the onc that
Hilbert followed, the one which does without real numbers, functions,
etc. This approach is also the one that Euclid had (less rigorously)
followed long before—Euclid had to follow the synthetic approach,
because the theory of real numbers hadn’t been sufficiently developed
in his day for the metric approach to be possible. (The real numbers
were in fact first introduced into mathematics as a means of simpli-
fying geometric reasoning). But to anyonc alrcady familiar with the
theory of real numbers, the metric approach is a good deal casicr, and
for that reason it is used in many recent books in geometry. If one were
familiar only with the mctric approach to Euclidcan gcometry, onc
would probably conclude that one needs to quantify over real numbers
in developing a theory of the gcometry of space. The Hilbert axiom-
atization, however, shows that this is not so.

My guecss is that the same is true for other physical theories. Insofar
as they've been rigorously formulated at all, they've been formulated
platonistically, for it is casier to formulate a theory that way when one
has a sufficiently developed mathematics. My guess, however, is that
a thorough foundational analysis of such theorics will show that ref-
erence to real numbers, cte. is no more necessary in them than it is in
geometry. And this isn’t a mere guess: 1 substantiate it in Chapters 6-8
with respect to one physical theory, viz. Newton's theory of gravi-
tation; and it wouid be routine to extend the nominalistic treatment of
gravitational theory to other theories with a similar format, such as
special relativistic clectromagnetic theory.
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I belicve that such ‘synthetic’ approaches to physical theory are
advantageous not merely because they are nominalistic, but also be-
cause they are in some ways morc illuminating than metric approaches:
they explain what is going on without appeal to extrancous, causally
irrclevant entitics. The attempt to climinate theoretical entitics of
physics (e.g. electrons) from explanations of obscrvable phenomena is
not likely to be possible without bizarre devices like Craigian tran-
scriptions; it is also not likely to be illuminating even if it is possible,
because electrons are causally relevant to the phenomena they are
invoked to explain. But even on the platonistic assumption that there
are numbers, no onc thinks that those numbers are causally relevant
to the physical phenomena: numbers are supposed to be casitics
existing somewhere outside of space-time, causally isolated from
everything we can obscrve. If, as at first blush appears to be the case,
we need to invoke some real numbers like 6.67 x 107 (the gravi-
tational constant in m*fkg~}/s2) in our cxplanation of why the
moon follows the path that it docs, it isn't because we think that that
real number plays a role as a canse of the moon’s moving that way;
it plays a very different role in the explanation than electrons play in
the explanation of the workings of clectric devices. The role it plays is
as an entity extrinsic to the process to be explained, an cntity related to
the process to be explained only by a function (a rather arbitrarily
choscn function at that). Surely then it would be illuminating if we
could show that a purcly intrinsic explanation of the process was
possible, an explanation that did not invoke functions to extrinsic
and causally irrclevant entities.

In saying that this i an advantage, 1 don't mean to suggest that
extrinsic explanation should always be avoided: the point is rather
that from a proper synthetic theory, one will be able to prove the
equivalence of the intrinsic and cxtrinsic explanations. (That is, one
will be able to prove that the two cxplanations are cquivalent given
the assumption that the entities involved in the extrinsic explanation
exist. If one believes that they don’t exist, then one will hold that the
extrinsic cxplanation is merely a uscful fiction, but one which can be
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used in good conscience by anyone who knows of the 'intrinsic
cxplanation, becausc of the conscrvativeness of mathcm:\t.lcs.) An
illustration of this is provided by synthetic geometry: given the
axioms of synthetic geometry, onc can prove (givefl standard math-
ematics) the cquivalence of on the one hand explanations of features of
physical space stated in terms of betweenness and congruence a.nd on
the other hand extrinsic explanations involving quantitative dnst:fncc
and angle measures; hence onc is free to usc the extrinsic explanations
in practice. - o
1 am saying then that not only is it much Jikelier that we can climinate
numbers from scicnce than electrons (since numbers, unlike cl'ectro.ns,
do not enter causally in explanations), but abo that it is haon¢ ilumin-
ating to do so. It is more illuminating because the climination of nut-
bers, unlike the climination of electrons, helps us to further a plausible
methodological principle: the principle that mzdcrlyhfg every goo.d
extrinsic explanation there is an intrinsic explanation. 1 this pn.ua'plc is
correct, then real numbers (unlike clectrons) have gor to be chmm-ablc
from physical explanations, and the only question is how precisely
this is to be donc. o
Note that the principle I've italicized is not a nominalistic principle:
it could perfectly well be accepted by a platonist, though of course,
not by any platonist who believed thar one could argue for platonism
by saying that mathematical entitics are needed for physx.cs. Converscly,
a nominalist need not accept the principle. There arc indecd ways of
trying to cstablish the possibility of nominalism that, even if succ.cssful,
would not establish the italicized principle. One such approach is that
of Charles Chihara in his book Ontology and the Vicious Circle I’n:nn',-)lc
I(scc note 4 abovc). Chihara’s approach is onc of thosc alluded to in th.c
introduction, on which onc trics to reinferpret mathcmatic.s: in this
case, one reinterprets it as being about linguistic entities instead of
abstract cntitics. I find my approach preferable to his for thrc.e reasons.
In the first place, as Chihara of course recognizes, thc. linguistic vncjav
requires that only predicative mathematical reasoning be ufcd in
application, and it isn’t at all obvious that we don’t need impredicative
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reasoning in doing science. (My view licenses (but docsn’t demand) the
usc of impredicative reasoning, as we shall sce in Chapter 9.) In the
second place, the linguistic entities that Chihara appeals to include
sentence types no token of which has even been uttecred, and it is not
at all obvious to me whether these should count as nominalistically
legitimate. But third and most fundamental, Chihara’s view does
nothing to illuminate the use of extrinsic, causally irrclevant entitics
in the application of mathematics. That is, Chihara’s methods do not
show us how to provide intrinsic explanations underlying extrinsic
explanations; they mercly show that linguistic surrogates of math-
ematical entitics can be used in place of mathematical entitics in our
extrinsic explanations (a fact which I take to be uninteresting, since as
I've argued, there is no need in the mathematical case to regard
extrinsic explanations as literally truc).

I conclude this chapter by noting that one of the things thar gives
plausibility to the idea that extrinsic explanations arc unsatisfactory if
taken as wltimate explanation is thar the functions invoked in many
extrinsic explanations arc so arbitrary. For example, in the case of
geometry, the choice of one distance function over any other onc
which differs from it by positive multiplicative constant is completcly
arbitrary; it reflects in effect an arbitrary choice of units for distance.
(When we move from geometry 1o physics generally, therc is in the
metric approach not only an arbitrary choice of 2 unit of distance, but
also an arbitrary choice of units for other qQuantities, an arbitrary
choice of a rest frame, and various other arbitrary choices as well).
Now an analogous arbitrariness conld exist on an intrinsic approach
too: it would exist il we singled out a particular pair of points of
space~time (say, the endpoints of a certain platinum rod in the Burcau
of Standards at such and such a time), and constantly referred to this
pair of points in making distance comparisons when we developed the
theory. Hilbert, however, did not resort to such an unaesthetic move
in his intrinsic development of geometry; nor shall I resort to it in my
intrinsic formulation of gravitational theory. What Hilbert did do
(in his uniqueness theorem) was to explain, in terms of intrinsic facts about
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space which arc statable without such arbitrary choices, why the choice of

finctions to be invoked in the extrinsic theory will be arbitrary to precisely

the extent that it is. This feature of the Hilbert approach to geometry is
highly attractive, and it is a feature I will take pains to emulate when
1 extend the synthetic treatment of geometry to a synthetic treatment

of gravitational theory.

!
!
i
!

6

A Nominalistic Treatment of Newtonian

Space- Time

I turn now to the problem of giving a nominalistic formulation of
physics, a formulation which mects the additional constraints imposed
in Chapter s: it is to be ‘attractive’, unlike Craigian axiomatizations;
it is to be a *purely intrinsic” formulation; and it is to be a formulation
that docs not appeal to arbitrarily chosen objects to serve as units of
length, or to arbitrarily choscn systems of coordinates, or to any such
thing. These further constraints are not very precise, but I hope that
they are reasonably clear; for 1 will implicitly and sometimes explicitly
invoke these constraints (especially the last onc) in motivating the
construction to follow.

The first step in giving a nominalistic formulation of physicsis to give
anominalistic treatment of space-time. I've already discussed a nominal-
istic treatment of space, but space-time is a little different, both in
Newtonian mechanics and in special relativity. It is different not just
in being 4-dimensional instead of 3-dimensional, but in not having a
full Euclidean structure. (Also in having some extra structure not
present in Euclidean 4-spacc.)

47
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settles for is a nominalistic one like N, or a platonistic one like Py;
hence it can’t be used as an argument for the inadequacy of N unless
platonistic first-order theories are also admitted to be inadequate,
Consequently, if onc is committed to first-order theories, then the
only obvious way to decide if one is good enough is to decide whether
it is powerful enough to get the results that are seriously needed in
practice, i.e. excluding recherché results like those obtained by
Godelization. As I've said, I think it highly likely that N or some
slightly stronger first-order subtheory of N passes this test.

The argument at the beginning of the previous paragraph, then,
may indicate an inadequacy in Ng; but if so, it is an inadequacy in P,
as well, and hence it is not an argument for platonism. If you want to
cure this ‘inadcquacy’, the only recourse:is to go to a second-order
theory—either N, or platonistic gravitational theory in the context of
second-order sct theory. But since as we've seen N has all the nominal-
istic consequences that sccond-order platonistic set theory has, it is
hard to sce in the context of second-order logic what the advantages
of platonism can be. Either way, then, it Jooks as if nominalism
triumphs,

Notes

Preliminary Remarks.

1. The ‘part of mathematics that docsn’t contain references to abstract
entities’ is really just applied logic: it is the systematic deduction of
conscquences from axiom systems (axiom systems similar in many
respects to those used in platonistic mathematics, but containing
references only to physical entities). Very little of ordinary mathematics
consists mercly of the systematic deduction of consequences from
such axiom systems: my claim however is that ordinary mathematics
can be replaced in application by a new mathematics which does
consist only of this.

2. 1 believe the approach is gencralizable to curved space-time, but
haven’t thought through all the details.

3. As it happens, a certain reduction of structural assumptions will fall
out ‘by accident’, on one of the two nominalistic formulations of
gravitational theory I will give (the one I will call Ny in Chapter 9).
Moreover, both nominalistic formulations, but especially N, scem
especially well suited for a study of the effects of further weakenings of
the structural assumptions.

4. The most thorough presentation of the Quincan argument is
actually not by Quine but by Hilary Putnam: cf. The Philosophy of
Logic (New York: Harper, 1971), especially Chapters V-VIIL.

Somc of the arguments I do not take seriously (e.g. the argument that
we need to postulate mathematical entities in order to account for
mathcmatical intuitions) arc well treated in Chapter 2 of Chihara,
Ountology and the Vicious Circle Principle (Ithaca: Cornell University
Press, 1973).

5. Actually, I do not think that a platonistic proof of the adequacy of

our theorics serves merely as a reductio: 1 think that a nominalist too

should be convinced by a platonistic proof about the deductive powers
107
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of a given nominalistic thcory. But a defense of this cliim would be
a long story. (Some much too brief remarks on this matter are con-
tained in note 10 in the next chapter.) In any case, the nominalist need
not ultimatcly rely on such platonistic proofs of the adequacy of his
systems: in principle at least, he and his fellow nominalists could
simply spin out deductions from nominalistic axiom systems like the
ones suggested later in the monograph. In this sense, the reliance on
platonistic proofs could be regarded as a temporary expedicent.

CHAPTER 1
Why the Utility of Mathematical Entities is Unlike the Utility of
Theoretical Entities

6. Count ‘=" as logical.

7. That is, replace every quantification of form ‘Vx; (...)" by ‘Vx,

(if not M(x;) then . . .)’, and every quantification of form ‘3x; (.. .)' by

‘Ix; (not M(x;) and .. .)".

8. The formal content of saying that N is ‘nominalistically statable’ is
simply that it not overlap in non-logical vocabulary with the math-
ematical theory to be introduced. (Recall that *=" counts as logical.)
This is all we nced to build into ‘nominalistically statable” in order for
Principle C to be true. For Principle C to be of interest, we must suppose
in addition that the intended ontology of N doces not include any
entities in the intended extension of the predicate ‘M’ of S; for if this
condition were violated, then N* + S would not correspond to the
‘intended’ way of combining N and S.

9. Proof: Suppose N* + S + {3\ - M(x)} implics A*, Then N* +S
implics A* v ¥x{—M{x}- x # x); that is, it implics B* where B is
A v Vx(x # x). Applying Prmczplc C', we get that N* implics B*,
and conscquently that N* 4 {3x — M(x)} implics A*. From this it
clearly follows that N implies A.

Principle C doces not quite follow from Principle C, for a theory S
could imply that there arc non-mathematical objects but not imply
anything elsc about the non-mathematical realm (in particular, not
imply that there arc at least two mathematical objects—the latter
would violate Principle C as well as Principle C').
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s0. In what sense does he know this? At the very least, he knows it in
the sense that a platonist mathematician who proves a result in recursive
function theory by means of Church’s thesis knows that he could
construct a proof that didn’t invoke Church’s thesis. The platonist
mathematician hasn’t proved using the basic forms of argument that
he accepts that such a proof is possible, for he hasn’t proved Church's
thesis. (Nor can he even state Church’s thesis except by vague terms
like ‘intuitively computable’) Still, there is a perfectly good sense in
which our platonist mathematician does know that a proof without
Church’s thesis is possible—after all, he could probably come up with
Turing machine programs at each point where Church’s thesis was
invoked, if given sufficient incentive to do so. In precisely the same
sense, the nominalist knows that for any platonist proof of a
nominalistically-stated  conclusion  from  nominalistically-statcd
premises there is a nominalistic proof of the same thing.

Just-what this scnsc of ‘know’ is (or, just what kind of knowledge is
involved) is a difficult matter: it doesn’t scem to me quite right to call
it ‘inductive’ knowledge. But however this may be, it is a kind of
knowledge (or justification) whose strength can be increased by
inductive considerations: in the recursive function casc, by knowledge
that in the past onc had been able to transform proofs involving the
imprecise notion of ‘intuitively computable’ to proofs not involving
it when one has tried {or by knowledge that others have been able to
cffcet such transformations, and that onc’s own judgements of intuitive
computability tend to coincide with theirs). In the conservativeness case,
the kind of inductive considerations that arc relevant are the knowledge
that in the past no one has found counter examples to conservativeness,
and also the knowledge that in many actual cases where platonistic
devices are used in proofs of nominalistic conclusions from nominal-
istic premises (such as the cases discussed in Chapters 2 and 3), these
devices are eliminable in what seems to be a morc or less systematic way.

These remarks suggest that the nominalistic position concerning
the use of platonistic proofs is about comparable to the platonist's
position concerning proofs that use Church’s thesis. Actually T think
that the nominalist’s position is in one respect cven better, for he can
rely on something that the platonistic recursion theorist has no analog
of: viz., the mathematical arguments for conscrvativeness given in
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the Appendix. Of course, these arguments don't raise the claim that
mathematics is conscrvative to complete certainty, for two reasons,
One reason is that somcthing at lcast as strong as the consistency of set
theory is assumed in them, and no one (platonist or nominalist) can be
completcly surc of that. The other reason is that these proofs (at least the
first, and both if onc is sufficicntly strict about what counts as nominalist)
are platonistic, and so some story has to be told about how the nominal-
ist is justified in appcaling to them outside the context of a reductio,
I think some such story can be told, but it would be a long one.
(An essential idea of the story would be that we use conservativeness
to argue for conscrvativeness: we’'ve seen that the nominalist has
various initial quasi-inductive arguments which support the con-
clusion that it is safe to use mathematics in certain contexts; if he then
using mathematics in one of those contexts can prove that it is safe to use
mathematics in those contexts, this can raise the support of the initial
conclusion quite substantially.)

A platonist might be inclined to dismiss the sort of quasi-inductive
knowledge discussed in this note. But to do so would be to pay a high
price: most of mathematics is known only in this quasi-inductive sort
of way. For most of it is proved by rather informal proofs; and though
we all do in an important sense kuow that we could reconstruct such
proofs formally if forced to do so, still the principle that formal proofs
are always possible when we have an intuitively acceptable proof is,
like Church’s thesis, a principle that we haven't proved and have no
prospect of proving.

11. We will see, however, that the wtility of number theory is less
subject to such empirical vicissitudes than are theories about say the
real numbers.

12, D should cither be taken to consist cntircly of non-scts, in which
case ¢ should be taken to be the empty sct (or another non-set); or D
should be taken to consist entircly of sets of the same rank and ¢ should
be another set of that rank. Given any model of a theory, there is no
difficulty in getting another model whose domain mects these
conditions.

13. Suppose S+ T* is inconsistent; the Robinson thcorem says that
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there is a sentence B in the language common to S and T* such that
S— Band T*~ —B. Clearly if S and T arc both consistent, then
B can’t be cither a logical truth or a contradiction. The language
common to S and T* consists, in the case of a ‘purc’ mathematical
theory, of ‘M’ (the predicate ‘mathematical’ discusscd prior to the
formulation of Principle C) and !=’, and nothing clse. The only
statements in this language other than logical truths or contradictions
are statements saying how many mathematical objects there are andfor
how many non-mathematical ohjccts there are. But since all statements
in T* are explicitly restricted to non-mathematical objects, T* can't
imply anything about how many mathematical objects there are, and
since the mathematical theory is assumed to be a pure onc it can't
imply anything about how many non-mathematical objects there are.
So there can be no such Bj; that is, the supposition that S and T arc
consistent but S 4 T* is inconsistent has been reduced to absurdity.

14. A sketch of the proof of the last fact is given in Thomas Jech,
The Axiom of Choice, p. 51, problem 1. Using this fact, the proof that
conscrvativeness implics consistency is just as in note 13.

15. Proof: if ZF is consistent, and ZF~ ‘T is consistent’ (where
‘T is consistent” abbreviates the formalization in ZF of the claim that T
is syntactically consistent) then ZF+ ‘T is consistent’ is certainly
consistent. Since the Gédel completeness theorem (together with
various more elementary facts) is provable in ZF, then so is ZF + ‘there
is a model of T in which all clements of the domain have the same
rank and such that there is a sct of that rank that is not in the domain’.
(Cf. note 12 for the motivation of this.) If T has n primitive predicates,
then a model of T consists of a domain together with n items cach
corresponding o one of the terms. Introducing new names b, ¢,
.« €4 for these things, and a name d for the sct of the right rank that
isn't in the domain of the model, we sce that ZF 4 (b, ¢,,. . .,c,) is
a model of T’ + ‘all members of b have the same rank’ + ‘d has the
same rank as all members of b’ is also consistent. Call this theory ZF;.

By the principle of transfinite recursion, there is a formula 2(x)
(in the language of ZF;) such that

ZF; (in fact, ZF)~ 2(x)erxebv x=d v (x # & A Vy(yex—
2(y)-
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If we translate statements of ZFUyy,+ T* into ZF; by using 2(x)
to restrict all variables, and translating ‘Set(x)’ as ‘x¢b’, ‘e’ as ‘¢,
‘D’ as ‘d', and ‘A(xy,...%,) where A is the ith predicate of T as
(xy4,. . XY € ¢, then each of the translations of the axioms of
ZFUyry+ T* is a theorem of ZFy. Since ZF; is consistent {on the
assumption that ZF is}, 50 is ZFUyy, + T*.

16. To sce this, obscrve first that the preceding note proved a slightly
stronger result than was claimed: it proved that if ZF + ‘T is consistent’
is consistent, then ZFUyp, + T* is consistent. So we now need only
show that if’ ZF is w-consistent and T is consistent and recursively
enumerable, then ZF + “T is consistent’ is consistent.

The reason for this is simple: if T is consistent, then nothing is a
proof from T of ‘o= 1°; and if T is also recursively enumerable, ZF is
strong enough to prove “(k}is not the Gédel number of a proof from
T of ‘o=1"", for cach numeral k. By the w-consistency of ZF it
follows that one cannot prove in ZF anything of the form ‘Ix(x is
the Gédel number of a proof from T of ‘0= 1")’; so onc can’t prove
‘T is not consistent’ from ZF, and so ZF + *T is consistent” is consistent.

CHAPTER 2
First Hllustration of Why Mathematical Entities are Uscful:
Arithmetic

17. To simplify things I haven’t shifted from N to N* in this case,
because in this example such a shift isn't needed. If we did shift from
N to N*, we would rewrite 1 as

1* There arc exactly twenty-onc aardvarks that arc not math-
ematical objects.

and take as an abstract counterpart of 1* the claim

(1*) The cardinality of the sct of aardvarks that arc not math-
ematical objects is 21.

18. Hilary Putham gives a similar illustration, in ‘The thesis that
mathematics is logic’ in Philosophical Papers, Vol. 1 (Cambridge:
Cambridgc University Press, 1975): cf. pp. 26-33, and in particular
PP- 31-3, where Putnam points out that the application of number
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theory requires only the consistency of mathematics. I was in fact
originally led to the view that I take in this mor:ograph largely by
thinking about these striking remarks of Putnam’s. Note, however,
that the conclusion that Putmam draws from his remarks is rather
diffcrent from the one 1 draw: his conclusion is that we should interpret
purc mathematics as asserting the possible existence of physical struc-
tures satisfying the mathematical axioms, whereas my conclusion is
that we don’t need to interpret pure mathematics at all.

In another paper in the same volume, “What is mathematical truth?’,
Putnam takes back the view put forth in the carlier paper, claiming in
effect that the account given of the application of number theory
couldn’t possibly be extended to an account of how the theory of
functions of real variables i< applied to physical magnitudes. (Cf.
pp- 74-5. Putnam has presented this point at grcatcrvlcfxgth. in The
Philosophy of Logic (sec note 4).) Perhaps in part his pessimism is due to -
the assumption that any extension of the account of how number
theory is applied would have to be put into the framework of 2
reinterpretation of mathematics; in any casc, the later chapters of this
monograph (starting with Chapter 3) show how to perform the
extension in question, if we forget about reinterpreting pure math-
ematics and worry only about rcinterpreting its applications.

CHAPTER 3
Sccond Hlustration of Why Mathematical Entities are Useful:
Geometry and Distance

19. David Hilbert, Foundations of Geometry (LaSalle, IIl: Open Court,
1971).

CHAPTER 4
Nontinalism and the Structure of Physical Space

. . L
20. For the reader who wonders why 1 say ‘space-time point’ instead
of *point of space’: your curiosity will be alleviated in the last paragraph
of Scction 1 of this chapter,

21. 'In a suitably generalizable way’ means ‘in a way generalizable to
. . . .
products of spatio-temporal intervals with scalar intervals’. The
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suitably generalized way of making product comparisons is given in
Chapter 8. '

22. Or anyway, it is illegitimate to quantify over unoccupied points
am.i regions: quantification over occupied points or regions (i.c.
points or regions wholly occupied by parts of physical objects) could
be regarded as equivalent to quantifying over the objects which
occupy them, and hence as unproblematic to the relationalist.

23. Note incidentally that according to theories that take the notion
of a field scriously, space-time points or regions arc full-fledged
causal agents. In electromagnetic theory for instance, the behavior of
matter is causally explained by the electromagnetic field values at
unoccupied regions of space-time; and since, platonistically speaking, a
field is simply an assignment of properties to points or regions ’of
space-time, this means that the behavior of matter is causally explained
by t.hc electromagnetic properties of unoccupicd regions. So ac-
cording to such theories space-time points arc causal agents in the
same scnsc that physical objects are: an alteration of their properties
leads to different causal consequences.,

24: Earman, Australasian Journal of Philosophy, 48, 287-319 (1970);
Friedman (Princeton University Press, forthcoming).

25. Nclson Goodman, Problems and Projects (Indianapolis: Bobbs-
Merill, 1972), Part IV.

26. As the reference to Goodman indicates, 1 use ‘region’ in such a
way that there is no cmpty region, i.c. no region containing no space-
time points. Also regions don’t need to be connceted, or measurable, or
anything likc that: very ‘unnatural’ collections of points count as rcgi(;ns.

27. This is not to deny that there might be difficultics in figuring out
how to axiomatizc the ‘regular’ regions without assuming tl;c c.\:is;ence
of the ‘irregular’ ones. How difficult this task would be presumably
depends on the concept of regularity involved.

28. Sec Ric]‘mrd Montaguc, ‘Set theory and higher order logic’, in
Crossley and Dummett (Eds), Formal Systems and Recursive Functions
(Amsterdam: North-Holland, 1965), pp. 131-48, for the sort of
second-order axiomatization I have in mind, and a defense of the idea

NOTES 115

that not only in sct theory but clsewhere as well, the way to explicate
the idea of a standard modcl of a first-order theory is as ‘model of an
associated second-order theory’. As Montague points out, the models of
Zermelo-Fracnkel sct theory that are ‘standard’ on this explication are
preciscly those models that are isomorphic to models in which the
domain is the set of all scts of rank less than a for some strongly
inaccessible o (greater than w), and in which ‘€’ is assigned the member-
ship rclation restricted to this domain. 1 agree with Montague that
this is thc most natural notion of a standard model for sct theory.

29. “What is clementary geometry?’, in Hintikka (ed.), The Philosophy
of Mathematics (London: Oxford University Press, 1969), pp. 164-75.

30. In more detail: recall that conservativeness as I defined it initially
is a semantic notion, onc involving consequence rather than provability.
In the Appendix to Chapter 1, I reformulated it in terms of con-
sistency; this is ambiguous between the semantic and the syntactic,
but in referring to some of the arguments as proof-theoretic, and in
the way I wrote the proof in note 15, 1 showed that it was the syntactic
notion I was dcaling with. The justification for the shift from scmantic
to syntactic notions is of coursc the Gédel completeness theorem for
first-order logic. In the case of sccond-order logic there can be no
such completeness theorem: here, we must stick to semantic notions
throughout. But the key results of the Appendix remain unchanged.
In particular, if ‘consistent’ in (Co) is understood as ‘semantically
consistent’, the set-theoretic proof of (C,) is as before: the method
described for turning a model of T into a model of ZFUyqy + T* can
remain unchanged as long as both ZFU and T are second-order
theories. (Recall the remarks in note 28 on what the models of sccond-
order sct theory are like.) Analogously, the proof in note 15 that (C,)
follows from the consistency of ZF needs no alteration when T and
ZF arc made sccond order, except that since we're replacing syntactic
consistency by semantic consistency, the step involving the Gédel
completencss theorem is unnccessary. (Two less central results of the
Appendix are more problematic: the proofs via the Robinson theorem
(which is not valid in sccond-order logic) and Weinstcin's proof that
the w-~consistency of ZF suffices for (C,). But these results arc not re-
quired for the remarks in the text to be truc.)
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