
The Transfinites



We've spent much of our time in class talking about what mathematical 

objects and

knowledge are: existent objects in the world, truths inherent in our minds, 

relations between our abstracted ideas, or vacuous or even plainly false 

statements which are just “good enough” that they work.

We haven't spent as much time on what the content of those mathematical 

objects are. And perhaps rightly so- this isn't a math class.

However, in order to deal with some of the more complex epistemological 

problems in mathematics, we may have to explore more deeply the 

content of mathematics.

This brings us to infinity. 



lἌπειρον = unlimited, indefinite, (infinite?)

l“The belief that there is something apeiron stems from the idea that 

only then genesis and decay will never stop, when that from which is 

taken what is generated is apeiron.” - Physics  Aristotle

lZeno's Achilles and the Hare, Dichotomy Paradoxes 



Anaxagoras



l15. “For neither is there a least of what is small, but there is always a 

less. For being is not non-being.” - Anaxagoras (trans. Arthur 

Fairbanks, The First Philosophers of Greece)

l16. “And since the portions of the great and the small are equal in 

number, thus also all things would be in everything ... And there are 

many things in all things, and of those that are separated there are 

things equal in number in the greater and the lesser.” - Anaxagoras 

(trans. Arthur Fairbanks, The First Philosophers of Greece)

lBut suddenly, Aristotle.



Aristotle

l“It is plain, too, that the infinite cannot be an actual thing and a 

substance and principle. For any part of it that is taken will be infinite, if 

it has parts: for 'to be infinite' and 'the infinite' are the same, if it is a 

substance and not predicated of a subject. Hence it will be either 

indivisible or divisible into infinites. But the same thing cannot be many 

infinites. (Yet just as part of air is air, so a part of the infinite would be 

infinite, if it is supposed to be a substance and principle.) Therefore the 

infinite must be without parts and indivisible.” - Physics, Aristotle ( trans. 

R. P. Hardie and R. K. Gaye)

lForms a new distinction, potential and actual, to which infinity can be 

applied:



Aristotle

lPotential: In general, the possibility whereby an object can be made 

actual

l The numbers may be actualized as we count them, but infinity, or 

apeiron, is never actualized. We never reach infinity.

lActual: The fulfillment of a potential, the existence of object in question 

brought into reality

lAnd so, is infinity a potential which cannot be actualized? What 

defines it as a potential, then?



Aristotle 'n Friends

lThe potential/actual distinction remains the primary way in which to 

think about infinity throughout the Middle Ages up until the departure 

from Scholasticism and the development of infinitesimal calculus and, 

in some ways, even after- Leibniz himself does not speak a great deal 

on the properties of the infinitesimals he uses.

lLocke, Hume, Berkeley (especially Berkeley), Kant, and nearly all other 

contemporary mathematicians dismissed the use of the actual infinite 

for a variety of reasons, and sought the development of limit calculus



Cantor

lGeorg Cantor (1845-1918)

lDeveloped first form of set theory

lMade the distinction between cardinal and ordinal numbers

lDefined the infinite in terms of set theory

lDemonstrated that not all infinite sets are equal in size; some are 

larger than others



Sets

lNaive set theory: Anything can be contained within a set:

l{my hair, Greenland, Mars}

lØ

l{1,2,3,4}

l{1,2,3,4,...}

lAnd so on
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The Grand Hotel (Hilbert)

lA paradox in the sense that the conclusion seems absurd, not in the 

sense that it leads to an actual contradiction.

lI have a hotel, it has an infinite number of rooms.

lIt is quite a popular hotel, and so all of the rooms have guests in 

them.

lSome poor schmuck comes in; he wants a room. Can I get him 

one?

lSure! I'll send out a message for all guests in room n to move to 

room n+1. The first room is then free- he can have it.

lI can repeat this process for any finite number of guests who want 

in.



The Grand Hotel (Hilbert)

lNow, a coach arrives with an infinite number of guests, all of whom want 

rooms.

lI can't just do the same procedure; I'd be doing it forever!

lInstead, I'll move the guest in room n to room 2n. Guest in room 1 moves 

to 2, guest in room 2 moves to 4, and so on. 

lAll of the odd-numbered rooms are now free. There are an infinite number 

of odd rooms; everyone gets a room!

lMy hotel is getting more popular; an infinite number of coaches each carrying 

an infinite number of guests arrive, wanting rooms.

lWe can still do this- provided that we can label each passenger on each 

bus.

lFirst, we can empty the odd-numbered rooms as we did previously, using 

2n. Next, we take the passengers in the first coach and place them in the 

room 3n for passengers n = 1,2,3,... (going in rooms 3, 9, 27, and so 

on)Next, we take the passengers in the second coach and place them in 

room 5n for passengers n = 1,2,3,... (going in rooms 5, 25, 125, and so 

on). The pattern will be the following: for each coach I and passenger n, 

they will go into pn , where p is the prime number in the I +1 spot in the 

well-ordered set of prime numbers (essentially, the [I+1]-st prime number).



The Grand Hotel (Hilbert)

lThe important idea is this: In a finite hotel, saying “every room has 

a guest in it” and “No more guests can check in is the same 

information. For an infinite hotel, this is not the case!

lWhat this illustrates is the difference between ordinal numbers 

and cardinal numbers when dealing with infinite sets.

lOrdinal = first, second, third, fourth,... (rank, order)

lCardinal = 1, 2, 3, 4,... (size, magnitude)

lAn easy example is the set of all odd numbers and the set of all 

natural numbers. The set of odd numbers is a proper subset of the 

set of natural numbers, but if we set them in one-to-one 

correspondence, each odd number can be attached to a natural 

number.



Transfinite Cardinals

lWe can use these two different forms of number to begin an examination of 

infinite sets

lWhat does it mean for a set to be infinite?

lIf a set can be placed into one-to-one correspondence with one of its 

proper subsets (i.e., set A contains all of the members of set B, but there 

are members of set A which are not contained in set B), it is an infinite set.

lSets such as the set of even numbers, the set of prime numbers, and 

even the set of rational numbers can all be placed into one-to-one 

correspondence with each other and the set of natural numbers; they 

all have cardinality of aleph-null.

lThey are also called countably infinite, since we can place them in 

an exaustive, ordered list (which is just another way of placing a 

set in one-to-one correspondence with the set of natural numbers





Transfinite Cardinals

We have seen how Cantor developed the foundations of set theory, 

made a distinction between cardinal and ordinal numbers, and 

defined infinity within set theory. However, we have not yet seen how 

he demonstrated that some infinite sets are larger than others.

In short, Cantor was able to demonstrate that there are sets with a 

cardinality larger than aleph-null.

There are a number of ways to demonstrate this, but we will stick to 

the famous Diagonal Argument.



The Diagonal Argument

We've seen how the set of even numbers, the set of prime numbers, and the 

set of rational numbers can all be placed into one-to-one correspondence with 

the set of natural numbers- they can be counted.

Now consider the set of real numbers.

Real numbers are the quantities that exist on a continuous number line. They 

include the rational numbers and the irrational numbers.

Let's take only a section of the set real numbers, say the reals between 0 and 1 

on a number line. Now, let's try to place those real numbers in an arbitrary list, 

like the following:

s1 = 0.19382048...

s2 = 0.95839238...

s3 = 0.34958393...

s4 = 0.29584394...

s5 = 0.58930285...



The Diagonal Argument

Now, let's find a real number on our list, st . St will be between 0 and 1, and have the 

following digital expansion:for the nth place in its digital expansion, it will have a digit 

equal to that in the nth place in number sn plus one, unless that digit is a 9. If it is 9, 

then we shall subtract one from the digit in the nth place in number sn.

s1 = 0.19382048...

s2 = 0.95839238...

s3 = 0.34958393...

s4 = 0.29584394...

s5 = 0.58930285...

St = 0.26891...

If we do this, we will find that st differs from every other number on the list we have 

created by at least one digit; namely, the nth digit in the expansion of every number 

sn. We have failed to create an exhaustive list of the real numbers from 0 to 1 and, 

correspondingly, the set of real numbers as a whole. The set of real numbers has a 

cardinality larger than that of the set of real numbers.



The Continuum Hypothesis

If we were to work out the actual set theory behind the diagonal argument, we will find 

that the cardinality of the set of real numbers (also known as the continuum) is actually 

two raised to the power of aleph-null. 

While we know that two raised to the power of aleph-null > aleph null, we do not know if 

the cardinality of the continuum is the next largest cardinality after aleph-null.

The hypothesis that this is the case, that two to the power of aleph-null = aleph-one, is 

known as the continuum hypothesis. 

While Cantor himself believed that the hypothesis was true (and provable), Kurt Gödel 

and Paul Cohen later demonstrated that the truth or falsity of CH was independent 

(undecidable) from the axioms of ZFC (Zermelo-Fraenkel with the axiom of choice).


