The Transfinites



We've spent much of our time in class talking about what mathematical
objects and

knowledge are: existent objects in the world, truths inherent in our minds,
relations between our abstracted ideas, or vacuous or even plainly false
statements which are just “good enough” that they work.

We haven't spent as much time on what the content of those mathematical
objects are. And perhaps rightly so- this isn't a math class.

However, in order to deal with some of the more complex epistemological
problems in mathematics, we may have to explore more deeply the
content of mathematics.

This brings us to infinity.



‘Atreipov = unlimited, indefinite, (infinite?)

. The belief that there is something apeiron stems from the idea that
only then genesis and decay will never stop, when that from which is
taken what is generated is apeiron.” - Physics Aristotle

Zeno's Achilles and the Hare, Dichotomy Paradoxes
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15. “For neither is there a least of what is small, but there is always a
less. For being is not non-being.” - Anaxagoras (trans. Arthur
Fairbanks, The First Philosophers of Greece)

16. “And since the portions of the great and the small are equal in
number, thus also all things would be in everything ... And there are
many things in all things, and of those that are separated there are
things equal in number in the greater and the lesser.” - Anaxagoras
(trans. Arthur Fairbanks, The First Philosophers of Greece)

But suddenly, Aristotle.



Aristotle

‘It is plain, too, that the infinite cannot be an actual thing and a
substance and principle. For any part of it that is taken will be infinite, if
It has parts: for 'to be infinite' and 'the infinite' are the same, ifitis a
substance and not predicated of a subject. Hence it will be either
Indivisible or divisible into infinites. But the same thing cannot be many
Infinites. (Yet just as part of air is air, so a part of the infinite would be
Infinite, If it Is supposed to be a substance and principle.) Therefore the
infinite must be without parts and indivisible.” - Physics, Aristotle ( trans.
R. P. Hardie and R. K. Gaye)

[Forms a new distinction, potential and actual, to which infinity can be
applied:



Aristotle

[Potential: In general, the possibility whereby an object can be made
actual
 The numbers may be actualized as we count them, but infinity, or
apeiron, is never actualized. We never reach infinity.
Actual: The fulfilment of a potential, the existence of object in question
brought into reality
And so, is infinity a potential which cannot be actualized? What
defines it as a potential, then?



Aristotle 'n Friends

' The potential/actual distinction remains the primary way in which to
think about infinity throughout the Middle Ages up until the departure
from Scholasticism and the development of infinitesimal calculus and,
In some ways, even after- Leibniz himself does not speak a great deal
on the properties of the infinitesimals he uses.

Locke, Hume, Berkeley (especially Berkeley), Kant, and nearly all other
contemporary mathematicians dismissed the use of the actual infinite
for a variety of reasons, and sought the development of limit calculus



Cantor

Georg Cantor (1845-1918)
Developed first form of set theory
Made the distinction between cardinal and ordinal numbers
Defined the infinite in terms of set theory
Demonstrated that not all infinite sets are equal in size; some are
larger than others



Sets

Naive set theory: Anything can be contained within a set:
{my hair, Greenland, Mars}
1%)
{1,2,3,4}
{1,2,3,4,...}
And so on



Sets

Naive set theory: Anything can be contained within a set:
{my hair, Greenland, Mars}
1%)
{1,2,3,4}
{1,2,3,4,...}
And so on



The Grand Hotel (Hilbert)

A paradox in the sense that the conclusion seems absurd, not in the
sense that it leads to an actual contradiction.
| have a hotel, it has an infinite number of rooms.
It is quite a popular hotel, and so all of the rooms have guests in
them.
Some poor schmuck comes in; he wants a room. Can | get him
one?
Sure! I'll send out a message for all guests in room n to move to
room n+1. The first room is then free- he can have it.

| can repeat this process for any finite number of guests who want
In.



The Grand Hotel (Hilbert)

Now, a coach arrives with an infinite number of guests, all of whom want
rooms.
| can't just do the same procedure; I'd be doing it forever!
Instead, I'll move the guest in room n to room 2n. Guest in room 1 moves
to 2, guest in room 2 moves to 4, and so on.
All of the odd-numbered rooms are now free. There are an infinite number
of odd rooms; everyone gets a room!
My hotel is getting more popular; an infinite number of coaches each carrying
an infinite number of guests arrive, wanting rooms.
\We can still do this- provided that we can label each passenger on each
bus.
[First, we can empty the odd-numbered rooms as we did previously, using
2n. Next, we take the passengers in the first coach and place them in the
room 3n for passengers n = 1,2,3,... (going in rooms 3, 9, 27, and so
on)Next, we take the passengers in the second coach and place them in
room 5n for passengers n = 1,2,3,... (going in rooms 5, 25, 125, and so
on). The pattern will be the following: for each coach | and passenger n,
they will go into pn , where p is the prime number in the | +1 spot in the
well-ordered set of prime numbers (essentially, the [I+1]-st prime number).



The Grand Hotel (Hilbert)

‘The important idea is this: In a finite hotel, saying “every room has
a guest in it” and “No more guests can check in is the same
Information. For an infinite hotel, this is not the case!

What this illustrates is the difference between ordinal numbers
and cardinal numbers when dealing with infinite sets.

Ordinal = first, second, third, fourth,... (rank, order)

Cardinal =1, 2, 3, 4,... (size, magnitude)

An easy example is the set of all odd numbers and the set of all
natural numbers. The set of odd numbers is a proper subset of the
set of natural numbers, but if we set them in one-to-one
correspondence, each odd number can be attached to a natural
number.



Transfinite Cardinals

We can use these two different forms of number to begin an examination of
infinite sets
What does it mean for a set to be infinite?
If a set can be placed into one-to-one correspondence with one of its
proper subsets (i.e., set A contains all of the members of set B, but there
are members of set A which are not contained in set B), it is an infinite set.
Sets such as the set of even numbers, the set of prime numbers, and
even the set of rational numbers can all be placed into one-to-one
correspondence with each other and the set of natural numbers; they
all have cardinality of aleph-null.
They are also called countably infinite, since we can place them in
an exaustive, ordered list (which is just another way of placing a
set in one-to-one correspondence with the set of natural numbers
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Transfinite Cardinals

We have seen how Cantor developed the foundations of set theory,
made a distinction between cardinal and ordinal numbers, and
defined infinity within set theory. However, we have not yet seen how
he demonstrated that some infinite sets are larger than others.

In short, Cantor was able to demonstrate that there are sets with a
cardinality larger than aleph-null.

There are a number of ways to demonstrate this, but we will stick to
the famous Diagonal Argument.



The Diagonal Argument

We've seen how the set of even numbers, the set of prime numbers, and the
set of rational numbers can all be placed into one-to-one correspondence with
the set of natural numbers- they can be counted.

Now consider the set of real numbers.
Real numbers are the quantities that exist on a continuous number line. They
include the rational numbers and the irrational numbers.

Let's take only a section of the set real numbers, say the reals between 0 and 1
on a number line. Now, let's try to place those real numbers in an arbitrary list,
like the following:

s1 =0.19382048...
s2 = 0.95839238...
s3 = 0.34958393...
s4 = 0.29584394...
s5 = 0.58930285...



The Diagonal Argument

Now, let's find a real number on our list, st. St will be between 0 and 1, and have the
following digital expansion:for the nth place in its digital expansion, it will have a digit
equal to that in the nth place in number sn plus one, unless that digitis a 9. If itis 9,
then we shall subtract one from the digit in the nth place in number sn.

s1 = 0.19382048...
s2 = 0.95839238...
s3 = 0.34958393...
s4 = 0.29584394...
s5 = 0.58930285...

St =0.26891...

If we do this, we will find that st differs from every other number on the list we have
created by at least one digit; namely, the nth digit in the expansion of every number
sn. We have failed to create an exhaustive list of the real numbers from O to 1 and,
correspondingly, the set of real numbers as a whole. The set of real numbers has a
cardinality larger than that of the set of real numbers.



The Continuum Hypothesis

If we were to work out the actual set theory behind the diagonal argument, we will find
that the cardinality of the set of real numbers (also known as the continuum) is actually
two raised to the power of aleph-null.

While we know that two raised to the power of aleph-null > aleph null, we do not know if
the cardinality of the continuum is the next largest cardinality after aleph-null.

The hypothesis that this is the case, that two to the power of aleph-null = aleph-one, is
known as the continuum hypothesis.

While Cantor himself believed that the hypothesis was true (and provable), Kurt Godel
and Paul Cohen later demonstrated that the truth or falsity of CH was independent
(undecidable) from the axioms of ZFC (Zermelo-Fraenkel with the axiom of choice).



