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A proof of a proposition is a mathematical construction which can
itself be treated mathematically. The intention of such a proof thus yields
a new proposition. If we symbolize the proposition ‘the propoSition p is
provable’ by ‘+p’, then ‘4’ is a logical function, viz., ““pfovability.”
The assertions ‘t-p’ and ‘+ + p’ have exactly the same meay ing. For, if p
is proved, the provability of p is also proved, and if + pAs proved, then
the intention of a proof of p has been fulfilled, i.e., p fas been proved.
Nevertheless, the propositions p and + p are not identjcal, as can best be
made clear by an example. In the computation of Edler’s constant C, it
can happen that a particular rational value, say A4 , is contained for an
unusually longitime within the interval within which we keep more nar-
rowly enclosing C so that we finally suspect that C=A; i.e., we expect
that, if we contipued the computation of C, wé would keep on finding 4
within this interyal. But such a suspicion is DY no means a proof that it
will always happén. The proposition + (C#£A), therefore, contains more
than the proposition (C=A4).

If we apply negation to both of theée propositions, then we get not
only two different \propositions, ‘=4 and ‘— +p’, but also the asser-
tions, ‘+=p’ and ¥ — +p’, are different. ‘+ = +p’ means that the
assumption of such & constructioff as + p requires is contradictory. The
simple expectation p,\however, peed not lead to a contradiction. Here is

how this works in our\exampl¢ just cited. Assume that we have proved
the contradictoriness of the agsumption that there is a construction which
proves that A lies within e¥ery interval that contains C (- +p). But
still the assumption that i the actual computation of C we will always in
fact find A within our inf&rval need not lead to a contradiction. It is even
conceivable that we mdght\prove that the latter assumption could never
be proved to be contyadictoyy, and hence that we could assert at the same
time both ‘- +4’ and = p’. In such an event, the problem
whether C=A4 wguld be esseftially unsolvable.

The distinctigh between p angd + p vanishes as soon as a construction is

intended in pAtself, for the posgibility of a construction can be proved
only by its gctual execution. If we limit ourselves to those propositions
which require a construction, the 1dgical function of provability generally
d‘oes not/arise. We can impose this\yestriction by treating only proposi-
tions of the form ‘p is provable’ or, ¥p put it another way, by regarding
every Antention as having the intentiog of a construction for its fulfill-
meny added to it. It is in this sense that Mqtuitionist logic, insofar as it has
begh developed up to now without using Mie function +, must be under-
spood. The introduction of provability woxld lead to serious complica-
ions. Yet its minimal practical value would herdly make it worthwhile to
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Critical studies of the foundations of mathematics during the past few
decades, in particular Brouwer’s system of ‘‘intuitionism,’”’ have re-
opened the question of the origins of the generally supposed absolute
validity of classical mathematics. Noteworthy is the fact that this ques-
tion, in and of itself philosophico-epistemological, is turning into a
logico-mathematical one. As a result of three important advances in the
field of mathematical logic (namely: Brouwer’s sharp formulation of the
defects of classical mathematics; Russell’s thorough and exact descrip-
tion of its methods - both the good and the bad; and Hilbert’s contribu-
tions to the mathematical-combinatorial investigation of these methods
and their relations), more and more it is unambiguous mathematical
questions, not matters of taste, that are being investigated in the founda-
tion of mathematics. As the other papers have dealt extensively both with
the domain-(delimited by Brouwer) of unconditionally valid (i.e., need-
ing no justification) ‘‘intuitionist”’ or *‘finitistic’’ definitions and methods
of proof and with Russell’s formal characterization (which has been fur-
ther developed by his school) of the nature of classical mathematics, we
need not dwell on these topics any longer. An understanding of them is,
of course, a necessary prerequisite for an understanding of the utility,
tendency, and modus procedendi of Hilbert’s theory of proof. We turn
instead directly to the theory of proof.

The leading idea of Hilbert’s theory of proof is that, even if the state-
ments of classical mathematics should turn out to be false as to content,
nevertheless, classical mathematics involves an internally closed proce-
dure which operates according to fixed rules known to all mathematicians

2The question dealt with in this paragraph was fully clarified only in a discussion with H.
Freudenthal after the conference. The results of this discussion are reproduced in the text.
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and which consists basically in constructing successively certain com-
binations of primitive symbols which are considered “‘correct’’ or
“proved.” This construction-procedure, moreover, is ‘‘finitary’’ and
directly-constructive. To see clearly the essential difference between the
occasionally non-constructive handling of the ‘‘content’’ of mathematics
(real numbers and the like) and the always constructive linking of the
steps in a proof, consider this example: Assume that there exists a classi-
cal proof of the existence of a real number x with a certain very compli-
cated and deep-seated property E(x). Then it may well happen that,
from this proof, we can in no way derive a procedure for constructing an
x such that E(x). (We shall give an example of such a proof in a
moment.) On the other hand, if the proof somehow violated the conven-
tions of mathematical inference, i.e., if it contained an error, we could,
of course, find this error by a finitary process of checking. In other
words, although the content of a classical mathematical sentence cannot
always (i.e., generally) be finitely verified, the formal way in which we
arrive at the sentence can be. Consequently, if we wish to prove the valid-
ity of classical mathematics, which is possible in principle only by
reducing it to the a priori valid finitistic system (i.e., Brouwer’s system),
then we should investigate, not statements, but methods of proof. We
must regard classical mathematics as a combinatorial game played with
the primitive symbols, and we must determine in a finitary combinatorial
way to which combinations of primitive symbols the construction
methods or “‘proofs’” lead.

As we promised, we now produce an example of a non-constructive
existence proof. Let f(x) be a function which is linear from 0 to 1/3,
from 1/3 to 2/3, from 2/3 to 1, and so on. Let

1 "= ¢ 2\ "IZ e

f(0)=-1; f(§>=— ,E, %; f<§>= ,E; 22,',’ ; and  f(1)=1
e, is defined as follows: if 2k is the sum of two prime numbers, then
e, =0; otherwise ¢, =1. Obviously f(x) is continuous and calculable with
arbitrary accuracy at any point x. Since f(0) <0and f(1) > 0, there exists
an x, where 0<x<1, such that f(x)=0. (In fact we readily see that
1/3<x<2/3.) However the task of finding a root with an accuracy
greater than +1/6 encounters formidable difficulties. Given the present
state of mathematics, these difficulties are insuperable, for if we could
find such a root, then we could predict with certitude the existence of a
root <2/3 or >1/3, according as its approximate value were <1/2 or
21/2, respectively. The former case (where the approximate value of the
root is <1/2) excludes both that f(1/3) <0 and that f(2/3)=0; the latter
case (where the approximate value of the root 21/2) excludes
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both that f(1/3)=0 and that f(2/3)>0. In other words, in the former
case the value of ¢, must be 0 for all even # but not for all odd #; in the
latter case the value of €, must be 0 for all odd » but not for all even n.
Hence we would have proved that Goldbach’s famous conjecture (that
2n is always the sum of two prime numbers), instead of holding univer-
sally, must already fail to hold for odd n in the former case and for even
nin the latter. But no mathematician today can supply a proof for either
case, since no one can find the solution of f(x)=0 more accurately than
with an error of 1/6. (With an error of 1/6, 1/2 would be an approximate
value of the root, for the root lies between 1/3 and 2/3, i.e., between
1/2—1/6and 1/2+1/6.)

11

Accordingly, the tasks which Hilbert’s theory of proof must accomplish
are these:

1. To enumerate all the symbols used in mathematics and logic.
These symbols, called ‘“primitive symbols,’” include the symbols
‘~’ and ‘ —’ (which stand for ‘‘negation’’ and ‘‘implication’’
respectively).

2. To characterize unambiguously all the combinations of these sym-
bols which represent statements classified as ‘‘meaningful” in
classical mathematics. These combinations are called ‘‘formulas.”
(Note that we said only ‘“‘meaningful,’’ not necessarily ‘‘true.”
‘1 4+1=2’ is meaningful but so is ‘1 +1=1’, independently of the
fact that one is true and the other false. On the other hand, combi-
nations like ‘1+ — =1’ and ‘++1= —’ are meaningless.)

3. To supply a construction procedure which enables us to construct
successively all the formulas which correspond to the “‘provable’”
statements of classical mathematics. This procedure, accordingly,
is called ‘‘proving.”

4. To show (in a finitary combinatorial way) that those formulas
which correspond to statements of classical mathematics which
can be checked by finitary arithmetical methods can be proved
(i.e., constructed) by the process described in (3) if and only if the
check of the corresponding statement shows it to be true.

To accomplish tasks 1-4 would be to establish the validity of classical
mathematics as a short-cut method for validating arithmetical statements
whose elementary validation would be much too tedious. But since this is
in fact the way we use mathematics, we would at the same time suffi-
ciently establish the empirical validity of classical mathematics.
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‘We should remark that Russell and his school have almost completely
accomplished tasks 1-3. In fact, the formalization of logic and mathe-
matics suggested by tasks 1-3 can be carried out in many different ways.
The real problem, then, is (4).

In connection with (4) we should note the following: If the ‘‘effective
check’’ of a numerical formula shows it to be false, then from that for-
mula we can derive a relation p=g where p and g are two different,
effectively given numbers. Hence (according to task 3) this would give us
a formal proof of p=g from which we could obviously get a proof of
1=2. Therefore, the sole thing we must show to establish (4) is the for-
mal unprovability of 1 =2; 1.e., we need to investigate only this one par-
ticular false numerical relation. The unprovability of the formula 1=2
by the methods described in (3) is called ‘‘consistency.”” The real prob-
lem, then, is that of finding a finitary combinatorial proof of consistency.

111

To be able to indicate the direction which a proof of consistency takes,
we must consider formal proof procedure - as in (3) - a little more
closely. It is defined as follows:

3,. Certain formulas, characterized in an unambiguous and finitary
way, are called ‘‘axioms.’’ Every axiom is considered proved.

3,. If aand b are two meaningful formulas, and if 2 and 2 — b have
both been proved, then & also has been proved. ‘

Note that, although (3,) and (3,) do indeed enable us to write down
successively all provable formulas, still this process can never be finished.
Further, (3;) and (3,) contain no procedure for deciding whether a given
formula e is provable. As we cannot tell in advance which formulas must
be proved successively in order ultimately to prove e, some of them might
turn out to be far more complicated and structurally quite different from
e itself. (Anyone who is acquainted, for example, with analytic number
theory knows just how likely this possibility is, especially in the most
interesting parts of mathematics.) But the problem of deciding the prova-
bility of an arbitrarily given formula by means of a (naturally finitary)
general procedure, i.e., the so-called decision problem for mathematics,
is much more difficult and complex than the problem discussed here.

As it would take us too far afield to give the axioms which are used in
classical mathematics, the following remarks must suffice to characterize
them. Although infinitely many formulas are regarded as axioms (for
example, by our definition each of the formulas 1=1, 2=2, 3=3,... is
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an axiom), they are nevertheless constructed from finitely many sche-
mata by substitution in this manner: ‘If a, &, and ¢ are formulas, then
(a = b) = ((b—¢) — (a —>c)) is an axiom’, and the like.

Now if we could succeed in producing a class R of formulas such that

(o) Every axiom belongs to R,
(8) If a and a — b belong to R, then b also belongs to R,
(y) ‘1=2 does not belong to R,

then we would have proved consistency, for according to (e and (8)
every proved formula obviously must belong to R, and according to (v),
1=2 must therefore be unprovable. The actual production of such a class
at this time is unthinkable, however, for it poses difficulties comparable
to those raised by the decision problem. But the following remark leads
from this problem to a much simpler one: If our system were inconsis-
tent, then there would exist a proof of 1=2in which only a finite number
of axioms are used. Let the set of these axioms be called M. Then the
axiom system M is already inconsistent. Hence the axiom system of clas-
sical mathematics is certainly consistent if every finite subsystem thereof
is consistent. And this is surely the case if, for every finite set of axioms
M, we can give a class of formulas R 5, which has the following properties:

(«) Every axiom of M belongs to Ry,
(8) If aand a — b belong to Ry, then b also belongs to Ry,.
(y) 1=2does not belong to R .

This problem is not connected with the (much too difficult) decision
problem, for R, depends only on M and plainly says nothing about
provability (with the help of all the axioms). It goes without saying that
we must have an effective, finitary procedure for constructing Ry, (for
every effectively given finite set of axioms M) and that the proofs of («),
(8), and (y) must also be finitary.

Although the consistency of classical mathematics has not yet been
proved, such a proof has been found for a somewhat narrower mathe-
matical system. This system is closely related to a system which Weyl pro-
posed before the conception of the intuitionist system. It is substantially
more extensive than the intuitionist system but narrower than classical
mathematics (for bibliographical material, see Weyl 1927).

Thus Hilbert’s system has passed the first test of strength: the validity
of a non-finitary, not purely constructive mathematical system has been
established through finitary constructive means. Whether someone will
succeed in extending this validation to the more difficult and more
important system of classical mathematics, only the future will tell.
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