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THEJOURNAL OF PHILOSOPHY 
VOLUME LXXVI, SO.  2 ,  FEBRUARY 1979 

T H E  FOUR-COLOR PROBLEM AND ITS 

PHILOSOPHICAL SIGNIFICANCE * 


THE old four-color problem was a problem of mathematics 
for over a century. Mathematicians appear to have solved 
i t  to their satisfaction, but their solution raises a problem 

for philosophy which we might call the new four-color problem. 
The  old four-color problem was whether every map on the plane 

or sphere can be colored with no more than four colors in such a 
way that neighboring regions are never colored alike. This prob- 
lem is so simple to state that even a child can understand it. Never- 
theless, the four-color problem resisted attempts by mathematicians 
for more than one hundred years. From very early on it was proved 
that five colors suffice to color a map, but no map was ever found 
that required more than four colors. I n  fact some mathematicians 
thought that four colors were not sufficient and were working on 
methods to produce a counterexample when Kenneth Appel and 
Wolfgang Haken, assisted by John Koch, published a proof that four 
colors suffice.? Their proof has been accepted by most mathemati- 
cians, and the old four-color problem has given way in mathemat- 
ics to the new four-color theorem (4CT). 

The  purpose of these remarks is to raise the question of whether 
the 4CT is really a theorem. This investigation should be purely 
philosophical, since the mathematical question can be regarded as 
definitively solved. I t  is not my aim to interfere with the rights of 

* I  would like to thank Michael Albertson, Joan Hutchinson, and IVilliam 
Marsh for reading a draft of this paper and for some helpful discussions on a 
number of points. 
t "Every Planar Map Is Four Colorable," Illinois Journal of Mathematics, 

XXI, 84 (September 1977): 429-567. Part I, on Discharging, is by Appel and 
Haken; part 11, on Reducibility, was done in conjunction with Koch. Paren-
thetical page references to Appel, Haken, and Koch, will be to this article. 

0022-362X/79/7602/0057$02.60 0 1979 The Journal of Philosophy, Inc. 
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mathematicians to determine what is and what is not a theorem 
I will suggest, however, that, if we accept the 4CT as a theorem, 
we are committed to changing the sense of 'theorem', or, more to 
the point, to changing the sense of the underlying concept of 
"proof." So, by raising the question of whether the 4CT has really 
been proved, I will be trying to elucidate the concept of proof and 
not attempting an evaluation of the mathematical work of Appel 
and Haken. 

What reason is there for saying that the 4CT is not really a 
theorem or that mathematicians have not really produced a proof 
of it? Just this: no mathematician has seen a proof of the 4CT, 
nor has any seen a proof that it has a proof. Moreover, it is very 
unlikely that any mathematician will ever see a proof of the 4CT. 

What reason is there, then, to accept the 4CT as proved? hlath- 
ematicians know that it has a proof according to the most rigorous 
standards of formal proof-a computer told them1 Modern high- 
speed computers were used to verify some crucial steps in an other- 
wise mathematically acceptable argument for the 4CT, and other 
computers were used to verify the work of the first. 

Thus, the answer to whether the 4CT has been proved turns on 
an account of the role of computers in mathematics. Even the most 
natural account leads to serious philosophical problems. According 
to that account, such use of computers in mathematics, as in the 
4CT, introduces empirical experiments into mathematics. Whether 
or not we choose to regard the 4CT as proved, we must admit that 
the current proof is no traditional proof, no a priori deduction of 
a statement from premises. I t  is a traditional proof with a lacuna, 
or gap, which is filled by the results of a well-thought-out experi- 
ment. This makes the 4CT the first mathematical proposition to be 
known a posteriori and raises again for philosophy the problem of 
distinguishing mathematics from the natural sciences. 

The plan of the argument is as follows. The paper begins with a 
preliminary analysis of the concept of 'proof' in order to extract 
certain features that will be useful to us later. Then the work of 
Appel, Haken, and Koch is described. The most natural interpre- 
tation of this work, I will argue, is that computer-assisted proofs 
introduce experimental methods into pure mathematics. This fact 
has serious implications not only for the philosophy of mathemat- 
ics, but for philosophy in general, and we will examine some of 
these implications. 
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I 

What is a proof? I n  this section three major characteristics of 
proofs will be considered: 

(a) Proofs are convincing. 
(b) Proofs are surveyable. 
(c) Proofs are formalizable. 

(a) Proofs are convincing. This fact is key to understanding mathe- 
matics as a human activity. I t  is because proofs are convincing to an 
arbitrary mathematician that they can play their role as arbiter of 
judgment in the mathematical community. On a very stark and 
skeptical position, such as is sometimes suggested in Wittgenstein's 
Remarks on the Foundations of Mathematics, this is all that there 
is to proofs: they are convincing to mathematicians. This is to be 
taken as a brute fact, something for which no explanation can be 
given and none is necessary. Most philosophers are unhappy with 
this position and instead feel that there must be some deeper char- 
acterization of mathematical proofs which explains, at least to some 
extent, why they are convincing. That  proofs are surveyable and 
that they are formalizable are two such characterizations. 

(b) Proofs are surveyable. Proofs are the guarantees of mathemat- 
ical knowledge and so they must be comprehended by mathemati- 
cians. A proof is a construction that can be looked over, reviewed, 
verified by a rational agent. We often say that a proof must be 
perspicuous, or capable of being checked by hand. I t  is an exhibi- 
tion, a derivation of the conclusion, and it needs nothing outside 
of itself to be convincing. T h e  mathematician surveys the proof in 
its entirety and thereby comes to know the conclusion. Here is an 
example of a proof, attributed to the young Gauss, which helps to 
convey the idea of surveyability. It  is a proof that the sum of the 
first one hundred positive numbers is 5050. Write down those 
numbers in two rows of fifty columns as shown: 

1 2 3 4 ... 49 50 
100 99 98 97 52 51 

Observe that the sum of the two numbers in each column is 101 
and that there are 50 columns. Conclude that the sum of the first 
one hundred positive numbers is 5050. 

We now know that 1 + 2 + ... + 99 + 100 = 5050. We have sur- 
veyed the proof in its entirety and become convinced. If someone 
actually attempted to add the numbers by hand and arrived at the 
sum 5048, we would say that he added wrong. The  construction 
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that we surveyed leaves no room for doubt. So it is with all math- 
ematical proofs; to say that they can be surveyed is to say that they 
can be definitively checked by members of the mathematical com-
munity. Of course, some surveyable proofs are very long. They 
might take months for even a trained mathematician to review and 
work out-an example is Walter Feit and John G. Thompson's 
famous proof that all groups of odd order are so1vable.l 

Genius in mathematics lies in the discovery of new proofs, not 
in the verification of old ones. In  a sense, the concept of survey- 
ability provides for the democratization of mathematics by making 
proofs accessible to any competent mathematician. A teacher of 
mine, a very good mathematician but no genius, once remarked 
that there were only a few proofs that he couldn't understand, but 
that there were none that he could not follow. 

Surveyability is an important subjective feature of mathematical 
proofs which relates the proofs to the mathematicians, the subjects 
of mathematical investigations. I t  is in the context of surveyability 
that the idea of 'lemma' fits. Mathematicians organize a proof into 
lemmas to make it more perspicuous. The  proof relates the math- 
ematical known to the mathematical knower, and the surveyability 
of the proof enables it to be comprehended by the pure power of 
the intellect-surveyed by the mind's eye, as it were. Because of 
surveyability, mathematical theorems are credited by some philos- 
ophers with a kind of certainty unobtainable in the other sciences. 
Mathematical theorems are known a priori. 

(c) Proofs are formalizable. A proof, as defined in logic, is a finite 
sequence of formulas of a formal theory satisfying certain condi- 
tions. I t  is a deduction of the conclusion from the axioms of the 
theory by means of the axioms and rules of logic. Most mathemati- 
cians and philosophers believe that any acceptable proof can be 
formalized. We can always find an appropriate formal language 
and theory in which the informal proof can be embedded and 
"filled out" into a rigorous formal proof. 

Formal proofs carry with them a certain objectivity. That  a 
proof is formalizable, that the formal proofs have the structural 
properties that they do, explains in part why proofs are convincing 
to mathematicians. 

1 "Solvability of Groups of Odd Order," Pacific Journal of Mathematics, XIII 

(1963): 775-1029. I t  is important to realize that, despite its exceptional length, 
this proof was surveyed from start to finish by mathematicians including Feit, 
Thompson, and perhaps several dozen leading group theorists. 
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We've noted three features of proofs: that they are convincing, 
surveyable, and formalizable. The  first is a feature centered in the 
anthropology of mathematics, the second in the epistemology of 
mathematics, and the third in the logic of mathematics. The  latter 
two are the deep features. I t  is because proofs are surveyable and 
formalizable that they are convincing to rational agents. 

Surveyability and formalizability can be seen as two sides of the 
same coin. Formalizability idealizes surveyability, analyzes it into 
finite reiterations of surveyable patterns. Certainly when the two 
criteria work together, mathematicians do not hesitate to accept or 
reject a purported proof. Nevertheless the two ideas spring from 
such different sources that we can wonder whether they will always 
work together. Can there be surveyable proofs that are not formal- 
izable or formal proofs that cannot be surveyed? 

Are all surveyable proofs formalizable? Most mathematicians and 
philosophers would assent, but not all. Some intuitionists deny that 
the actual proof constructions of mathematics can be completely 
captured by formal sy~tems.~  Intuitionism aside, however, it is well 
known that no single theory is sufficient to formalize every proof. 
Given any sufficiently rich theory, we can find a surveyable proof 
of a statement of that theory which has no formal proof. Such a 
statement can be a Godel statement which, when properly inter- 
preted, says that it has no formal proof. Of course the surveyable 
proof can be formalized in a new and more powerful formal the- 
ory; but that theory, in turn, will yield new surveyable proofs that 
it cannot formalize. 

At best, formalizability is a local characteristic of proofs, not a 
global one. There is not one system in which any proof can be 
formalized; but rather, given any proof, there is some appropriate 
formal system in which it can be formalized. The  point that for- 
malizability is a local and not a global phenomenon is made by 
RenC Thom where he notes the general significance of this distinc- 
tion for the philosophy of mat he ma tic^.^ However since our con- 
cern will not be with surveyable proofs than cannot be formalized, 
let us turn to the second question. 

Are all formalizable proofs surveyable? Consider first the simpler 
question: Are all formal proofs surveyable? Here the answer is an 

2 See, for example, Arend Heyting, Intuitionism (-kmsterdarn: North-Holland, 
1966), ch. 1. 

3 "hlodeln Mathematics: An Educational and Philosophical Error?" American 
Scientist, LIX, 6 (November/December 1971): 698-699. 
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easy no. We know that there must exist formal proofs that cannot 
be surveyed by mathematicians if only because the proofs are too 
long or involve formulas that are too long. Here "too long" can 
be taken to mean "can't be read over by a mathematician in a 
human lifetime." So it is logically possible that mathematicians 
could come across a statement with no surveyable proof but with 
a formalized proof. 

However, if we stop to think about this situation, it appears un- 
likely that this logical possibility can ever be realized. How is a 
mathematician to know that a statement has a formal proof? On 
the one hand, the mathematician might actually survey or look 
over the formal proof and check it for correctness. On the other 
hand, the mathematician can derive the existence of the required 
formal proof, in effect, by presenting a surveyable proof that the 
formal proof exists. This sort of thing is standard practice in proof 
theory, where we find, for example, general surveyable arguments 
that any proof in, say, elementary arithmetic can be formalized in 
Zermelo-Fraenkel set theory. Hence it begins to appear that, in 
practice, at least, mathematicians come to know formal proofs only 
through the mediation of surveyable proofs. Either the formal 
proofs are simple enough to be surveyed themselves and verified 
to be proofs, or their existence is established by means of informal 
surveyable arguments. 

I t  is not really surprising that we should come to know the 
existence of specific formal proofs only through some more primi- 
tive concept of proof, surveyable proof. After all, in the last anal- 
ysis, formal proofs are abstract mathematical objects. They can be 
represented by sets of natural numbers, Godel numbers, without 
any loss of information. T o  state that there is a formal proof of a 
formula is very much like stating that there is a number with a 
certain property; and how are we to come to know the latter state- 
ment except by a proof? 

I n  summary, although formal proofs outrun surveyable prools, 
it is not at all obvious that mathematicians could come across 
formal proofs and recognize them as such without being able to 
survey them. 

Nevertheless, it is the contention of this paper that the current 
proof of the 4CT does drive a wedge between the criteria of survey- 
ability and formalizability. In  fact, there is no surveyable proof, 
no proof in the traditional sense, of the 4CT, nor is there likely to 
be one. Still Appel, Haken, and Koch's work provides mathemat- 
ically convincing grounds for the 4CT, What can be surveyed, what 
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is presented in their published work, is like a mathematical proof 
where a key lemma is justified by an appeal to the results of certain 
computer runs or, as we might say "by computer." This appeal to 
computer, whether we count it as strictly a part of a proof or  as 
a part of some explicitly non-proof-theoretic component of math- 
ematical knowledge, is ultimately a report on a successful experi- 
ment. I t  helps establish the 4CT (actually, the existence of a formal 
proof of the 4CT) on grounds that are in part empirical. 

The  idea that a particular proposition of pure mathematics can 
be established, indeed must be established, by appealing to empir- 
ical evidence is quite surprising. It  entails that many commonly 
held beliefs about mathematics must be abandoned or modified. 
Consider: 

1. All mathematical theorems are known a priori. 
2. Mathematics, as opposed to natural science, has no empirical 

content. 
3. Mathematics, as opposed to natural science, relies only on 

proofs, whereas natural science makes use of experiments. 
4. Mathematical theorems are certain to a degree that no theorem 

of natural science can match. 

I n  order to assess such claims, let us quickly review the proof of 
the 4CT. 

I1 

Sooner or later any discussion of the 4CT must begin talking of 
graphs in place of maps, so we might as well begin at once.5 We 
can think of a planar graph as a finite collection of points in the 

4 T o  be sure, not all philosophers hold these beliefs, but they are common 
enough to warrant criticism. Some philosophers have argued against them, 
notably Imre Lakatos in Proofs and Refutations (New York: Cambridge, 1976) 
and Hilary Putnam in Mathematics, Matter and Method (New York: Cambridge, 
1975). Putnam, in particular, explicitly rejects the traditional view of mathemat- 
ics as an absolutely a priori discipline set apart from natural science. He sug- 
gests replacing it with the view of mathematics as quasi-empirical. The  present 
paper provides additional support for the thesis that mathematics is quasi- 
empirical. 

5 For a simple account of the proof, see Appel and Haken, "The Solution of 
the Four Color Map Problem," Scientific American, CXXX~II,8 (October 1977): 
108-121. (Parenthetical page references to Appel and Haken are to this article; 
similarly for the authors cited below.) More detailed summaries can be found 
in Haken, "An Attempt to Understand the Four Color Problem" and F. Bern- 
hart, "A Digest of the Four Color Theorem," both published in the Journal of 
Graph Theory,  I (1977): 193-206 and 207-225, respectively. P. Kainen and 
T. Saaty provide an account of the theorem along with the required basis in 
graph theory in T h e  Four Color Problem: Assaults and Conquest (New York: 
McGraw Hill, 1977). T h e  definit i~e statement of the proof appears in Appel, 
Haken, and Koch, op. cit. 
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plane, called vertices, which are joined to each other by lines, 
called edges, such that no edges meet except at vertices. The  num- 
ber of edges meeting at any vertex is called the degree of the vertex, 
and vertices joined by an edge are said to be neighboring, or adja- 
cent. A graph is 4-colorable if every vertex can be colored by one 
of four colors in such a way that neighboring vertices never receive 
the same color. 

If every planar graph can be 4-colored, then every planar map 
can be. This is because every map determines a graph, its dual  
graph, as follows: place one vertex (capital city) in each region 
(country) of the map and join the capitals of neighboring regions 
by an edge (road) that crosses their common border. Obviously, the 
resulting graph is 4-colorable if and only if the original map is. 

Next we restrict our attention to graphs in a standard form. GVe 
can delete any parallel edges, edges joining two vertices already 
joined by another edge, without affecting 4-colorability. Graphs 
without parallel edges or loops are called simple graphs. Moreover, 
we can add edges by a process of triangulation. Given any region 
or polygon of the graph that is bounded by four or more edges, 
there will be at least two non-adjacent vertices on the boundary. 
We can join such vertices by a new edge across the region which 
does not intersect any other edge (except at the vertices). Con- 
tinuing in this way, we can completely triangulate a graph until 
all regions have three sides. Since triangulation can only make 
4-coloring more difficult because it restricts the possible colorings 
of a graph, it suffices to prove the 4CT for triangulated graphs. 

Now any planar triangulation has only finitely many vertices; 
so the way to prove that all such graphs can be 4-colored is by 
induction on the number v of vertices. I n  case v 4, the triangu- 
lation can be 4-colored. So we assume as induction hypothesis that 
any planar triangulation G' with n or fewer vertices is 4-colorable. 
We wish to show that, if G is a planar triangulation with n + l 
vertices, then G can be 4-colored. 

There is a well-known formula relating the number o l  vertices 
a triangulation can have to the degrees of the individual vertices. 
If vi is the number of vertices of degree i and if m is the maximum 
degree of any vertex in the triangulation, then Euler's formula 
states that 

~ v , + v ~ + v ~ + O ~ ~ ~ ~ - V ~ - ~ V ~ - ~ V ~ - 12. . --(m-6)v,= 
At least one of v,, v,, v, must be nonzero; so any triangulated 
graph has a vertex with five or fewer edges. Incidentally, this fact 
suffices to prove, by induction, that any graph can be 6-colored. 
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Look at the triangulation G and delete a vertex of degree 5 along 
with its edges. The  resulting graph has one less vertex and, when 
triangulated, it can be 6-colored, by the induction hypothesis. How- 
ever, the missing vertex has at most five neighbors, so one color 
will be left to color it. 

T o  prove that any graph G can be 4-colored, we consider the 
following cases. 

Case 1. G contains a vertex of degree 3;  i.e., u, # 0. 
Then, if we delete the vertex along with its adjacent edges, we 

get a graph with n vertices which can be 4-colored by assumption. 
Since the missing vertex has only three neighbors, it can be colored 
by the remaining color. 

Case 2.71, = 0 but v4# 0; the graph G contains a vertex of degree 4. 
Again, delete the vertex of minimal degree, call it uo, and its ad- 

joining edges, to obtain a smaller graph which is 4-colorable. 

Subcase 2a. If the four neighbors of the missing vertex are colored 
by only three colors, then uo can be colored the remaining color. 

Subcase 2b. The  four neighbors of u, are each colored differently. 
This coloring cannot be extended to G directly, but must first be 
modified. Call the neighbors of v, v,', u,', u,', u,', and suppose that 
they are respectively colored a, b,  c, d.  Look at the smaller graph 
G' ( G  - u,), and consider the subgraph of G' determined by all 
vertices colored a or c along with any edges connecting two such 
vertices. One of two alternatives must arise. Either there is an  a-c 
chain of points and edges connecting u,' to u,', or there is not. 

Subcase 2bi. If there is no such path between u, and u,, we say that 
u, and u3 belong to separate a-c components of G'.  I n  this case 
reverse the colors in the a-c component containing u,'. All vertices 
in this component formerly colored a are now colored c, and vice- 
versa. The  resulting coloring is still a 4-coloring of G' since no 
neighboring vertices are colored the same, but the vertex u,' is now 
colored a. The color c is not used to color any neighbor of u,; so c 
can be used to color u,. 

Subcase Zbii. If there is such an a-c path connecting u,' and us', 
then these vertices belong to the same a-c component of G', and 
reversing the colors won't help. However, in this case there cannot 
be a b-d path connecting u,' and vql, for any such path is blocked 
by the a-c path connecting u,' and u,'. Thus v,' and u,' belong to 
separate b-d components of G', and by reversing the colors in the 
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b-d component containing v,', we obtain a 4-coloring of G' in 
which v,' and v,' are both colored b, leaving d to color 73,. 

I n  either case the 4-coloring of G' can be modified and extended 
to a 4-coloring of G. The  argument used in subcase 2b is called a 
Kempe chain argument. Incidentally, this type of argument can 
be applied to a vertex of degree 5 to show that any graph can be 
5-colored. 

If G has a vertex of degree 3 or 4, then G is 4-colorable; so we may 
assume that v3 = 0 = v,, and thus we come to case 3. 

Case 3. v, # 0, the minimum degree of any vertex in G is 5. In this 
case the simple proof breaks down; Kempe chain arguments do not 
suffice if we delete a single vertex of degree 5. Instead of deleting 
a single vertex, we must try to delete configurations, or systems of 
interconnected vertices. If we remove a configuration from a tri-
angulation we are left with a graph with a "hole" in  it. The  ver- 
tices of the remaining graph which are adjacent to the hole form 
a circuit, or ring around the configuration. The  size of the ring is 
determined by the number of vertices in it. A configuration can be 
more precisely defined as a subgraph with specifications of the 
number of vertices, vertex degrees, and the manner in which it is 
embedded in the original triangulation. 

A configuration is reducible if the 4-coloring of any planar graph 
containing it is deducible from the 4-colorability of any graph with 
fewer vertices. Reducible configurations transmit 4-colorability up- 
wards. Conversely, if G is a graph that requires five colors and if G 
contains the reducible configuration C, then the subgraph (G-C) 
requires five colors. By 1913, George Birkhoff had investigated the 
general methods of showing that a configuration was reduci%.6 
I n  outline what must be proved is that every 4-coloring of the ring 
around a given configuration can either be extended to a 4-coloring 
of the configuration, or modified first by one or more Kempe inter- 
changes and then extended, or modified by suitable identification 
of distinct vertices and then extended. A natural plan for attacking 
the four-color problem suggests itself. We can try to find a set of 
reducible configurations which is sufficiently large so that every 
triangulation contains a configuration from that set. Such an un-
avoidable set of configurations would enable us to complete the 
induction step in case 3. This plan runs into two related problems: 
the potential size of the unavoidable set and the potential size of 

6 "The Reducibility of Maps," Atnerican Journal of Xfathematics, xxsv (1913): 
114-128. 
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the reducible configurations in it. As Haken observes, the amount 
of work required to prove that a configuration is reducible in- 
creases considerably with the ring size. For a ring of size 14, the 
number of possible colorations is 314 + 3 (about 2 x lo5). In  prin- 
ciple, each one of these colorations must be examined in showing 
that the configuration is reducible. On the other hand Edward F. 
Moore found a triangulation that does not contain any known 
reducible configuration of ring size less than 12. Thus, in order to 
find enough reducible configurations to fill out an unavoidable set, 
we will have to include some with large ring size. 

I n  order then to establish case 3, we must find a finite list of 
reducible configurations such that every graph contains at least one 
configuration from the list. Building on some work of Heinrich 
Heesch, Appel and Haken developed a theory of discharging pro- 
cedures any of which produces an  unavoidable set of configura-
tions, i.e., a set that no triangulation (v, = v4 = 0) can avoid. 
Heesch had noticed that certain kinds of configurations were re- 
duction obstacles in that they could not be reduced by known 
methods. I n  a preliminary study, Appel and Haken developed a 
discharging procedure that produced an unavoidable set of con-
figurations which excluded two of the three major reduction ob- 
stacles of Heesch. This set the stage for the final assault on the 
four-color conjecture. 

Appel and Haken began with a discharging algorithm and tested 
for reducibility the configurations in the resulting unavoidable set. 
Whenever a configuration in the list could not be shown reducible, 
the discharging algorithm was modified to produce a new unavoid- 
able set that excluded the recalcitrant configuration although gen- 
erally it included new configurations. The  configurations of the 
new set were checked for reducibility, and so on. Although the 
discharging procedure and the reducibility checks on individual 
configurations went hand in hand, and computer work was in prac- 
tice necessary to develop both, when they had finished, the work of 
Appel, Haken, and Koch fell nicely into two parts. 

The  authors could specify a discharging procedure and prove in 
a mathematically rigorous fashion that this procedure produced an 
unavoidable set U of 1834 configurations (in fact, only 1482 of 
these configurations are really necessary). Although computer work 
was used to develop the procedure and the resulting set U ,  once 
the set was produced it could be surveyed and is listed in figures 1 
to 63 of Appel, Haken, and Koch. Moreover, one can give a survey- 



68 THE JOURNAL OF PHILOSOPHY 

able proof that this set U is unavoidable (see the Discharging 
Theorem and corollary in Appel, Haken, and Koch, 460). 

However, to complete the proof of case 3, we need the lemma: 
Every configuration in U is reducible (actually, we need something 
a little stronger, but this version will suffice for our purposes. See 
Appel, Haken, and Koch on immersion reducibility). The  proof of 
this lemma cannot be surveyed in detail. That  these configurations 
are reducible is established by programming a computer to test for 
reducibility and running the program on the configurations in U.  
Since most of the configurations have large ring size (13 or 14), the 
use of computers to check reducibility is "unavoidable." Appel and 
Haken define a measure of complexity according to which the com- 
plexity of a proof of the D-reducibility of a 13-ring configuration 
will exceed 106 although other reductions (C-reducibility) of the 
same configuration might be of much less complexity (p. 487). I n  any 
case, no computer has printed out the complete proof of the re- 
ducibility lemma, nor would such a printout be of much use to 
human mathematicians. Over 1200 hours of computer time were 
required for the proof. Because of the complexity and time re-
quired, any proof of the reducibility lemma along its present lines 
must include an appeal to computer analysis. Thus it must pre- 
suppose the legitimacy of that appeal. 

I n  its over-all outlines, the logic of the four-color proof is easy to 
see. It  is a proof by induction which requires several cases. The  first 
case is trivial, the second has several subcases, and the third has 
over a thousand subcases most of which cannot be handled except 
by high-speed computers. I would like to remove any impression 
that Appel and Haken's work is simply a "brute force" argument. 
T o  a certain extent, the appeal to computers might be regarded as 
"brute force," but it makes sense only when set in the context of a 
novel and sophisticated theory developed by the authors. However, 
establishing a theorem by introducing a novel and sophisticated 
theory is not in itself a novel mathematical procedure. The  appeal 
to computers in order to ground key lemmas is. 

T o  be sure, the use of computers in mathematics, even very 
sophisticated use, is not unfamiliar. We can cite programs for solv- 
ing differential equations or the program of Hao Wang to prove 
theorems of propositional 10gic.~ What makes the use of computers 

7 "Toward Mechanical R,fathematics" in K. Sayre and F. Cooson, eds., T h e  
Modeling of the Mind (Notre Dame, Ind.: University Press, 1963), pp. 91-120. 
J. Weizenbaum, Cornputer Pou~er and Human  Reason (San Francisco: W .  H. 
Freeman, 1976), pp. 230/1. 
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in the 4CT so dramatic is that it leads to a genuine extension of 
our knowledge of pure mathematics. It  is not merely calculation, 
but yields a proof of a substantial new result. 

Let us conclude this section with some general remarks on the com- 
plexity of the mathematical argument. Is the above proof of the 
4CT, including computer work, the simplest or shortest proof of 
the 4CT? Might a surveyable proof be found some day? 

Obviously some simplification is possible. Between the write-up 
of the proof and its publication it was found that 429 configura- 
tions could be eliminated from the set U . Further reduction could 
no doubt be achieved by modifying the discharging procedure. 
Nevertheless, it seems that any significant simplification of one part 
of the proof is likely to be matched with an increase in the com- 
plexity of another part of the proof. The  current consensus among 
mathematicians is that the present proof is reasonably close to the 
simplest proof.8 If this is so, then the appeal to computers would 
be essential to any mathematical justification of the 4CT. 

Of course, no one can completely rule out the possibility that 
some mathematician will one day come up with a ten-page proof 
of the 4CT along lines currently unimaginable. (Although even 
here there are some grounds for skepticism; see Kainen and Saaty, 
96.) Still, from a philosophical point of view such a discovery 
would have to be regarded as mere luck. The  philosophical point 
at issue, obviously, is not simply the status of the 4CT, but the 
status of computer-assisted proofs in general. The  work of Appel, 
Haken, Koch, and IBM 370-168 guarantees that the possibility of 
computer-assisted proofs is a real possibility. 

111 

The materials for our problem have been assembled. We have dis- 
cussed some general features of proofs and some details of the proof 
of the 4CT. We can now ask whether the 4CT is really a theorem. 
Let us consider it with regard to the three characteristics of proofs. 

(a) Is the proof of the 4CT convincing? Yes, most mathematicians 
have accepted the 4CT, and none, to my knowledge, has argued 
against it. Still, it should be noted that Appel and Haken them- 
selves have recognized that there could be some resistance to their 
work, particularly from those mathematicians "educated before the 
development of high-speed computers" (Appel and Haken, 121). 

8 Appel, Haken, and Koch, part I, sec. 5; Bernhart, p. 224. 
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In  any case, that an argument is convincing is not sufficient reason 
to accept it as a proof. 

(b) Has the 4CT a surveyable proof? Here the answer is no. No 
mathematician has surveyed the proof in its entirety; no math-
ematician has surreyed the proof of the critical reducibility lemma. 
I t  has not been checked by mathematicians, step by step, as all 
other proofs have been checked. Indeed, it cannot be checked that 
way. Now Appel, Haken, and Koch did produce something that 
was surveyable in  the sense that i t  could be looked over. Their 
work, as we have said, is very much like a surveyable proof with a 
lacuna where a key lemma is justified by nontraditional means-by 
computer. Incidentally, we must be wary of verbal entanglements 
here. Of course, if we call the appeal to computers a "new method 
of proof" in the strictest sense, then, trivially, the 4CT will have 
a surveyable proof. But the notion of proof itself will have shifted 
to accommodate the new method. 

More serious is the objection that the appeal to computers is 
not a method of proof at all and that the idea that it is arises from 
a confusion between a proof and a description of a proof. Often 
mathematicians forgo a complete proof and make do with a de-
scription or a sketch of the proof sufficiently detailed for their 
purposes. In  such descriptions, mathematicians may justify a lemma 
by reference to some already published work, by indicating the 
general method (e.g., "by diagonalizing") or by simply leaving the 
proof of the lemma as an exercise for the reader. Of course, these 
are not necessarily new methods of proof; in point of fact, they are 
more like shorthand, a brief way of indicating a proof. These de- 
vices belong to the description of the proof and not to the proof 
itself. The  objection suggests that we regard Appel, Haken, and 
Koch's papers as descriptions of a proof (which they are) and try 
to assimilate the appeal to computers to the pragmatic shortcuts 
we've just noted. 

The  objection fails because there is a major difference between 
the cases. Traditionally any such abbreviation has been backed by 
a surveyable proof, even more, by a surveyed proof. Some math- 
ematician and usually several mathematicians have surveyed the 
real thing and verified it. I n  principle this surveyable backing is 
available to any member of the mathematical community, either 
directly, as when the mathematicians can work it out for them- 
selves, or indirectly, when they look it up in the archives, to use 
Wittgenstein's phrase. But it is just this surveyable backing that 
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is lacking in the 4CT! Mathematicians cannot work out the miss- 
ing steps for themselves, not even in a lifetime of work; and i t  is 
nowhere recorded in the archives. What is recorded is the evidence 
that a computer once worked out the missing steps. So it would be 
a grave mistake to classify the appeal to computers as a theoret-
ically dispensable convenience, like the appeal to published journal 
articles. Of course the appeal "by computer" does mark an abbre- 
viation, and later we will consider it in more expanded form. The  
point at hand, however, is that surveyability is preserved in tradi- 
tional descriptions of proofs, but not in the appeal to computers. 

Let us consider a hypothetical example which provides a much 
better analogy to the appeal to computers. I t  is set in the mythical 
community of Martian mathematicians and concerns their discov- 
ery of the new method of proof "Simon says." Martian mathemat- 
ics, we suppose, developed pretty much like Earth mathematics 
until the arrival on Mars of the mathematical genius Simon. Simon 
proved many new results by more or less traditional methods, but 
after a while began justifying new results with such phrases as 
"Proof is too long to include here, but I have verified it myself." 
At first Simon used this appeal only for lemmas, which, although 
crucial, were basically combinatorial in character. I n  his later work, 
however, the appeal began to spread to more abstract lemmas and 
even to theorems themselves. Oftentimes other Martian mathema- 
ticians could reconstruct Simon's results, in the sense of finding 
satisfactory proofs; but sometimes they could not. So great was the 
prestige of Simon, however, that the Martian mathematicians ac-
cepted his results; and they were incorporated into the body of 
Martian mathematics under the rubric "Simon says." 

Is Martian mathematics, under Simon, a legitimate development 
of standard mathematics? I think not; I think it is something else 
masquerading under the name of mathematics. If this point is not 
immediately obvious, it can be made so by expanding on the Simon 
parable in any number of ways. For instance, imagine that Simon 
is a religious mystic and that among his religious teachings is the 
doctrine that the morally good Martian, when it frames the math- 
ematical question justly, can always see the correct answer. I n  this 
case we cannot possibly treat the appeal "Simon says" in  a purely 
mathematical context. What if Simon were a revered political 
leader like Chairman Mao? Under these circumstances we might 
have a hard time deciding where Martian mathematics left off and 
Martian political theory began. Still other variations on the Simon 
theme are possible. Suppose that other Martian mathematicians 
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begin to realize that Simonized proofs are possible where the at- 
tempts at more traditional proofs fail, and they begin to use "Simon 
says" even when Simon didn't say! The  appeal "Simon says" is an 
anomaly in mathematics; it is simply an appeal to authority and 
not a demonstration. 

T h e  point of the Simon parable is this: that the logic of the 
appeals "Simon says" and "by computer" are remarkably similar. 
There is no great formal difference between these claims: com-
puters are, in the context of mathematical proofs, another kind of 
authority. If we choose to regard one appeal as bizarre and the 
other as legitimate, it can only be because we have some strong 
evidence for the reliability of the latter and none for the former. 
Computers are not simply authority, but warranted authority. 
Since we are inclined to accept the appeal to computers in the 
case of the 4CT and to reject the appeal to Simon in the hypo- 
thetical example, we must admit evidence for the reliability of 
computers into a philosophical account of computer-assisted proofs. 
T h e  precise nature of this evidence will concern us later. For now 
it suffices to note that, whatever the evidence is, it cannot take tlie 
form of a traditional, surveyable proof. Otherwise Appel and Haken 
would have given that proof and dispensed with the appeal to 
computers altogether. 

The  conclusion is that the appeal to computers does introduce 
a new method into mathematics. T h e  appeal is surveyable, but 
what it appeals to is not. 

(c) Has the 4CT a formalizable proof? Most mathematicians would 
concur that there is a formal proof of the 4CT in an appropriate 
graph theory. We can describe the formal proof in some detail, 
actually exhibit sections of it, calculate the total length, and so on. 
Nevertheless, this belief in the formal proof cannot be used to 
legitimize the appeal to computers. Rather, we believe that the 
formal proof exists only because we accept the appeal to computers 
in the first place. I t  is important to get the order of justification 
correct. Some people might be tempted to accept the appeal to com- 
puters on the ground that it involves a harmless extension of hu- 
man powers. On their view the computer merely traces out the 
steps of a complicated formal proof that is really out there. In  fact, 
our only evidence for the existence of that formal proof presup-
poses the reliability of computers. 

This point can be clarified by the Simon parable. Martian math- 
ematicians could say that "Simon says" incorporates no new method 
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of proof and say that any Martian proof was still formalizable. 
They could claim that all of Simon's work was formalizable, only 
they themselves couldn't always provide the formalization. This is 
much the same position we claim to be in with respect to the ap- 
peal to computers. The  comparison makes clear that formalization 
comes in only after the fact. I t  cannot be used as the criterion for 
accepting computer-assisted proofs. 

In  summary, the proof of the 4CT, although much like a tradi-
tional proof, differs in certain key respects. I t  is convincing, and 
there is a formal proof. But no known proof of the 4CT is survey- 
able, and there is no known proof that a formal proof exists. The  
crucial difference between the 4-color proof and traditional proofs 
is that the 4-color proof requires the appeal to computers to fill 
the gap in an otherwise traditional proof. T h e  work of the com- 
puter is itself not surveyable. However, there are very good grounds 
for believing that this computer work has certain characteristics, 
e.g., that it instantiated the pattern of a formal proof of the reduci- 
bility lemma. Let us consider these grounds. 

What does the appeal to computers amount to? Remember, we 
are now considering the appeal in the context of justifying a math- 
ematical result, not yet in the context of discovery. We have a 
given mathematical question: Are the configurations in  the un-
avoidable set U reducible? As part of the question, we are given 
procedures for testing configurations for reducibility. Second, we 
have a given machine with such and such characteristics. On the 
basis of our question and the machine's characteristics we construct 
a program of instruction for the machine. I n  this case the program 
is intended to "cause" the machine to "search" through the set U ,  
testing each configuration for reducibility and reporting yes or no 
as the case may be. Finally we run this program on the computer 
and note the results. T h e  appeal to computers, in the case of the 
4CT, involves two claims: (1) that every configuration in U is re- 
ducible if a machine with such and such characteristics when pro- 
grammed in such and such a way produces an affirmative result for 
each configuration, and (2) that such a machine so programmed 
did produce affirmative results for each configuration. The  second 
claim is the report of a particular experiment. I t  has been experi- 
mentally established that a machine of type T when programmed 
by P will give output 0. 

But  even the conditional conjunct is, at best, an empirical truth 
and not subject to traditional proof. Its truth depends on two inter- 
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related factors, the reliability of the machine and the reliability of 
the program. The'reliability of the machine is ultimately a matter 
for engineering and physics to assess. I t  is a sophisticated natural 
science that assures us that the computer "does what it's supposed 
to" in much the same way that it assures us that the electron micro- 
scope "does what it's supposed to." Of course, even if we grant that 
the machine does what it is supposed to-follow the program- 
there remains the question of whether the program does what it is 
supposed to. This question can be difficult to answer. The task of 
evaluating programs is a topic of computer science, but at present 
there are no general methods for accomplishing it at this level. 
Programs themselves are written in special "languages," and many 
of them can be quite complex. They can contain "bugs," or flaws 
that go unnoticed for a long time. The reliability of any appeal 
to computers must ultimately rest on such diffuse grounds as these. 

In  the case of the 4CT, most mathematicians feel that the reli- 
ability is sufficiently high to warrant a qualified acceptance of the 
theorem. In  the first place, the problem was reducible to computer- 
manageable complexity. There is a very clear idea of what the corn- 
puter is supposed to be doing-we have a good understanding of 
reduction techniques. Moreover, there is a great deal of accumu-
lated evidence for the reliability of computers in such operations, 
and the work of the original computers was checked by other com- 
puters. Finally, there is good reason to believe that the theorem 
could not be reached by any other means. I t  is natural for math- 
ematicians, at least for those educated after the development of 
high-speed computers and pocket calculators, to accept the truth of 
the 4CT. The reliability of the 4CT, however, is not of the same 
degree as that guaranteed by traditional proofs, for this reliability 
rests on the assessment of a complex set of empirical factors. 

A digression on the reliability of computer-assisted proofs. No de-
tailed estimate of this reliability, nor a general account of how 
such estimates should be made is offered here. Instead, let us try 
to probe our own subjective idea of computer reliability in math- 
ematics by means of the following hypothetical examples. 

In the case of the 4CT we understand the general shape of the 
computer proof. Would we be prepared to rely on computers even 
when we could not perceive the general shape of their work? Sup- 
pose that advances in computer science lead to the following cir- 
cumstances. We can program a computer to initiate a search through 
various proof procedures, with subprograms to modify and com-
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bine procedures in appropriate circumstances, until it finds a proof 
of statement A .  After a long time, the computer reports a proof of 
A, although we can't reconstruct the general shape of the proof 
beyond the bare minimum (e.g., by induction). Perhaps we could 
describe this hypothetical example by saying that the supercorn- 
puter found a human-assisted proof. hilathematicians served to aim 
the computer in a certain direction, to provide it with certain tech- 
niques, and it went on to find a cumbersome patchwork proof con- 
sisting of thousands of cases. Again, the question is whether math- 
ematicians would have sufficient faith in the reliability of computers 
to accept this result. 

T h e  idea that a computer program can surprise its originators is 
not really very farfetched. T h e  Appel-Haken program did surprise 
them. 

It was working out compound strategies based on all the tricks it 
had been taught, and the new approaches were often much cleverer 
than those we would have tried. In  a sense the program was dem- 
onstrating superiority not only in the mechanical parts of the task 
but in some intellectual areas as well (Appel and Haken, 117). 

Suppose some such supercomputer were set to work on the con- 
sistency of Peano arithmetic and it reported a proof of inconsist-
ency, a proof which was so long and complex that no mathemati- 
cian could understand it beyond the most general terms. Could we 
have sufficient faith in computers to accept this result, or would we 
say that the empirical evidence for their reliability is not enough? 
Would such a result justify a mathematician's claim to know that 
Peano arithmetic was inconsistent, and would such a mathemati- 
cian have to abandon Peano arithmetic? These are bizarre ques- 
tions, but they suggest that the reliability of computer-assisted 
proofs in mathematics, though easy to accept in the case of the 
4CT, might some day be harder to swallow. 

In  conclusion, we have seen why it is reasonable to accept the 4CT, 
even the crucial reducibility lemma. There is no surveyable proof 
of the lemma, but we know that there is a formal proof. Our knowl- 
edge of this is grounded, in part, in the results of a well-conceived 
computer experiment. A wedge has been driven between the two 
explanations of proof in terms of surveyability and formalizability. 
I n  addition, a new technique has been developed for establishing 
mathematical truths. It  is largely a matter of notational convention 
whether we choose to describe the new technique-appeal to corn- 
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puters-as a method of proof or refuse to call it a proof and insist 
on describing it as an experiment. I n  the former case, we would 
count the 4CT as a bona fide theorem. I n  the latter case we would 
not count it a theorem in the strict sense but admit it as a new 
kind of mathematical knowledge. Mere choice of labels cannot 
mask the underlying reality, which is an unavoidable reliance on 
computer experiments to establish the 4CT. Let us now turn to the 
consequences of this fact for philosophy. 

IV 

The  acceptance of the 4CT is significant for philosophy at a num- 
ber of points. I n  the first place, it is relevant to philosophy in gen- 
eral, especially to the theory of knowledge. Obviously, it is relevant 
to the details of any philosophy of mathematics. Finally, it is rel- 
evant to some issues in the philosophy of science. 

Mathematics has always been important to philosophical theoriz- 
ing about knowledge and reason, of course, both because math- 
ematics stands as one of the pinnacles of human reason and ra- 
tional thought and because mathematical knowledge can appear so 
perplexing if not actually mysterious. 

The science of pure mathematics, in its modern developments, may 
claim to be the most original creation of the human spirit.9 

The apparent contrast between the indefinite flux of sense-impres-
sions and the precise and timeless truths of mathematics has been 
among the earliest perplexities and problems not of the philosophy 
of mathematics only, but of philosophy in general.10 

A widely shared assumption among philosophers is that there is a 
significant gulf between mathematics and mathematical knowledge 
on the one hand, and natural science and scientific knowledge on 
the other. Thoroughgoing empiricists have denied that this gulf 
exists and have tried to explain mathematical truth, for example 
as Mill did, as a very general type of empirical truth. Such expla- 
nations have not been very persuasive, and, in general, philosophy 
has assumed that the gulf between mathematics and natural science 
exists and has tried to characterize the different kinds of knowledge 
involved by some contrasting pair, e.g., a priori, a posteriori; in- 
nate, learned; formal, empirical; certain, dubitable; analytic, syn- 
thetic. Once established, these characterizations become philosoph- 
ical tools that can be applied elsewhere in the theory of knowledge. 

9 A. N. Whitehead, Science and the Modern Ff'orld (New York: Kew American 
Library, 1959), p. 25. 

l o  S. Korner, T h e  Philosophy of  iMathetnatics (New York: Harper, 1960), p. 9. 
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Mathematical knowledge plays a role in establishing these char- 
acterizations by serving as a paradigm of one pole in the dichotomy. 
T h e  proof of the 4GT, however, undercuts this role. Knowledge of 
the 4CT does not have any of the characteristics that the paradigm 
suggests. Let us examine the case of the a priori/a posteriori dis- 
tinction; the other cases proceed along similar lines. 

Traditionally, a priori truths are those truths which can be 
known independently of any experience and a posteriori truths are 
those which can be known only on the basis of particular experi- 
ences. An a priori truth might be immediately evident, stipulated 
by convention, or, most common, known by reason independently 
of any experience beyond pure thought. I t  is plausible to maintain 
that such theorems as the mini-theorem that the sum of the first 
one hundred positive numbers is 5050 are known by reason alone- 
we all know it and could demonstrate its truth if we desired. How- 
ever, it is not plausible to maintain that the 4CT is known by 
reason alone. 

By reason alone, we know that the reducibility lemma implies 
the 4CT; but our knowledge of the reducibility lemma does not 
take the form of a proof. Our knowledge rests on general empirical 
assumptions about the nature of computers and particular empir- 
ical assumptions about Appel and Haken's computer work. More- 
over, it is unlikely that anyone could know the 4CT by reason 
alone. T h e  only route to the 4CT that we can ever take appears 
to lead through computer experiments. Thus the 4CT is an a 
posteriori truth and not an a priori one; mathematicians, I sug-
gest, will never know the 4CT by a priori means.ll 

It  is with the claim that the 4CT is not a priori that I differ 
from the position suggested taken by Saul Kripke when he con-
siders the example of a computer verification that some very large 
number is a prime.12 Kripke argues that such a theorem would be 
known a posteriori for the same reasons that I give that the 4CT 
is known a posteriori. But he leaves open the question of whether 
his theorem can be known a priori. I have argued that the 4CT 
cannot be known a priori by us. 

T h e  4CT is a substantial piece of pure mathematics which can 
be known by mathematicians only a posteriori. Our knowledge 
must be qualified by 'the uncertainty of our instruments, computer 

11 See the qualifications expressed on page 69 of this paper, at  the end of 
sec. 11. 

12 "Naming and Necessity," in D. Davidson and G .  Harman, eds., Semantics 
of Natural Langziage (Boston: Reidel, 1972), p. 261. 
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and program. There surely are truths from electrical engineering 
about current flow through switching networks which have a higher 
degree of certainty than the 4CT. The  demonstration of the 4CT 
includes not only symbol manipulation, but the manipulation of 
sophisticated experimental equipment as well: the four-color prob- 
lem is not a formal question. I n  fact, the argument for the 4CT 
is very like an argument in theoretical physics where a long argu- 
ment can suggest a key experiment which is carried out and used 
to complete the argument. 

This is a bit of a puzzle. In  the first place, it blurs the intuitive 
distinction between mathematics and natural science which we 
began with. In  the second place, we are left with the question of 
how to explain the role of experiment in pure mathematics. I t  is 
easy to see how experiments play a role in  the arguments of phys- 
ical theory. The  physical theory can predict phenomena of space- 
time which equipment can be designed to register. Are we to say 
that the computer registered a phenomenon of mathematical space? 
If not, then how else are we to explain the role of experiment in 
mathematics? Such puzzles are one aspect of what I have called 
"the new four-color problem." I will not attempt any solutions to 
the puzzles here, but simply note these puzzles as among the conse- 
quences of the 4CT. 

Not every way of characterizing the difference between math-
ematics and natural science falls to the 4CT. Following Kripke, we 
can argue that all mathematical truths, even the 4CT, are neces- 
sary, or true in all possible worlds. T h e  4CT, we might say, records 
an essential property of planar maps. (The truths of natural sci- 
ence, on the other hand, might be counted as contingent, or true 
in our world but false in  some possible world.) I n  this case the 
4CT would be an important example of an a posteriori necessary 
truth and, a fortiori, a counterexample to the claim that all known 
necessary truths are known a priori. 

T h e  new four-color problem then might serve as a stimulus to 
general philosophy to rethink the commonly accepted relations 
among knowledge, reason, and experience. Nevertheless, the most 
significant impact of the 4CT in philosophy obviously will concern 
the details of our philosophy of mathematics. 

Accepting the 4CT forces us to modify our concept of proof. We 
can modify it by admitting a new method (computer experiment) 
of establishing mathematical results in addition to proofs. Or  we 
can modify it by allowing proof to include computer-assisted proofs. 
I prefer the latter terminology. Either way, the details of this new 
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method can have a substantial impact on the way mathematics is 
done. 

This points to one of the most exciting aspects of Appel, Haken, 
and Koch's work, but one we have not touched on yet. So far we have 
been concerned with the 4CT only in the context of its justification: 
given the purported proof, does it prove the theorem? We have not 
treated it in  the context of discovery. Any conclusions based only 
on discovery would have invited the Fregean retort that what mat- 
ters to philosophy is justification and not genesis. It  is time to 
widen our perspective; for there is much of interest about the dis- 
covery of the 4CT both to mathematics and to philosophy. 

How does one decide to attempt a computer experiment in math- 
ematics? Even where questions of the form P(n) are decidable and 
we have the techniques to program a computer to check the in- 
stances, we cannot simply run the computer as long as it will go, 
hoping that it finds, say, that (]x)P(x)before the computer reaches 
its limits. There must be some reason to expect that the computer 
will stop with an answer within a reasonable time. In  the case of 
the 4CT we can ask why anyone thought that an unavoidable set 
of reducible configurations each of ring size less than or equal to 
14 could be found. From the outside, 14 looks no more probable 
as a bound than 20 or 50 or even 100. Yet, if the minimum ring 
size were 20 or more, the required proof experiment could not be 
conducted at present! From the other direction, we know because 
of Moore's map that we must include configurations whose ring 
size is at least 12. Perhaps Moore would discover a map requiring 
the minimum ring size to be 20. Why did Appel and Haken think 
that a computer experiment could work? 

What happened was that they developed a sophisticated prob- 
abilistic argument, not a proof, that the ring size could be restricted 
to 17 or less, and that the restriction to 14 was a good bet. They 
provided an argument that invested statements of the form "There 
is an unavoidable set of reducible configurations each of which has 
a ring size less than or equal to n" with a probability derived from 
the ratio of the number of vertices in the configuration to the ring 
size n (Haken, 202). With n = 14, the statement was very likely. 
Together with this probabilistic argument was an argument that 
the required techniques could be programmed into a computer. 
Koch did much of the work on the programming, and in  their 
earlier paper Appel and Haken had showed that there was an un- 
avoidable set of geographically good configurations of manageable 
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size. These two arguments made it feasible to conduct the experi- 
ment. 

The  first type of argument is especially interesting. I t  is a new 
kind of argument endowing mathematical statements with a prob- 
ability. This probability cannot be accounted for in ontological 
terms according to which any statement is true, or false, in all pos- 
sible worlds. Having modified the concept of proof to include com- 
puter-assisted proofs, we might want to modify it again to include 
the kind of probabilistic argument required to set up a computer 
experiment. I n  practice this would amount to permitting math- 
ematicians to make such arguments as part of their mathematical 
work. That  is, it might be counted as a significant mathematical 
step if someone were to argue that a certain statement is very likely 
to be true, while leaving it to someone else to design and run the 
actual computer experiment. We must take this possibility much 
more seriously after the work of Appel and Haken, who established 
that such probabilistic arguments can have an important function 
in mathematics. 

O n  the other hand, such probabilistic arguments inevitably con- 
tain the possibility of error; they can go wrong in a way strict 
proofs cannot. 

To use the computer as an essential tool in their proofs, math- 
ematicians will be forced to give up hope of verifying proofs by hand, 
just as scientific observations made with a microscope or telescope do 
not admit direct tactile confirmation. By the same token, however, 
computer-assisted mathematical proof can reach a much larger range 
of phenomena. There is a price for this sort of knowledge. It cannot 
be absolute. But the loss of innocence has always entailed a relativ- 
istic world view; there is no progress without risk of error (Kainen 
and Saaty, 98). 

These shifts in the concept of proof initiated by the 4CT force 
us to reevaluate the role of formal proofs in the philosophy of 
mathematics. Of course such shifts cast no doubt whatever on the 
legitimacy of formal proof theory as a branch of mathematical 
logic. Formal proofs, as idealized abstraction, still figure in our 
account of the 4CT. Nevertheless, after the 4CT, formal proofs 
cannot continue to serve the philosophy of mathematics as the sole 
paradigm of mathematical activity. Philosophers and mathemati- 
cians have already noted the limitations of the formal paradigm, 
but the 4CT aggravates these limitations to the point of a prob- 
lem.13 T h e  old idea that a proof is a thought-experiment suggests 

13 See, for example, Lakatos, op.  cit. 
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itself here. There is not such an apparent gulf between thought- 
experiments and computer-experiments as there is between formal 
proofs and experiments. On the other hand, there is not such a 
gulf between thought-experiments in mathematics and thought-
experiments in physics either. 

The  primary impact of the new four-color problem in the philos- 
ophy of mathematics is on the concept of proof. We have discussed 
some of the consequences here.14 

The  relevance of the new four-color problem to the philosophy of 
science is largely a reworking of the earlier consequences. I t  is espe- 
cially relevant to that branch of the philosophy of science which 
looks upon science as diachronic, or developing over time. In par- 
ticular, it is relevant to the concept of paradigm outlined by Thomas 
Kuhn.15 Paradigms, according to Kuhn, are scientific achievements 
that some scientific community accepts as supplying a foundation 
for its further practice. T o  qualify as a paradigm, the achievement 
must be both "sufficiently unprecedented to attract an enduring 
group of adherents away from competing modes of scientific activ- 
ity" and "sufficiently open-ended to leave all sorts of problems for 
the redefined group of practitioners to resolve" (10). The  concept 
of paradigms plays an important role in Kuhn's explanation of the 
development of science. I t  is natural to wonder whether the meth- 
odology leading to the 4CT can serve as a paradigm in mathemat- 
ics; Kainen and Saaty have suggested that it will. "In fact, the 
Appel-Haken methodology suggests a new paradigm for mathemat- 
ics. This paradigm includes the traditional elements of intuition 
and standard logic, as well as heuristic and probabilistic techniques 
combined with the high order computational abilities of a modern 
computer" (96). 

Looking at the 4CT from the viewpoint of paradigms and thereby 
placing it in a historical perspective can be very illuminating. I 
suggest that if a "similar" proof had been developed twenty-five 
years earlier, it would not have achieved the widespread acceptance 
that the 4CT has now. The  hypothetical early result would prob- 
ably have been ignored, possibly even attacked (one thinks of the 
early reaction to the work of Frege and of Cantor). A necessary 
condition for the acceptance of a computer-assisted proof is wide 

14 For another approach that focuses on the idea of "difficult proof" and its 
relation to incompleteness results, see Haken, op. cit. 

15 T h e  Structure oj Scientific Revolutions (Chicago: University Press, 1962). 
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familiarity on the part of mathematicians with sophisticated com-
puters. Now that every mathematician has a pocket calculator and 
every mathematics department has a computer specialist, that fa- 
miliarity obtains. The  mathematical world was ready to recognize 
the Appel-Haken methodology as legitimate mathematics. 

Before we can satisfactorily describe the 4CT in terms of par- 
adigms, however, there are two obstacles that must be overcome. 
T h e  concept of paradigm has been developed primarily for the 
natural sciences with some extensions to the social sciences. We 
would first have to extend the notion of paradigm to mathematics, 
both by example and by explanation of the nature of mathematical 
paradigms.le Many philosophers would resist the extension of par- 
adigms to mathematics, of course. I n  the current philosophy of 
mathematics, mathematics is viewed solely as a synchronic or time- 
less structure. Against this position it might be argued that it is 
simply working out of another paradigm of mathematics, the for- 
mal paradigm provided by Cantor, Frege, Russell, and Hilbert. 
The  controversy will be decided, in part, by whether the paradigm 
model of mathematics can provide a more satisfactory account of 
achievements like the 4CT than can the formal model. 

A second difficulty in extending the notion of paradigm to math- 
ematics is historical. Paradigms are defined in terms of their past 
performance; they are achievements that had a major effect on the 
development of their fields. I t  is one thing to characterize an 
achievement as a paradigm on the basis of the historical record. 
I t  is quite another to predict that a recent achievement will func- 
tion as a paradigm on the basis of the limited data currently avail- 
able. I t  is clear that claims of the second kind must be much more 
tentative. However, if any such claims succeed, they are likely to 
provide much more information to the metatheory of paradigms 
than is provided by the simple classification based on the historical 
record. Although there are obstacles to treating the 4CT as provicl- 
ing a new paradigm for mathematics, any attempts to solve these 
problems can be important exercises in the philosophy of science. 

Mathematicians have solved their four-color problem, but there 
is a new four-color problem that has arisen for philosophy. I have 
tried to explain what this problem is and how it arises. I have 
argued for its philosophical significance by noting some of the 
consequences that our acceptance of the 4CT has for the theory 

16 hiuch material useful for this enterprise can be found in the wolks of 
Lakatos and in Raymond Wilder, Evolutzon of Alathevzatzcal Concepts (New 
York: Wiley, 1968). 
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COUNTERFACTUALS AND CONSISTENCY " 
LL the things that would have been true if Bizet and Verdi A had been compatriots should form a coherent if somewhat 

sparse picture of a possible state of affairs. From this simple 
consideration can be extracted several conditions of adequacy on 
theories of counterfactuals. First and foremost is a consistency con- 
dition, to the effect that "would" implies "could"-to ensure that 
all the things that would be true under any properly entertainable 
hypothesis are things that at least could be jointly true. 

I shall argue that the semantics that David Lewis has presented 
in his book Counterfactuals,t  does not secure this adequacy condi- 
tion. O n  his assumptions concerning comparative similarity over 
possible worlds, what will be called counterfactual inconsistencies 
arise in a systematic way. T h e  source of these violations of the ade- 
quacy condition will be traced back to Lewis's rejection of what he 
calls the "Limit Assumption" (sec. 1.4), a restriction on compara- 
tive similarity relations which he regards as objectionable and un- 
justified. T h e  present paper offers a justification for that restriction, 
relative to the general framework Lewis has provided: under his 
semantics the Limit Assumption is both necessary and sufficient for 
guaranteeing counterfactual consistency. 

I 

For any sentence A,  consider the set of all its counterfactual conse- 
quents:  the set @ A  of all sentences B such that A 0- B is true.l 
Following Lewis, let a sentence A be called counterfactually enter- 
tainable if and only if it is true at some world accessible from the 

* I am indebted throughout to ch. I of John Pollock's Subjunctive Reasoning 
(Boston: Reidel, 1976; parenthetical page references to Pollock are to this book). 
I have also had the benefit of criticism from David Lewis, extended discussions 
with Isaac Levi, and very helpful comments from a number of other colleagues 

t Oxford: Blackwell; Cambridge, Mass.: Harvard, 1973. Parenthetical page 
references to Lewis are to this book. 

1Lewis calls @ A  the countelfactual theory for A ,  and he indexes it for refer- 
ence worlds, thus: @ ( A ,i) = { B :  A =+ B holds at  i )  (133). 

0022-362X/i9/iG02/0083$00.50 O 1979 The Journal of Philosophy, Inc. 
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