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1. Introduction

Cantor’s continuum problem served as one of the principal and peri-
odic foci for Godel’s research from 1935 unti! his death more than four
decades later. His article 1947 (substantially revised and expan(‘ied to
become 1964 ) originated from a request, made in 1945 by t.he editor-of
the American mathematical monthly, for a paper on the continuum prc?b-
lem. The result was an expository article written in the style for ‘ilhlc’h
the Monthly is well known, but having a ﬁavox: thz?.t reflected Godel’s
distinctive blend of mathematical and philosophical .mterests'. Altho.ugh
1947 contains no new technical results, it gives considerable insight into
. his philosophical views on set theory and on wha:t would and would not,
in his opinion, constitute a solution to the cc_mtmuum problem.. I.n one
sense, 1947 can be regarded as a continuation, and as a va.rlatlon' in
a different key, of his reflections in 1944 on Russell and mathematlca_ml
logic. Like 1944, the article 1947 originateq from. a request fo_r a contri-
bution by Godel, and included both technical }31nts for p0s31blfa future
research in mathematics and cogent philosophical arg}lments in favor
of Platonism. But 1947, unlike 1944, was expository (indeed, the or.ﬂy
expository article that Godel ever published) and concgrne.d a specﬁc ]
mathematical problem rather than a philosopher’s contmbut.lon to logic.

This introductory note has seven sections, which serve d%ﬁ‘erent pur-
poses. Section 2 places 1947 in a historical context by t':ra.cmg the con-
tinuum problem from its origins to Godel’s attempts (c1rc?, 1938—1.942)
to establish the independence of the continuum hypothesis. Section 3
recounts the circumstances which led Godel to wr‘ite '1 947. The cqpter:t
of 1947 is analyzed in Section 4, while Section 5 1nd1c-ates.how Godel’s
perspective changed in the revised version 1964 (and in his 1966 plans
for a third version of the paper). Section 6 discusses the effect of recer%t
mathematical developments on Godel’s claims in 1947 and 1 .96..4. Fi-
nally, Section 7 concerns his two unpublished articles on the continuum
hypothesis, both written about 1970.

9. Historical background to the continuum problem,
including Godel’s work before 1947

The continuum problem, which Cantor first posed in 1878, grew .out
of research that he began in 1873. At that time, in a letter to Dedekind,
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. put in one-to-one correspondence with the set N of natural numbers.

Lized continuum hypothesis (GCH), which states that 2%« = R, ; for all

the weak continuum hypothesis: Every uncountable closed subset of R
" again during October, he believed that he had proved CH, and then, for
- 43-44).

- to have disproved CH. This occurred in a lecture he gave at the Inter-
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Cantor posed the question whether the set R of real numbers can be

Although Dedekind at first doubted the importance of this question,
he was pleased when Cantor discovered a proof that such a correspon-
dence cannot exist. In January 1874 Cantor posed a further question
to Dedekind: Can a line segment be put in one-to-one correspondence
with a square and its interior? Three years passed before Cantor suc-
ceeded in showing that there exists such a correspondence between a line
segment and n-dimensional space for any n.* At the end of the article
(1878) detailing this proof, Cantor stated that every uncountable set of
real numbers can be put in one-to-one correspondence with the set of
all real numbers, i.e., that there is no cardinal number strictly between-
that of N and that of R. This proposition was the original form of the
continuum hypothesis. Since there is no standard terminology for this
form, we shall call it the weak continuum hypothesis.

When in 1883 Cantor developed the notion of well-ordering and as-
serted that every set can be well-ordered, he gave a second and more
elegant form to this hypothesis: R has the same power as the set of
countable ordinals. In his aleph notation of 1895 this can be stated as
2% = N, the form in which the continuum hypothesis (CH) is now
known. (It is easily seen that CH is equivalent to the conjunction of
the weak continuum hypothesis and the proposition that R can be well-
ordered.) Cantor himself never used the term “continuum hypothesis”;
instead, in his 1882 correspondence with Dedekind, he referred to the
weak continuum hypothesis as the “two-class theorem”. '

In 1883 Cantor began to generalize CH, asserting that the set of all
real functions has the third infinite power; in his later notation, this
stated that 2% = R,. He never discussed any more general form of CH,
perhaps because he saw no use for such a generalization. The general-

ordinals «, was first formulated by Hausdorff (1908, pages 487, 494) and
was given this name by Tarski (1925).

Despite very intense research, especially during 1884, Cantor never
succeeded in demonstrating CH. However, he obtained a special case of
has the power of R (1884). For a while that year, during August and
a brief period in November, tha%vhe had refuted CH (Moore 1982, pages

In August 1904 a Hungarian mathematician, J. Konig, also claimed

2See Noether and Cavaillés 1937, pp. 1213, 20-21, 25.
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national Congress of Mathematicians at Heidelberg. However, tpe next
day E. Zermelo found the gap in Konig’s argument. When revised for
publication (Kdnig 1905), Konig's result was that the povx:er of R can-
not equal g+, for any ordinal . In the light of Hausdorff’s 19_06—19%8
researches on cofinality, the result was extended to the following: 2%0
cannot equal Rg for any B of cofinality w. In 1 9'47 F}odel observed that
nothing beyond this was known about the cardinality of R.

As F. Bernstein noted (1901, page 14), one line of research on the
continuum problem consisted in trying to extend, to 1ar.ger and larger
classes of subsets of R, Cantor’s result that the weak continuum hypot}}-
esis holds for the closed subsets of R. The hierarchy soon used for this
purpose was that of the Borel sets, introduced by E. Borel (1898) and
first extended to transfinite levels by H. Lebesgue (1905). In 1903 W. H.
Young strengthened Cantor’s result by showing that every uncountable
G subset of R has the power of R. A decade later Hausdorff succeeded
in extending the result further, first to the Gs,s sets (1914a) and then
to the entire Borel hierarchy (1916 ).

For the next two decades, almost all progress on CH had a close
connection with N. Luzin and his students (such as P. S. Aleksanch."ov
and M. Suslin), who together made up the Moscow school of function
theorists. The school’s first result occurred when Aleksandrov (1916)
obtained the above-mentioned theorem on the Borel hierarchy at the
same time that Hausdorff did. In 1917 Luzin and Suslin extended the
Borel hierarchy by introducing the analytic sets, the first level of what
Jater became the projective hierarchy. Suslin established that thelweak
continuum hypothesis holds for the analytic sets, now calltf:d the X7 s“ets,
since every uncountable analytic set has a perfect subset.. Yet, as Godel
observed in 1947 (page 517), progress stopped there; for it had 1not been
shown that the weak continuum hypothesis holds for every II; set but
only that an uncountable II! set has either the cardinality ¥; or that of
R——a result due to K. Kuratowski (1933, page 246).

Sierpiniski. In this approach, various propositions were shown to be con-
knowledge about its strength and were able to settle various open prob-
lems. Sierpifiski, beginning in 1919, was especially concerned to find

interesting propositions equivalent to CH. He summarized his results in

consequences of CH that Godel cited in 1947.

of =1 and IT} sets, see p. 13 above of the introductory note to 1938.

_ try to establish its undecidability on the basis of the accepted axioms of
 set theory. As early as 1923, T. Skolem conjectured that CH cannot be

~ when Skolem wrote, the understanding of models of set theory was still

- and Zermelo (1929, 1930), or within first-order logic, as Skolem pro-
, . posed (1923a, 1930). In 1930 Zermelo showed that all second-order

d roach to the continuum problem was begun by o . . . . .
Lujlﬁ S(e 1C ; 1n4) :rlljé’ pursued vigorously in Poland by his collaborator W.- the cum#lative type hierarchy, where a is a strongly inaccessible ordi-
of German Science, Zermelo pointed out that CH is either true in all of
- ‘these models or false in all of them, so that in either case CH is decided
in second-order ZF.© This result contrasts with the later discoveries of

sequences of CH. By assuming CH as a hypothesis, set theorists gained -

a book, Hypothése du continu (1934), the source for the “paradoxical”

can be found on p. 134. Kreisel (1967a, pp. 99-100) also emphasized this point,
‘though unaware that Zermelo had formulated it almost four decades earlier; however,
L. Kalmdr (1967, p. 104) and A. Mostowski (1967a, p. 107) reacted negatively to
Kreisel’s observation, and the second-order version of CH has been little studied.

b [ uzin 1917. For discussion of the projective hierarchy, as well as the definition.
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In 1923 D. Hilbert claimed that his recently developed proof theory
could not only provide a foundation for mathematics but could even
" settle classical unsolved problems of set theory such as the continuum
problem (1923, page 151). Three years later he published his attempt
to sketch a proof, based on definability considerations, of what he called
the “continuum theorem” (1926). This attempted proof of CH met with
widespread skepticism, in particular from Fraenkel (1928) and from
Luzin (1929). In 1935 Luzin returned to this question, arguing that
there was not in fact one continuum hypothesis but rather several con-
tinuum hypotheses; he dubbed as the “second continuum hypothesis”
the following proposition contradicting CH:

2% = 2™,

Finally, he argued that the second continuum hypothesis accorded with
a proposition (contradicting CH) of whose truth he felt certain: Every
subset of R having power R; is a II} set (1935, pages 129-131). Godel
referred in passing to these matters (1947, page 523) while mentioning
that Luzin, like Godel himself, believed CH to be false.

In the absence of a proof or refutation of CH, mathematicians could
settled by Zermelo’s 1908 axiom system (Skolem 1923a, page 229). But,
very rudimentary. Luzin hoped that Hilbert’s proof theory would supply

‘a consistency proof for the “second” continuum hypothesis as well as for
CH (Luzin 1935, pages 129-131).

During the 1920s it was also uncertain whether modeis of set theory
should be studied within second-order logic, as did Fraenkel (1922a)

models of Zermelo—Fraenkel set theory (ZF) consist of the ath stage of

nal. In an unpublished report of about 1930 to the Emergency Society

\

R

©This report is printed in Moore 1980, pp. 130-134, and the observation on CH
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Godel and P. J. Cohen that CH is undecided in the first-order version
of ZF.

About 1935 Godel realized that if Zermelo’s cumulative hierarchy
were restricted at each level to the sets first-order definable from those
obtained at previous levels, then one would have a class model of first-
order ZF in which various important propositions held. Originally, in
1935, he proved only that the axiom of choice is such a proposition, but
by 1937 he had shown that GCH holds in the model as well. In 1938
he was inclined to accept the axiom of constructibility as true, referring
to it as “a natural completion of the axioms of set theory” (page 557),
and hence to believe that the generalized continuum hypothesis is also
true. Yet Godel refrained, for more than a year, from publishing an
announcement of these relative consistency results. A clue to his silence
can be found in his letter, written in December 1937 to Karl Menger,
which reveals Godel’s hopes for an even stronger result about CH:

1 continued my work on the continuum problem last summer, and
I finally succeeded in proving the consistency of the continuum hy-
pothesis (even in the generalized form 2%« = R,,;) with respect
to general set theory. But I ask you, for the time being, please not
to tell anyone about this. So far, except for you, I have communi-
cated this result only to von Neumann .... Right now I am also
trying to prove the independence of the continuum hypothesis, but
do not yet know whether I will succeed with it ....

Unfortunately, Godel did not succeed in proving the independence of
CH, despite repeated attempts.

On the other hand, Godel’s efforts to show the independence of the
axiom of choice, and consequently of the axiom of constructibility as
well, were more fruitful. When Cohen- received the Fields Medal for
establishing the independence of CH, A. Church pointed out, in his
speech awarding the medal (1968, page 17), that

Godel ... in 1942 found a proof of the independence of the axiom of
constructibility in [finite] type theory. According to his own state-
ment (in a private communication), he believed that this could be

~ extended to an independence proof of the axiom of choice; but due
to a shifting of his interests toward philosophy, he soon afterward
ceased to work in this area, without having settled its main prob-
lems. The partial result mentioned was never worked out in full
detail or put into form for publication.

Godel also commented on his independence results in a letter of 1967 to
W. Rautenberg, who had written to Gédel inquiring about Mostowski’s
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claim that Godel, about 1940, had obtained most of Cohen’s indepen-
dence results. In his reply (written in German and translated here),

" Godel confirmed what Church had stated:

In reply to your inquiry I would like to refer to the presentation
of the facts that Professor Alonzo Church gave in his lecture at the
last International Congress of Mathematicians.

Mostowski’s assertion is incorrect insofar as I was merely in
possession of certain partial results, namely, of proofs for the in-
dependence of the axiom of constructibility and of the axiom of
choice in type theory. Because of my highly incomplete records
from that time (i.e., 1942) I can only reconstruct the first of these

~ two proofs without difficulty. My method had a very close connec-
tion with that recently developed by Dana Scott [Boolean-valued
models] and had less connection with Cohen’s method.

I never obtained a proof for the independence of the continuum
hypothesis from the axiom of choice, and I found it very doubtful
that the method that I used would lead to such a result.

Thus there can be no doubt that Gddel believed that he had obtained
some significant independence results, but not for CH.

By the time that Goédel composed 1947 he had become convinced,
contrary to the views he expressed in 1938, that CH (and hence the
axiom of constructibility as well) was false.

3. The origins of Géodel 1947

Godel undertook to write the article 1947 at the request of Lester R.
Ford, the editor of the American mathematical monthly. “For some time
we have been running a series of papers ...", Ford wrote Godel on 30
November 1945

which we call the “What Is?” series. In these papers the authors
have presented some small aspect of higher mathematics in as sim-
ple, elementary and popular a way as they possibly can. We have
had papers by both Birkhoffs, Morse, Kline, Wilder and several
others.

I am writing this to ask if you would like to prepare such a pa-
per. The subject would be of your own choosing, but I had thought
of “What is the problem of [the] continuum?”

When Gédel did not respond, Ford wrote again on 31 January 1946. On
14 February, Godel, who had not received the earlier letter, expressed




160 Note to 1947 and 1964

his willingness to consider the matter, adding that “in any case I could
not write the paper immediately, because I am unfortunately very busy
with other things at present.” A week later, Ford replied: “Let me know
as promptly as you can whether you can write this paper. I oug}}t' to
have it by the month of July. It will not be a long paper and its writing
ought not to take a great deal of time.” i

Ford did not realize that, when composing an article, Godel was an
extreme perfectionist. Another year passed before Godel completed the

inquired about the paper, since he wished to print it before his editor-
ship ended in December. Godel answered on 31 August: ‘fThe paper
about the continuum problem ... was finished and typewritten a f'ew
weeks ago, but on rereading it, I found some insertions desirable, which
1 have now about completed.” Once again, this was not to be.

Finally, on 29 May 1947, Godel sent the paper to the new editor,
C. V. Newsom. In his covering letter, Go6del mentioned that he had
«inserted a great number of footnotes whose order does not completely
agree with the order in which they occur in the text.” He suggested that
the new footnotes be printed after the text of the article. Unfortunately,
as Godel learned when he saw the article in print, the footnotes had
been renumbered in page proof without changing the internal references
to them.d He had received no page proofs, having returned his gal!ey
proofs at the last moment. Newsom apologized for the errors, which
occurred when the compositor tried to make sense of the footnotes, and
added by way of compensation: “Your paper has brought many compli-
ments; it is by far the best article in volume 54.”

4. How Godel viewed the continuum problem in 1947

Gédel’s essay 1947 consists of four sections: (1) a discussion of the
notion of cardinal number, (2) a survey of the known results about the
power 9% of the continuum R, (3) a philosophical analysis of set theory,
and (4) a proposal for solving the continuum problem. .

In Section 1, Godel stressed that Cantor’s notion of cardm:.ll number
is unique, provided one accepts the minimal requirement that if two sets
have the same cardinal number, then there exists a one-to-one corre-

dThese errors, which Gddel noted in volume 55 of the Monthly, are corrected in
the text of 1947 printed in the present volume.

paper that, in March 1946, he agreed to write. On 13 August 1946 Ford -

spondence between them. Here Gédel did not discuss how the noti(?n. of :
cardinal number might be defined, contenting himself with the definition -
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of equality between cardinal numbers. In this context hé introduced the
continuum problem as the question of how many points there are on a
"Euclidean straight line (or equivalently, how many sets of integers ex-
ist). This problem would lack meaning, he observed, if there were not
a “natural” representation for the infinite cardinal numbers. But since
the alephs R, provide such a representation and since, by the axiom of
choice, the cardinal number of every set is an aleph, it follows that the
continuum problem is meaningful. In footnote 2 he defended such uses
of the axiom of choice by arguing, on the one hand, that this axiom is
consistent relative to the usual axioms for set theory (as shown in his
1940); on the other hand, he asserted that the axiom of choice is quite
as self-evident as the usual axioms for the notion of arbitrary set and is
even provable for “sets in the sense of extensions of definable properties”
(that is, for the constructible sets, as well as for the ordinal-definable
sets of his 1946). ’
In Section 2, Gédel reformulated the continnum problem as the ques-
tion:

Which R, is the cardinal number of R?

He noted that Cantor had conjectured CH as an answer. But he did not
mention that Cantor not only conjectured the truth of CH but also, on
numerous occasions, claimed in print to have proved CH. (In fact, many
mathematicians took CH as true during the 1880s and 1890s.) Nor did
Godel distinguish between CH and the weak continuum hypothesis, re-
garding them as equivalent since he assumed the axiom of choice. Later
researchers, however, would find it necessary to distinguish carefully be-
tween CH and the weak continuum hypothesis when they attempted to
solve the continuum problem (especially when the axiom of determinacy
was involved; cf. Section 6 below).

Godel stressed how little was known about the power 28 of R, despite
the many years that had passed since Cantor formulated CH. Indeed,
Godel remarked that only two facts were known: (a) 2% does not have
cofinality w and (b) the weak continuum hypothesis holds for the X}
sets (the analytic sets), which, however, are only a tiny fraction of all
the subsets of R. In particular, he added, it was not known whether:

(i) There is some given aleph that is an upper bound for 2%o,

(ii) 2% is accessible or is weakly inaccessible,

(iii) 2% is singular or regular,
or C

(iv) 2%0 has any restrictions on its cofinality other than Konig’s result

that its cofinality is uncountable.
- What was known, he continued, was merely a large number of proposi-
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tions that follow from CH as well as several propositions that are equiv-
alent to it.©

Godel observed that our ignorance about the power of the continuum
was part of a greater ignorance about infinite cardinal products. In
particular, the power of the continuum, 2% is the simplest non-trivial
cardinal product, namely, the product of ¥y copies of 2. He added that
it was not even known whether

(v) there is some given cardinal that is an upper bound for some

infinite product of cardinals greater than 1.

All that was known were certain lower bounds on infinite products, such

as Cantor’s theorem that the product of Ny copies of 2 is greater than
Ry and the Zermelo—Konig theorem that if m, < n, for all & in some

given set I, then
>m, < [In,.
ael ael

Thus it was not even known whether the product of ¥y copies of 2 is less
than the product of X; copies of 2, that is, whether

AR AN

In Section 3 Godel argued that this lack of knowledge was not due
entirely to a failure to find the appropriate proofs, but stemmed from
the fact that the concept of set required “a more profound [conceptual]
analysis . .. than mathematics is accustomed to give” (page 518). He be-
gan his philosophical analysis of this concept by rejecting intuitionism,
because it is destructive of set theory, and by laying aside the semi-
intuitionistic viewpoints of Poincaré and Weyl for the same reason. In-
stead, he insisted that axiomatic set theory provides the proper founda-
tion for Cantorian set theory. Protecting himself against the objection
that the paradoxes threaten set theory, he asserted that no paradox has
ever emerged for the iterated notion of “set of” (the cumulative type
hierarchy V,).f Here Gddel permitted a set of urelements (the integers,
for example) as the basis from which the cumulative hierarchy is built
up; incidentally, this corroborates the view that he adopted the cumu-
lative hierarchy from Zermelo 1930. Finally, Godel insisted that the
continuum problem—if formulated in a combinatorial way as the ques-
tion whether CH can be deduced from the axioms of set theory—retains

®What is now known about (i)—(iv) is discussed in Section 6 below.

fThe cumulative hierarchy Vi is also called R(ca). On this hierarchy, see p. 4
above of the introductory note to 1938.

tions of the operation ‘set of " (1947, page 520). Consequently, he urged
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a meaning, independently of one’s philosophical standpoint, even for the
most extreme intuitionist. .

If the usual axioms of set theory are consistent, Godel remarked, then
CH is either provable, disprovable, or undecidable. After noting that his
1940 ruled out the second possibility, he asserted that the third one is
probably correct. To attempt to establish that CH is undecidable, he
insisted, was the most promising way of attacking the problem.8

What is especially important, however, is this: Although Godel ar-
gued that CH is almost certainly independent from ZF (as formulated
in first-order logic), he insisted strongly that a proof of its independence
would not solve the continuum problem. Indeed, he emphasized, as Zer-
melo (1930) had done, that “the axioms of set theory by no means form
a system closed in itself, but, quite on the contrary, the very concept of
set on which they are based [the cumulative hierarchy] suggests their
extension by new axioms which assert the existence of still further itera-

mathematicians to search for new large cardinal axioms which would.
he hoped, decide CH. He added, with his incompleteness theorems in
mind, that such axioms would settle questions about Diophantine equa-
tions undecidable by the usual axioms.

Here Godel's strongly held Platonism was visible, as it had been in
1944 and as it would be even more strongly in 1964. If the undecidabil-
ity of Cantor’s conjecture CH were established, he stressed, this would
not settle the continuum problem—for essentially philosophical reasons.
In fact, he wrote (1947, page 520),

only someone who (like the intuitionist) denies that the concepts
and axioms of classical set theory have any meaning (or any well-
defined meaning) could be satisfied with such a solution, not some-
one who believes them to describe some well-determined reality.
For in this reality Cantor’s conjecture must be either true or false,
and its undecidakility from the axioms as known today can only
mean that these axioms do not contain a complete description of
this reality.

After granting that all large cardinal axioms known at the time failed
to settle CH, since all of them were consistent with the axiom of con-
structibility, G6del made an eloquent plea for new axioms (1947, page
521): p

' .

£0n the other hand, Godel did not mention that in 1923a Skolem had also argued
for the independence of CH, nor that he himself had worked intensively at establishing
its independence during 1942 (as his Arbeitshefte attest).
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Even disregarding the intrinsic necessity of some new axiom, and
even in case it had no intrinsic necessity at all, a decision about its
truth is possible also ... inductively by studying . .. its fruitfulness
in consequences and in particular in ... consequences demonstra-
ble without the new axiom, whose proofs by means of the new
axiom, however, are considerably simpler and easier to discover,

and make it possible to condense into one proof many different

proofs ... There might exist axioms so abundant in their verifi-

able consequences, shedding so much light upon a whole discipline, .
and furnishing such powerful methods for solving given problems

(and even solving them, as far as that is possible, in a construc-

tivistic way) that quite irrespective of their intrinsic necessity they

would have to be assumed at least in the same sense as any well-

established physical theory.

This allusion to physics illustrates his view (already stated in 1944,
page 137) that the assumption of an underlying reality is as “necessary
to obtain a satisfactory theory of mathematics” as the assumption of
the reality of physical objects is “necessary for a satisfactory theory of
our sense perceptions”.

In Section 4, Gédel returned to his conjecture that CH is not decided
by the usual axioms for set theory, arguing that there were at least two
reasons for expecting such undecidability. The first was that there exist
two quite different classes satisfying the usual axioms: the class of con-
structible sets and the class of “sets in the sense of arbitrary multitudes”
(page 521). Thus he believed that one could not expect CH to be settled
if one did not specify axiomatically which of these two classes was being
considered. (He did not mention here, perhaps for philosophical reasons,
a third such class, namely the class of ordinal-definable sets, to which
he alluded in footnote 26.*) Half of his conjecture about undecidability
had already been verified, namely the relative consistency of CH with
the usual axioms, since CH is true in the class of constructible sets.

Godel then made the important suggestion that “from an axiom in
some sense directly opposite to this [axiom of constructibility] the nega-
tion of Cantor’s conjecture [CHJ could perhaps be derived” (page 522).
The difficulty, of course, with Gédel’s suggestion resides in the phrase
“directly opposite”, since he himself rightly believed that the mere nega-

‘.‘At first glance it might appear that in footnote 20 he conflated the class of
ordinal-definable sets, introduced in 1946, with the class of constructible sets. How-
ever, by comparing footnote 20 with footnote 26, one sees that in the earlier footnote
he had in mind the constructible sets and, in the latter, the ordinal-definable sets.

Likewise, in footnote 21 of 1964 he meant the constructible sets rather than the
ordinal-definable ones.
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tion of the axiom of constructibility would not suffice for this purpose
(see Section 5). Yet insofar as the axiom of constructibility is a min-
imality axiom (expressing that the power set of a set, and hence the
universe, is as small as possible), he may have had in mind here some
kind of maximality axiom, as he certainly did in 1964 (see pages 167-168
below).

Godel’s second reason for expecting the independence of CH was that
CH has certain “paradoxical” consequences which he found unlikely to
be true—in particular, the existence of certain very thin subsets of R
that have the power 2% The first effect of CH was to ensure that some
kinds of thin subsets of R, proved in ZFC to have instances that are
uncountable, can actually have the power 2%, Examples of such sets
are .
(1) sets of first category on every perfect subset of R,
and ‘

(2) sets carried into a set of measure zero by every continuous one-

to-one mapping of R onto itself.

The second effect of CH was to imply that certain kinds of thin sub-
sets of R can have the power 2% even though, in ZFC, no instances of
these kinds are known that are uncountable. Here he gave as an example
the sets of absolute measure zero (by definition, such a set is coverable
by a given sequence of intervals of arbitrarily small positive lengths).
He then gave several other examples, such as a subset of R including no
uncountable set of measure zero.!

Godel attempted to protect himself against the rejoinder that many
kinds of point-sets obtained without CH (such as a Peano curve) are
highly counterintuitive. In these cases, he argued, the implausibility. of
the point-sets was due to “a lack of agreement between our intuitive
geometrical concepts and the set-theoretical ones occurring in the theo-
rems” (page 524). ,

Nevertheless, there appears to be little evidence that analysts and
set theorists now regard as “paradoxical” the kinds of thin sets cited by
Godel. For example, P. J. Cohen, when asked his opinion of these thin
sets of power 2% was not troubled by themJ Likewise, in an article sur-
veying recent work on CH, D. A. Martin responded negatively to Godel’s
claim: “While Godel's intuitions should never be taken lightly, it is very
hard to see that the situation [with CH] is different from that of Peano
curves, and it is even hard for some of us to see why the examples Go6del
cites are implausible at all” (1976, page 87).

In the conclusion to his article, Godel insisted that “it is very suspi-

iThis particular example, however, was dropped in his 1964 version of the article.
JPersonal communication from P. J. Cohen, April 1984.
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cious that, as against the numerous plausible propositions which imply
the negation of the continuum hypothesis, not one plausible proposition
is known which would imply the continuum hypothesis” (1947, page
524). What are these “numerous plausible propositions”? We cannot be
certain, since Godel did not mention even one of them explicitly. Per-
haps he simply intended such propositions to be the negations of those
that he had called “paradoxical”. In any case, here he was uncharac-
teristically incautious in his assertion. In 1970 he himself would find a
proposition, which he then regarded as quite plausible, that implies CH
(see Section 7).

5. Godel’s altered perspective in 1964

The article 1964 resulted from a request, made to Godel by P.
Benacerraf and H. Putnam, for permission to reprint both of the essays
1944 and 1947 in their forthcoming source book Philosophy of mathe-
matics: Selected readings. At first, Godel hesitated to grant permission,
fearing that the introduction to their book would subject his article
to positivistic attacks. He asked Benacerraf, in conversation, for what
amounted to editorial control of the editor’s introduction to the source
book. As an alternative, since such control could not be granted, Be-
nacerraf assured Godel that he would be shown the introduction and,
furthermore, that the editors did not intend it to make a major philo-
sophical statement but rather to outline the issues. Thus placated, Godel
gave permission to reprint his two essays, and began extensively revising
1947. Benacerraf met with Godel a number of times to go over the revi-
sions, since Godel felt that he did not know English “well enough”. Yet
Benacerraf knew no one with a more subtle grasp of the various ways
in which an English text could be interpreted. While considering the
proposed changes, Godel repeatedly pointed out to Benacerraf various
of their unwanted consequences.k

Whereas Godel made no substantive modifications in reprinting 1944,
merely adding an initial footnote, he introduced more than one hundred
separate alterations in 1947 in the course of preparing 1964. Most of
these changes were stylistic and reflected his increasing acquaintance
with the nuances of the English language. In particular, a number of
long and rather Germanic sentences were divided into shorter and more
idiomatic ones.

kPersonal communications from P. Benacerraf, July 1982 and March 1986.
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Nevertheless, a substantial number of his changes were more than.
stylistic. A minor example is his reference in 1947 to a “natural” repre-
sentation of the infinite cardinal numbers (the alephs), replaced in 1964
with a reference to a “systematic” representation. Far more surprising is
his omission in 1964 of all reference to the ordinal-definable sets, which
in 1947 he had discussed on page 522 and in footnote 26. It is uncertain
what prompted him to omit this notion of set that he had introduced in
his 1946.

In Godel’s Nachlass there exist two drafts of his 1964, each an offprint
of 1947 with alterations written on it. The second of these contains a
revision, not incorporated into 1964, that credits Zermelo (1930) with
“substantially the same solution of the paradoxes” as is embodied in the
cumulative type hierarchy, which Gddel designates by his notion “set
of”. Again, it is unknown why he intended to credit Zermelo and then
decided not to do so. .

One particularly important addition occurred in footnote 20 of 1964,
where large cardinal axioms were discussed. Here he remarked that D.
Scott (1961) had proved that the existence of a measurable cardinal
contradicts the axiom of constructibility—in contrast to earlier large
cardinal axioms, such as those of Mahlo (1911, 1913), which are con-
sistent with that axiom. Consequently, he continued, the relative con-
sistency proof for CH by means of the class of constructible sets fails if
one assumes that there is a measurable cardinal. (In 1971a, however,
J. Silver established that GCH holds in the class of sets constructible
from a countably additive measure on the least measurable cardinal. In
1967, Levy and Solovay had already shown, by means of forcing, that
CH is relatively consistent with a measurable cardinal; see footnote p
below.) Godel then added that it was not yet certain whether “the gen-
eral concept of set” implies the existence of a measurable cardinal in the
same way as it implies Mahlo’s axioms. By contrast with this uncer-
tainty, in Godel’s unpublished revision of September 1966 he argued for
the existence of a measurable cardinal since this follows “from the ex-
istence of generalizations of Stone’s representation theorem to Boolean
algebras with operations on infinitely many elements” (page 261 below).!

Another noteworthy addition occurred in footnote 23 of 1964.
Whereas in the 1947 version of this footnote, Godel had argued that
CH might be decided by means of some axiom diametrically opposite to
the axiom of constructibility, in 1964 he spelled out what he meant:

C

1See also Gédel’s oral comments about measurable cardinals to Solovay on p. 19
above.
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I am thinking of an axiom which. (similar to Hilbert’s completeness
axiom in geometry) would state some maximum property of the
system of all sets, whereas axiom A [the axiom of constructlblhty]
states a minimum property. Note that only a maximum property
would seem to harmonize with the concept of set explained in foot-
note 14 [arbitrary sets of the cumulative type hierarchy].

Hilbert’s axiom of completeness (1902), which belongs to second-order

logic, had characterized Euclidean geometry (and, analogously, the real.

numbers) as the maximal structure satisfying his other axioms. What
Godel proposed for set theory was vague but suggestive; in particular,
the various large cardinal axioms can be regarded as steps in the di-
rection of maximality. His meaning is made more definite by a letter
he wrote to S. Ulam (quoted in Ulam 1958, page 13) apropos of von
Neumann’s axiom (1925) that a class S is a proper class if and only if
S is equipotent with the class V of all sets:

The great interest which this axiom has lies in the fact that it
is a maximum principle, somewhat similar to Hilbert’s axiom of
completeness in geometry. For, roughly speaking, it says that any
set which does not, in a certain well-defined way, imply an incon-
sistency exists. Its being a maximum principle also explains the

. fact that this axiom implies the axiom of choice. I believe that the
basic problems of abstract set theory, such as Cantor’s continuum
problem, will be solved satisfactorily only with the help of stronger
axioms of this kind, which in a sense are opposite or complementary
to the constructivistic interpretation of mathematics.

More recent attempts to formulate such a maximum principle have
not been completely successful. J. Friedman (1971) proposed one such
proposition, called the generalized maximization principle, and showed
it to be equivalent to GCH; thus far it has attracted little attention. Re-
cently, S. Shelah’s strong version of his proper forcing axiom, PFA+ (by
which, in 1982, he generalized Martin’s axiom in the direction of maxi-
mality), and the principle dubbed “Martin’s maximum?” by M. Foreman,
M. Magidor and Shelah have each been shown (by them in 1 982, and
independently by 8. Todorcevic) to imply that 2% = R,: more recently,
Todorcevic has announced a proof that 2% = R, already follows from
PFA. At present, there is no consensus among set theorists as to the
truth of these hypotheses. Nor does the author wish to conjecture what
Godel would have thought of them.

By far the most substantial alteration in Gédel 1964 was the addition
of a long supplement, together with a brief postscript noting that Cohen
(1963, 1964) had just established the independence of CH and thereby
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had verified Gédel’s 1947 claim that CH would not be settled by the
usual axioms for set theory. The supplement consists of a discussion of

" new results that Godel considered important, along with an extended

philosophical defense of his Platonist position on CH.

Ostensibly, this defense was stimulated by A. Errera’s article 1952,
claiming that if CH is not decided by the usual axioms for set the-
ory, then the question whether CH is true will lose its meaning, just as
happened to the parallel postulate when non-Euclidean geometry was
proved consistent. Godel insisted that, on the contrary, “the situation
in set theory is very different from that in geometry, both from the
mathematical and from the epistemological point of view” (1964, page
270). Here he stressed the asymmetry between assuming that there is,
and assuming that there is not, a strongly inaccessible cardinal. The
former assumption was fruitful in the sense of having consequences for
number theory, while .the latter was not. Likewise, he continued, CH
“can be shown to be sterile for number theory ..., whereas for some
other assumption about the power of the continuum this perhaps is not
s0” (page 271). This “sterility”, for first-order number theory, was due
to the fact that N is absolute for L, the class of all constructible sets.
(In his revisions of 1966-1967, discussed below, he here replaced CH by
GCH, and “power of the continuum” by “power of 28" )

By using later results, we can say more. In 1969 R. A. Platek estab-
lished that if a sentence of second-order number theory is provable from
CH, then it is already provable from the usual axioms of set theory along
with the axiom of choice; moreover, he showed that the same holds for
any 112 sentence of third-order number theory.™ (No further extension
was possible, since CH itself is a X2 sentence.) By 1965 Solovay had
independently found Platek’s result on CH, and in addition had discov-
ered a corresponding result for not- CH: If a TI} sentence of second-order
number theory is provable from not- CH, then it is already provable from
ZF and the axiom of choice.” In this sense, then, both CH and not-CH
are sterile for number theory.

The Platonist views put forward by Godel in 1947 were strengthened
in 1964, not only in the supplement but in the text as well, where he
described himself as “someone who considers mathematical objects to
exist independently of our constructions” (page 262). Nevertheless, his
Platonism was most visible in the supplement, where on page 271 he
pursued at some length the analogy between mathematics and physical
theories that he had already broached in 1947

1969, p. 219).
" Personal communication from R. M. Solovay, 27 October 1984.

m§ Kripke and J. Silver had each independently arrived a@he same result (Platek




YR E Y LV f v 1JV4

Despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen
from the fact that the axioms force themselves upon us as being
true. I don’t see any reason why we should have less confidence
in this kind of perception, i.e., in mathematical intuition, than in
sense perception, which induces us to build up physical theories
and to expect that future sense perceptions will agree with them
and, moreover, to believe that a question not decidable now has,
meaning and may be decided in the future.

In September 1966, Godel wrote an addendum called “Changes to be
made in 3rd edition”, anticipating that 1 964 would be reprinted.® Al-
ready in the postscript to 1964, which was added when 1964 was almost
in press, Godel had mentioned Cohen’s 1963 proof of the independence of
CH. But in the 1966 addendum Godel expressed himself more strongly:
“Coh.en’s work ... is the greatest advance in the foundations of set the-
ory since its axiomatization”. He added that Cohen’s forcing “has been
used to settle several other important independence questions”; yvet he
mentioned only one result, namely, that all known large cardinal axioms
“are vnot sufficient to answer the question of the truth or falsehood of
Qantor’s continuum hypothesis” (page 270 below). Although he did not
give a reference, he was almost certainly referring to the result of Levy
and Solovay that, for all known large cardinals x (and in particular for
measurable cardinals), if there is a model of set theory containing &
then there is a model containing  in which CH is true and another’
model containing x in which CH is false.P

6. Later research affecting 1947 and 1 964

There were two major developments that affected Godel’s program
as proposed in 1947 and 1964, for settling CH. The first of these was re—7
search on large cardinals, and the second consisted of new independence
results obtained by Cohen’s method of forcing. In fact, there has been
an extremely fruitful interaction, which still continues, between these
two lines of development.

®These changes have been incorporated into the text of 1964 i
> : 4 in the present vol-
ume, wherfa they are printed in square brackets. Gédel made additionalpch:x?ge‘s,(;n
a manuscript of October 1967. The textual notes record the exact changes to 1964
made in 1966 and 1967. On the other hand, the reprinting of 1964 in Benacerraf and
Putnam 1988 does not include these alterations and additions.
PThis result, announced in Levy 1964 and independently i
proved in detail in Levy and Solovay 1967. pendently in Solovay 1665, was
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The question of the relationship of CH to large cardinal axioms, and
to new axioms such as the axiom of determinacy (AD), has turned out
to be unexpectedly complicated. Large cardinal axioms are now known
to affect the class of sets for which the weak continuum hypothesis is
true. In particular, Solovay showed (1969) that if there exists a measur-
able cardinal, then the weak continuum hypothesis is true for 31 sets.
Moreover, AD, which may be regarded as a kind of large cardinal ax-
iom, implies that the weak continuum hypothesis holds for every subset
of R. Unfortunately, AD contradicts CH, since it implies that the real
numbers cannot be well-ordered (Mycielski 1964, page 209), and so was
surely unacceptable to Godel as a solution to the continuum problem.
On the other hand, the axiom of projective determinacy (that is, AD
restricted to the projective sets) is also a kind of large cardinal axiom
and has recently been shown to be consistent with the axiom of choice,
provided a sufficiently large cardinal exists. Indeed, D.A. Martin and
J.R. Steel (198¢) have recently established, among other things, that
if there is a supercompact cardinal (or, what is weaker, infinitely many
Woodin cardinals), then projective determinacy is true and hence the
weak continuum hypothesis is true for all projective sets.q

The second line of development, independence proofs, profoundly af-
fected Godel’s program. In 1963 Cohen established not only that CH is
independent but also that 2% can be arbitrarily large among the alephs.
Feferman then showed that it is consistent with ZF to have 2% = 2%,
Luzin’s second continuum hypothesis (Cohen 1964, page 110). From
Cohen’s work it followed, in regard to (i)-(iv) on page 161 above, that
2% js not bounded above by any given aleph and can be either acces-
sible or weakly inaccessible, singular or regular; moreover, there are no
restrictions on the cofinality of 280 other than Kénig’s theorem. Solo-
vay independently determined the o for which 2% = R, is consistent,
namely all ¥, of uncountable cofinality (1965). Thus it was shown that
our ignorance regarding (i)-(iv) is inevitable if we assume only the usual
first-order axioms of set theory. (In 1964, Godel was inclined to believe
that 280 is rather large, and favored the proposition that 2% is the first
weakly inaccessible cafdinal (1964, page 270).)

Shortly after Cohen announced his results in 1963, research on the
continuum problem turned to establishing what are the possibilities for
the continuum function F(R,) = 2%, defined on all ordinals. The first
major breakthrough was Easton’s theorem (1964, 1970) that the contin-
uum function F’ can, on regular cardinals, be any nondecreasing function

9By combining this result with earlier work of V\@din, one obtains from a su-
percompact cardinal the existence of a transitive class model of ZF + AD + DC
containing all real numbers and all ordinals.
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for which the cofinality of F'(R,) is greater than X,. For a decade there
was a consensus among set theorists that something analogous to Eas-
ton’s result would also be shown for singular cardinals. Both Easton
and Solovay, among others, attempted to solve what came to be called
the singular cardinals problem.

Consequently, set theorists were quite surprised in 1974 when Silver
established that if GCH holds below a singular cardinal & of uncount-
able cofinality, then it holds at x as well (Silver 1975). Even this result,
however, by no means settled the singular cardinals problem—provided
that this problem is taken as asking for all the laws about cardinal ex-
ponentiation relative to singular cardinals. A first step occurred when
Bukovsky (1965) proved that cardinal exponentiation is determined by
the so-called gimel function R ™) 3 result that Godel had stated but
not proved in 1947 (page 517). .

One important spinoff of Silver’s result was Jensen’s covering theo-
rem (Devlin and Jensen 1975), which states that if the large cardinal
axiom asserting the existence of 0% is false, then the singular cardinals
hypothesis is true.” This hypothesis asserts that the continuum function
F(X,) = 2%« is determined by its behavior at regular ®,. Thus, al-
though known large cardinal axioms did not settle CH, the negation of
a Jarge cardinal axiom settled the behavior of the continuum function #
at singular cardinals.

Silver’s result was extended by Galvin and Hajnal (1975) for the case
where k is a singular strong limit cardinal of uncountable cofinality. For
such a k, they found an upper bound on 2* in terms of the behavior of 2*
for a stationary set of A < k. Somewhat earlier, in 1974, Solovay proved
that if « is strongly compact, then there is a proper class of cardinals for
which GCH holds, namely, the class of singular strong limit cardinals
greater than «.

Magidor {1977) established that Silver’s assumption of uncountable
cofinality is necessary. In particular, Magidor showed, using a very
large cardinal, that if GCH holds below R, then it may happen that
2% = R, ,s. Shelah (1982) obtained a bound on 28 under the as-
sumption that GCH holds below ®,. Furthermore, Shelah discovered
an analogue of the Galvin—Hajnal result for singular cardinals of count-
able cofinality. Finally, using a large cardinal assumption, Foreman and
Woodin found a model of ZFC in which GCH fails everywhere; Woodin
later improved this to 28« = Ro+2 for all a. (It is known, thanks to an
earlier result of L. Patai, that if, for all & and for a fixed 8, 2% = R, 4,
then f is finite; see Jech 1978, pages 48 and 580.)

FConcerning 0#, see p. 21 above of the introductory note to 1938.
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Recently Foreman (1986) has proposed the axiom of resemblance,
which he regards as a generalization of large cardinal axioms, and has
announced that it implies both GCH and the axiom of projective de-
terminacy. (He has shown in 1986 that, from CH and the axiom of
resemblance, GCH follows.) For Gddel, however, the fact that the ax-
iom of resemblance implies GCH would probably have disqualified it as
settling the continuum problem.®

7. Godel’s unpublished papers on CH

After his proposal for using large cardinal axioms to decide CH did
not succeed, Godel introduced other axioms that he hoped would decide
it. In January 1964, before he knew that such axioms, and in particular
the existence of a measurable cardinal, did not settle CH, he wrote to
Cohen about a related question: .

Once the continuum hypothesis is. dropped, the key problem con-
cerning the structure of the continuum, in my opinion, is the ques-
tion of whether there exists a set of sequences of integers of power
®; which, for any given sequence of integers, contains one majoriz-
ing it from a certain point on .... I always suspected that, in
contrast to the continuum hypothesis, this proposition is correct
and perhaps even demonstrable from the axioms of set theory.

Six years later, G6del postulated the existence of such a set of sequences
as one of his axioms, now called Godel’s square axioms, wlnch were in-
tended to resolve the continuum problem. 5

The square axioms are an axiom schema stating that, for each natural
number n, there exists a scale, of type wpy1, of functions from w, to
wp.t Perhaps Godel was led to formulate the square axioms by reading
Borel 1898, which he cites. On page 116, Borel claimed that there exists
a scale for the case n =0 for all “effectively defined” functions, though
he did not give a proof of his claim.

Godel introduced these axioms in his final contrlbutxon to solving the

_ continuum problem, a short paper written in 1970 and entitled “Some

considerations leading to the probable conclusion that the true power of
the continuum is R,”, which he intended to publish in the Proceedings

SA recent argument that 2% > R, can be found in Freiling 1986.

tIn other words, let F' be the set of functions from wy, to wy,; then F has a subset
S of power Ryn41 such that for any function f in Iﬁhere is some function g in S such
that for some « and for all 8 > a, f(B3) < g(B).




of the National Academy of Sciences." In this paper he proposed four
axioms (or axiom schemas), of which the square axioms were the first.
The second axiom asserted that there are exactly R, initial segments of
the scale given by the square axioms. The third axiom was that there
exists a maximal scale of functions from N to R such that “every as-
cending or descending sequence has cofinality w”. The fourth and final
axiom consisted of the Hausdorff continuity axiom for the scale given by
Godel’s third axiom. (Axiom 4 implies that 2% = 2% )

Godel mailed his paper to Tarski, who then asked Solovay to examine
its correctness. D. A. Martin, to whom Solovay had sent a copy of the
paper, found that a result in it contradicted a theorem of Solovay’s. In
particular, Martin observed, since Solovay had shown that the square
axioms do not put an upper bound on the size of 2%¢, Gédel had to
be mistaken in his claim that these axioms yield the result that 2% ig
bounded by N;.¥ On 19 May 1970 Tarski returned the paper to Godel,
adding in his covering letter that “you will certainly hear still in this
matter either from me or from somebody else in Berkeley.”

The whole matter was tinged with irony. For by 1965, having be-
come convinced of the proposition that the square axioms do put an
upper bound on 2%, Gédel discussed this proposition with Solovay at
the Institute for Advanced Study. At Godel’s request Solovay looked
into the matter and found that there are models of set theory satisfy-
ing the square axioms but having 2% arbitrarily large. Godel remained
unconvinced, despite K. Prikry’s assurances that Solovay was correct.”
Solovay’s result had to be rediscovered independently by E. Ellentuck
(about 1973) before Godel came to accept it.*

In 1970, not long after receiving Tarski’s letter, Godel drafted a sec-
ond version of his paper on CH, entitled “A proof of Cantor’s continuum
hypothesis from a highly plausible axiom about orders of growth”. His
title represented a sudden and unexpected shift in his longstanding re-
jection of CH. This change in attitude appears to have been due to his
belief that the square “axioms for R, (or even any regular ordinal) are
highly plausible, much more so than the continuum hypothesis.” Indeed,
he claimed that CH follows from the square axiom for ®; (that is, for
n = 1). In conclusion, he wrote:

“The various versions of this paper are being considered for inclusion in Volume
11X of these Collected works.

"Personal communication from D. A. Martin and R. M. Solovay, 13 February
1984.

¥Personal communication from R. M. Solovay, 4 April 1984.

*Ellentuck only learned of Solovay’s pnorxty for this result after finding it himself;
see Ellentuck’s note, dated February 1973, in Gédel’s Nachlass.

It seems to me this argument gives much more likelihood to the
truth of Cantor’s continuum hypothesis than any counterargument
set up to now gave to its falsehood, and it has at any rate the
virtue of deriving the power of the set of all functions w — w
from that of certain very special sets of these functions. Of course
the argument can be applied to higher cases of the generalized
continuum hypothesis (in particular to all ®,). It is, however,
questionable whether the whole generalized continuum hypothesis
follows.

At the top of this second version Gdédel had written “nur fiir mich .
geschrieben” (“written only for myself”). It is unclear who, if anyone,
saw this version before Godel’s death.

A third version of the paper (so Godel described it) was a draft of a
letter to Tarski, apparently never sent, that survives in Gddel’s Nach-
lass. This letter is much closer in spirit to the first version of the paper
than to the second. In the letter Gddel stated that be had written the
first version hurriedly right after an illness for which he had been taking
medication. What he had proved, he now believed, “is a nice equivalence
result for the generalized continuum hypothesis . .. [showing that it] fol-
lows from certain very special and weak cases of it.” Godel concluded
the letter with some speculations:

My conviction that 2% = R, of course has been somewhat shaken.
But it still seems plausible to me. One of my reasons is that I don’t
believe in any kind of irrationality such as, e.g., random sequences
in any absolute sense. Perhaps 2% = X, does follow from my
axioms 1-4, but unfortunately Axiom 4 is rather doubtful while
axioms 1-3 seem eztremely likely to me. :

Yet he conceded that Axioms 1-3 do not imply 2% < R,.¥
Thus ended Godel’s last attempt to settle the continuum problem,
which he had analyzed so brilliantly in 1947 and 1964.7

b

Gregory H. Moore

YBefore 1973, Gddel’s square axioms were studied by G. Takeuti, who established
that the existence of a scale from w; to wp implies CH. These axioms are also inves-
tigated in FEllentuck 1975, Takeuti 1978 and P. E. Cohen 1979.

2] would like to thank S. Feferman for many substantive suggestions, and J.
Dawson for many stylistic ones, to an earlier draft of this introductory note; Dawson
has also been of considerable assistance on archival matters. I am especially grateful
to R. M. Solovay for his many useful suggestions regﬁrding Section 6.




