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numbers are to provide an arithmetic. model for the points in a line : 5
in the manner which is implicit in coordinate geometry with its tacit
assumption that every point on the x- and y-axes is indexed by a
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number, and (b) that the geometrical interpretation supports a Cantor’s Transfinite Paradise
realist conception of limits of infinite sequences, via the picture of

points as limits of sequences of approximation to them, limits which nOTICE

are therefore given independently of the sequences of which they This meerial may be

are the limits. It is this which tends to underwrite the conception of protected by copyright
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infinite convergent sequences of rational numbers as actual, la (Title 17 U.S. Code

completed, infinities rather than as potential infinities.

- It was Cantor’s work which gave sense to the question ‘How many
points are there in a line?, a question which previously lacked any
precise sense. To avoid prejudging the question of whether Cantor
should be seen as an inventor or a discoverer, the notion of ‘sense’
here can be treated as relating to the mathematician’s under-

S,Q;" W‘LY : standing of the question. This was certainly changed by Cantor’s

Id work, whether we think that this was a change in the concepts

HX B ¢ 1 involved or a more adequate grasping of unchanging concepts. But
(050 LL", szD % " by looking at the way in which the question of the number of points

?‘/\\ V,eﬂ—- on a line comes to have a sense we may be able to shed an indirect

f 0 . (PO : light on the discovery/invention issue as well as on the question of

(g exactly what sense the question has been given.

VV\ v Before Cantor developed his theory of transfinite numbers, the
natural, and the only available answer, to the question was ‘In-
finitely many’, and this was a way of saying that there is no number
of points in a line, they are without number. This answer is not
devoid of content for it indicates that given any finite number of
points in a line there will always be more. In other words, the
indeterminacy surrounding the totality of points in a line is of a
specific kind and is unlike that surrounding the totality of angels
that can dance on the head of a pin. One can at least start counting
the points in a line, but cannot see any way to stop. So one knows
that certain numerical answers are wrong, and to the extent that
such answers are ruled out, the question has some sense; it is not
wholly meaningless.

Thus we see that the first prerequisite for giving any further sense
to the question is to have some more determinate conception of the
totality of points in a line. In addition the concept of number needs
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to be extended or modified in such a way that even collections
which cannot be fully counted may none the less be supposed to
contain a determinate number of elements — may be assigned a
number. The first of these, as was seen in chapter 4, is fulfilled by
the development of the theory of real numbers. The second, which
concerns us here, is effected by analyses of the concept of number
which link numbering to the establishment of one—one correspon-
dences rather than specifically to counting (counting is just one way
of setting up a one-one correspondence between natural numbers
and members of the set being counted).

1 Sets and Cardinal Numbers

The basic idea behind set theoretic analyses of the notion of
positive whole number (natural number) is that it is to sets, or to
collections of things, that numbers are assigned. A flock of sheep is
counted and the number reached is the number of sheep in the
flock. But it is also possible to compare sets in respect of the
number of things they contain without actually counting them. One
may, for example, establish that there are just as many cups as
saucers on a tray by checking to see that there are no saucerless
cups and no_ saucers without cups on them, without actually
counting to find out how many of either there are. One canbeina
position to say that there must be the same number of each without |
being able to say what that number is by establishing that there is a
one-one correspondence between the set of cups on the tray and
the set of saucers on the tray. Counting can then be seen as
establishing the existence of a one-one correspondence between a
finite set of objects and a subset of the natural numbers. If this
correspondence can be thought to exist independently of anyone
setting it up, then any finite set must contain a determinate number
of objects, whether it has been counted or not. For any two finite
sets it is obvious that there can be a one-one correspondence
between them only if they contain the same number of elements,
and it is tempting to generalize this to all sets, whether finite or
infinite. This is precisely the step which Cantor took, but it is not
entirely straightforward.
Suppose that we were to define ‘number’ by stipulating that a
collection A has the same number of elements as another collection
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B if (and only if) there is a one—one correspondence between them
(a correlation which assigns to each member of A exactly one
member of Band to'each member of B exactly one member 'of A).
Since this does not make any mention of whether the col}chons in
question are finite or infinite it would seem to 1eg1_t1nuze an
extension of the notion of number into the infinite, F:nabhng one to
think of an infinite collection as containing a determinate number of
ﬂ]ings' . - -
But the matter is not quite so simple. For as was mentioned in
chapter 3, infinite sets are characterized by the seemggly paradoxi-
cal property of being such that they can be put into one-oné
correspondence with proper parts of themselves. This is paradoxi-
cal because it seems intuitively obvious that there must ?lways be
more elements in any whole than in some proper part of it. .
The set of natural numbers N =1{0,1,2,3,...7n. . .} can be put in
one-one correspondence with the set which consists only of' the
even numbers E ={0, 2, 4,6, ... 2n, ...} by pairing each_ nin N
with 27, in E . Because E is infinite its supply of elements will never
run out even though one would instinctively want to say that thf:re
must be twice as many elements in N as in E. z_‘\{ld Dedekm'd
defined infinite sets by reference to this charactenstic: a set A is
infinite if, and only if, there is a one—one correspondence between
A and a set X which is a proper subset of A. ‘ -
This means that if one were to say that two infinite sets contain
the same number of elements when there is a one~one correspon-
dence between them, and if one remains convinced that Fhe size of
any whole must always be greater than that qf any of its proper
parts, then the number of elements in an infinite set canpot be
thought to be a measure of its size. For example, N and E wﬂl l_lave
the same ‘number’ of elements even though thge are mﬁmtel.y
many numbers in N which are not in E, so that in tpls sense Nis
‘bigger than’ E . This suggests that the elements of an infinite setare
without number not just because they cannot be exhaustively
counted but also because the notion of number, as a measure of
size, can get no grip here. All infinite sets seem to come outas bemg
of the same ‘size’ if one—one correspondence is taken as mdlcapng
sameness of size for sets. Indeed, if all infinite sets could l?e put into
one-one correspondence with each other, one woulfi be justified in
treating the classification ‘infinite’ as an undifferentiated refusal of
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numerability. But given Cantor’s discovery that there are infinite
sets which cannot be put into one-one correspondence with each
other, this conclusion is less compelling.

His proof, that for any set A (whether finite or infinite) there can
be no one-one correspondence between A and the set of all subsets
of A (the power set of A, denoted by P(A)), is important because it
entails that there can be no one—one correspondence between the
natural numbers and the real numbers. It immediately follows that
the set N of natural numbers cannot be put into one—one corre-
spondence with its power set P(N). Since (a) each subset of the
natural numbers can be uniquely correlated with an infinite
sequence of zeros and ones, (b) each such sequence canberead as a
binary decimal representation of a real number in the interval (0, 1)
and thus as representing a point on the unit line, and (c) the real
numbers in (0, 1) index all the points on whatever is chosen as the
unit line, this means that the points on a line cannot be put into one—
one correspondence with the natural numbers.

Cantor interpreted this impossibility of one-one correspon-
dence as meaning that there must be ‘more’ points on a line than
there are naturalnumbers (since there are clearly at least as many
points in a line as there are natural numbers). More generally he
interpreted it as licensing an attempt to extend the notion of
number into the infinite. On this basis it became necessary to
recognize a division between those sets which are denumerable, i.e.
which can be put in one-one correspondence with the natural
numbers, and those which, like the set of points in a line, are non-
denumerable, i.e. for which no such correspondence exists.

Following Cantor in taking the first steps in this direction slightly
more formally:

Definition A set,or aggregate,is any collection into a whole M of
definite and separate objects m of our intuition or thought.

Assumption Every set, or aggregate, has a determinate ‘power’ or
‘cardinal number’.

Definition Two sets M and N have the same power, or cardinal
number (C(N) = C(M)) if, and only if, there is a one—one corre-
spondence between them.
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Cantor’s way of introducing this definition 1s to say:

We will call by the name ‘power’ or ‘cardinal number’ of M the
general concept which, by means of our active faculty of
thought, arises from the aggregate M when we make abstrac-
tion from the nature of its various elements m and of the order
in which they are given. (Cantor, 1955, p. 86)

If this is interpreted as an attempt to define a concept by
reference to a mental act, something performed privately by each
individual for himself, it is hardly a rigorous or adequate deﬁniﬁpn.
But it can also be treated as a commentary on the precise condition
under which two sets are to be said to have the same poOWwer.
Whatever ‘power’ or ‘cardinal number’ is, it is a property of a set
which does not depend on the specific nature of the elements 1t
contains nor on the order in which the elements are given because
neither of these are relevant to determining whether two sets are the
same in this respect.

Likewise, the ‘definition’ of ‘set’ is less a definition than an
attempt at explication of something which is being giveg the status
of a primitive, undefined, term. For example Hausdorff introduces
the term ‘set’ as follows:

A set is formed by the grouping together of sipgle objects into
a whole. A set is a plurality thought of as a unit. (1957, p. 11)

What is implicit in both these explications is the thought Fhat aset
is a determinate collection of objects (a whole given after its pgrts)
whose identity is entirely dependent on its members (the objects
collected) and not on any method by which they may have been
grouped or collected. Cantor, in particular, Wanteq to treat all sets
as far as possible by analogy with finite sets. A finite set can be
specified simply by listing its members, in the form {a, b, ¢, d}
where a, b, ¢, d need have nothing in common (a wasp, a London
bus, Mount Everest, Mrs Thatcher). An infinite set mght, by
analogy, be thought to be specifiable by an infinite list. It.mlght be
just a contingent human limitation not to be able to think of an
infinite set as a unit without going via some common charactenstic
of its elements, or some principle for selecting or generating them.
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Here then, although classes, treated extensionally, would be
counted as sets, sets are not restricted to being classes, i.e. are not
restricted to being collections of objects which are the extensions of
terms.

It is important to the development of set theoretic analyses of the
natural numbers that sets be determinate collections of objects. Sets
are to be just the sort of collections whose members can, or could in
principle, be counted and thus assigned a number. But it is not easy
to make the conditions of numerability explicit. To say that two sets
have the same power if, and only if, there is a one—one correspon-
dence between them does not yet entitle one to call these powers
‘cardinal numbers’ (where the sense of ‘cardinal number’ is derived
from finite sets and natural numbers — the sense in which we may
think of such sets as containing a determinate (finite) number of
objects even though they have not been counted). At the very least
we need to be able to say when the power, or cardinal number, of
one set is greater or less than that of another.

Definition Given any two sets A and B

C(A) < C(B)iff thereis a subset B° of B such that
C(B)=C(A). ie

C(A)S C(B)iff @B°)B° < B & C(B")= C(A)).
C(A)< C(B)iff C(A)< C(B)and C(A)# C(B).

But to know that this defines even a partial order relation it is

necessary to know that
CA)SC(B)& C(B)s C(A)> C(A)=C(B)

i.e. that if there is a subset B° of B such that there is a one—one
correspondence between A and B° and there is a subset A° of A
such that there is a one—one correspondence between B and A°,
then there is a one-one correspondence between A and B. For
finite sets this is obvious, but not for infinite sets. The proof that it
holds for infinite sets is known as the Schroder-Bernstein theorem
(for a proof see, for example, Rotman and Kneebone, 1966, p. 49).
But even this result, does not give all that is necessary for powers to
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look like cardinal numbers. Given any two sets A and B there are
four possibilities:

1 There is B° € B such that C(A) = C(B°), and there iIsA°C A
such that C(A") = C(B). '

2 There is B°C B such that C(A)= C(B°), but there is no
A° C A such that C(A")= C(B). .

3 There is no B°C B such that C(A)= C(B"), but there is
A° C A such that C(A") = C(B). .

4 There is no B° C B such that C(A)= C(B"), and there is 0o
A° C A such that C(A") = C(B).

We then have:

1 implies C(A)= C(B)

2 implies C(A) < C(B)

3 implies C(B) < C(A) o

4 implies A and B are incomparable in respect of cardinality.

It can readily be shown that if either A or B or both are finite then
case 4 will not arise, but the proof that 4 can never occur when both
A and B are infinite requires a further assumption about sets - the
assumption that every set can be well-ordered (ordered in such a
way that each of its non-empty subsets has a least element).

Unable to prove the comparability of all sets in respect of
cardinality, Cantor adopted it as an assumption. With this assump-
tion it is possible to operate with powers in such a way that they do
indeed begin to behave like cardinal numbers.

Definitions Let A and B be sets. Let C(A) = a, C(B) = b, then

1If A and B are disjoint, a + b = C(AVY B)
where AU B={x:x€Aorx€B}.
2a-b=C(A X B)
where A X B={(x,y):x €A & y€ B}.
3 a® =C(A%)
where A? =(f: f is a function from B to A}.

It can then be proved that powers, or cardinalities, behave very
much as numbers should, and that in the case of finite sets we get all
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the results we should expect. If A ={a, b} and B ={k, m, n} and
we put C(A)=2, C(B)= 3 we find that

2+3=C(a,b,k,m,n})=S5

2:3 = C{(a, k),(a, m),{a, n),(b, k),(b, m),(b, n)}§.= 6

22 =C([k, a),(m,a),{(n, a);, {(k, b),(m, b),(n, b)),
(k, a),{m, a),{n, b)},{(k, b),(m, b),{(n,d,
[k, a),(m,b),(n, b)],é(k, b),(m,a),(n,a)),
((k, a),(m, b),(n, @)}, {(k, b),(m, a),(n, b)}})=8

But, as might be expected, given that infinite sets can be put in one—
one correspondence with proper subsets of themselves, infinite
cardinalities do not behave quite like finite ones and their ‘arith-
metic’ may seem a bit surprising. For example, if R j = C(N) where
N is the set of natural numbers, then for any finite n

mRy=R,+R,+...(ntimes) =R,
R, =Ry-Ry- ... (ntimes n)=R,

Both the even numbers, E, and the odd numbers, O, can be put in
one-one correspondence with the whole natural number sequence,
ie. C(E)=C(0)= C(N)=R,. Andsince N=FEV O and E and
O aredisjoint, C(E) + C(0O)= C(N),ie.Ry+ R, =R,

What this arithmetic of cardinal numbers does give is a way of
expressing the relationship between the cardinality of a given set A
and its power set P(A) (the set of all subsets of A). For there is a
one-one correspondence between subsets of A and the set of all
functions f from A to a two element set, such as {0, 1}, where each

subset is considered as the set of those elements of A for which f
takes the value 1.

so C(PA)=C(24)=2c"

Since it has already been established that the cardinal number of the
points on a (unit) line is the same as that of the real numbers in the
interval (0, 1), and that this in turn is the same as the cardinal
number of the power set of the natural numbers P(N), we can now
put a ‘number’ on the points in a (unit) line, namely C(P(N)) = 2*.
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But if, by analogy with 2°> = 8, we ask for an ‘evz.\luation’ of 2% we
find that we do not have the means of supplying an answet. In
particular Cantor thought that there are no infinite caIdmal
numbers in between R, and 2%, ie. that 2% is the next infinite
cardinal number after R o, but was unable to proveit. This is what
has become known as Cantor’s continuum hypothesis.

The situation so far is that it has just been assumed ?0;1 \Z;I(lit gf

e means of providing a proof), that given any two sets )
gilther Cc(A) 2 C(B), or C(A)<C(B)or C(B)<C(A) In other
words it has been assumed that cardinalities, or c?rdmal m_1mbers,
can be arranged in a single linear order. But just making tltllal\t
assumption does not tell us anything about .the nature of' e
cardinal number ‘sequence’, about how to establish where any given
cardinality lies in it, or even whether itis correct to talk about there
being a next cardinal number after R,. Our assumption does not
rule out the possibility that infinite cardinalities might, like the
rational numbers, be densely ordered. If that were the case, tl_lere
would always be another cardinal number between any two given
cardinalities and given any cardinal number there would be no
‘next’ one.
neé)tnge we get into the domain of inﬁnite.car(%inalities the ql}ly
procedure we so far have for reliably generating -hxgher cardmahttllelzs
is exponentiation — repeatedly taking the cafdmal number of the
power set of a given set. So we can form a series of sets

N,P(N), P(B(N)), PRE(N))) - - - with cardinal numbers

2““ -
R, 2%, 28,22 ..

In the finite case, exponentiation does not take us from one
cardinal number to the next, there are lots of numbers in between 2
and 23, and even more between 2° =8, and 28. But we also know
that infinite cardinalities do not behave in the same way as ﬁm_te
ones, so the question of whether there are or are not any mﬁplte
numbers in between those in the above series is an open question.
The whole problem is that the theory of cardinality on its own has
so effectively severed the connection between number and measure
of size that it gives rise to no numerical scale by reference to whl.ch
infinite sets might be ‘measured’. The idea of a scale is one which
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involves an order; in demanding a.scale we are asking for an
ordering of cardinalities. But the infinite cardinalities were intro-
duced by disregarding the associations-of number with counting
and with ordering, so it is perhaps not surprising that this way of
introducing transfinite numbers yields ‘numbers’ which, even if
ordered in reality, as the assumption of comparability asserts,
cannot be put in order or named in order by us.

2 Transfinite Ordinal Numbers

However, as was seen in chapter 4, it was not with cardinal notions
that Cantor first started to extend the notion of number into the
transfinite (Cantor, 1883). His initial extension was of the natural
number sequence into the transfinite, using numbers as a measure
of the number of times an operation has been repeated. He first
introduced his transfinite ordinal numbers as numbers which are
generated in a sequence and thus as an extension of the natural
number sequence, which is generated in counting by the principle
of adding one to the previous number. Thus his first principle of
generation for ordinal numbers is as follows.

First Principle of Generation The addition of a unit to a number
which has alredy been formed.

Used on its own this principle just gives us the ordinary natural

numbers, or numbers belonging to what Cantor calls the first
number class. ‘

First Number Class (1)=0,1,2,3,4,...

His second principle of generation is one which allows for the
formation of the first infinite ordinal numbers as limit numbers. We
imagine that the set of natural numbers can be run through in order
and, assuming’ they constitute an actually infinite set, that there
must be an infinite bound to the numbers required. The second
principle of generation allows for the formation of a ‘number’, w, to
stand for the first number which is greater than all the finite
numbers. w is thought of as a limit which the sequence 0, 1,2, 3, . ..
approaches but never attains.
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Second Principle of Generation 1f there is defined any definite
succession of real integers of which there is no greatest, a new
number is created, which is defined as the next greatest to them all.

Once one of these new, infinite ordinal numbers has been
introduced, the first principle of generation will apply to it so that
we get a new sequence w +1, o +2, o +3, ... This, being a
succession of integers with no greatest member, is a sequence to
which the second principle can be reapplied so that we get another
infinite ordinal number @ + @ or  -2. The infinite ordinal
numbers generated by repeated applications of these first two
principles alone form what Cantor called the second number class.

Second Number Class (Il)=a),a)+1,...,w+n,...,w-2,
(w-2)+1,...0°3,...,0"0,...

All the pumbers in the second number class can, however, be
thought of as the numbers obtained by introducing a more or less
complicated order on the sequence of natural numbers. Any
sequence which, like 0,1, 2, 3, . .. , is a linear sequence with no last
member and which involves only one infinite sequence will .be
called a simply infinite sequence . The sequence formed by running
through all the natural numbers from 2 on and then tacking Oand 1
on at the end after all the rest, is not a simply infinite sequence but
one whose ordinal number is @ + 2, i.e. a simply infinite sequence
followed by a two element sequence (2, 3,4 ... 0, 1). Similarly the
sequence formed by running through all the even numbers and then
all the odd numbers, (0,2,4,...1,3,5,...), hasthe ordinal number
o + o, ie. it is one simply infinite sequence followed by anotber.
The sequence formed by running through all the numbers divisible
by 2, followed by all those divisible by 3, followed by all those
divisible by 5, and so on for all the prime numbers.

(2,4,6,...3,6,9,...5,10,15,... ... ..)

is a simply infinite sequence of simply infinite sequences, whose
ordinal number is @ * @, since there is no greatest prime number.
This means that although we have generated a lot of infinite ordinal
numbers (numbers which depend on the order in which a set is
given) they are all such that they are ordinal numbers of sets which




106 Cantor’s Transfinite Paradise

can be put in one-one correspondence with the natural numbers
(denumerable sets), and indeed are all ordinal numbers which can
be assigned to the set of natural numbers when it is listed (or
‘counted’) in something other than its natural order.

So what we have is a proliferation of infinite ordinal numbers
which all apply to sets having the same cardinality, R . These first
two principles on their own do not generate any ordinal number
which could be the number of points in a line, since this set has a
cardinality greater than R, Thus Cantor introduces a third
principle of generation, which he also called the principle of limita-
tion, or the principle of interruption.

Third Principle - Principle of Limitation  All the numbers formed
next after @ should be such that the aggregate of numbers
preceding each one should have the same power (or cardinality) as
the first number class. These numbers constitute the second
number class.

The idea behind this principle is to delimit a totality of ordinal
numbers produced by the first two principles (the second number
class) in such a way that the second principle can then be applied to
give a new number (w,) which is defined as the next number greater
than all of the numbers belonging to the second number class. The
first two principles can then be reapplied to further extend the
ordinal sequence. A more general form of the principle of limitation
allows this process to go on indefinitely by sectioning the numbers
generated into number classes to which the second principle can
then be applied.

General Principle of Limitation All the numbers formed next
after w, should be such that the aggregate of numbers preceding
each one should have the same power (or cardinality) as the

(a + 1)th number class. These numbers then form the (a + 2)th
number class.

Cantor proved that the second number class cannot be put into
one-one correspondence with the first and that there can be no set
with a cardinality in between those of the two number classes. More
generally he proved that the cardinality of the (a + 1)th number
class will be greater than that of the a th number class and that there
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can be no set with a cardinal number in between these. Thus the
cardinal number of the second number class is the next after R o, and
islabelled R ,. Any set whose ordinal number is @, or more will also
have a cardinality greater than R, i.e. will be a non-denumerable
set.

3 Ordinal Numbers and Cantor’s Continuum Hypothesis

Our question about the number of points in a line thus now receives
a further sense. We can now ask whether its cardinality is the next
after R, by asking whether 2% =R . The more precise form of
Cantor’s continuum hypothesis asserts that this is the case. We can
also ask whether it is possible to assign the points in a line, in their
natural order, an ordinal number. If this were possible then it would
be relatively easy to answer the question about the cardinality of the
continuum because we would merely have to know which number
class the relevant ordinal number falls into. The problem is that the
points in a line in their natural order cannot be assigned an ordinal
number, even one which involves going through infinitely many
infinite sequences.

To see this it is necessary to examine more closely what is
involved in assigning to a set an ordinal number, making explicit
some of the assumptions which have been made. The ordinal
number sequence was extended into the infinite by imitating as
closely as possible the ordinary natural number sequence. Similarly
the application of infinite ordinal numbers to sets is to imitate as
closely as possible the application of the finite, natural numbprs
when they are used in counting to give the number of elements in a
finite collection.

When the elements of a finite set are counted this can be seen as
setting up a one-one correspondence between these elements and
the first part of the natural number sequence given in order. When
the elements of the set are exhausted the last number used gives the
number of elements in the set. This process of counting involves
selecting the elements counted in a particular order; when a set is
counted it is counted in a particular order. When the set to be
‘counted’ is infinite the process of counting does not stop so one
cannot assign a number on the basis of saying that it is the last one to
be used. But one can continue to use the idea of putting the
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elements of the set in an order which matches the order of the first
part of the ordinal number sequence up to some specific ordinal
number. This was what was done with the examples of the different
orderings (ways of counting) the natural number sequence, and is
the idea used in extending the ordinary arithmetic operations to the
ordinal numbers. This is based on the idea that the addition of
ordinal numbers involves placing two ordered sequences end to
end to obtain a new, extended ordered sequence. Thusif A = (a, b)
and B =(c, d, e) are ordered sets, the ordered union A + B ={(a,
b, c, d, e), whereas the ordered union B + A{c, d, e, a, b). This
means that the addition of ordinal numbers will not, in the infinite
case, be commutative. Multiplication of ordinal numbers is defined
as repeated addition. Where infinite sequences are involved the
ordinary laws of arithmetic are not all obeyed. For example:

lro=1+1+1...=w
2:w=2424+2+.. . =1+)+A+H+A+1)=
=0
w-2=0oto=01+1+1+. )+ E+1+1+..)
o (ot+h)=(wtotot+.. )to=(v-v)tw
(w+H)-o=@+DH+(@+)+(w+H)+..m0-w

For a set to be assigned an ordinal number it must be possible to
order it in the same kind of way that the sequence of ordinal
numbers is ordered. The ordinal number sequence is constructed
by starting a sequence, letting it run on infinitely and then taking the
next number after all of those and starting again. There are lots of
bits of the sequence which have no greatest member (there is no
greatest natural number, for example) but every bit has a least
member (it always starts somewhere). So if a set is to have an
ordinal number it must be possible to arrange its elements in a
linear order which is such that every non-empty subset has a least
element, i.e. to impose a well-ordering on it.

But the points in a line (or the real numbers in the interval (0, 1))
given in their natural order are not well-ordered. There are
indefinitely many subsections of the line which have no first point.
For example the set of points corresponding to numbers greater
than ; and less than 1. Since there is no real number immediately
after ; (between any given number and 3 there will always be another
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number) there is no least element to this set. Soif the points in aline
were to be assigned an ordinal number it would have to be possible
to impose on them an order which is different from their natural
order and which is a well-ordering. This can be done for the rational
numbers, for they too are not well-ordered by the natural order;
there is no least rational number greater than ; and less than one.
But it is possible to write out all positive rational numbers (with
some repetitions) using two dimensions:

1T 2 3 4 5 6
V1—1/2 1/3—=1/4 1/5—=1/6
21 227 234" 24 725 26

31" 32" 3/3-"3/4  3/5  3/6
a1 4277 43 A4 &5 46
siib"s/2 ;3 s/4 5/5 5/6
6/1 6/2 6/3 6/4 6/5 6/6

(=) WMV RV .

The numbers in the array can be listed by following the arrows,
giving the sequence:

1/1, 1/2, 2/1, 3/1, 2/2, 1/3, 1/4, 2/3, 3/2, 4/1, 5/1, ...
1 2 3 4 5 6 7 8 9 10 11 ...

And this gives not just a well-ordering but also a one—one corre-
spondence with the natural numbers in their natural order. Each
rational number can be expressed in a form x/, where x and y are
relatively prime. The numbers of this form constitute an infinite
subset of that listed (infinite because n/1 is included for each
natural number r). The listing thus effects a one-one correspon-
dence between the positive rational numbers and a subset of the
natural numbers in their natural order. Thus the rational numbers,
ordered in this way, have ordinal number @ and are shown to be
denumerable, i.e. to have cardinality R ;.

However, it is not possible to produce an ordering on the real
numbers in the same sort of way, for if it were, there would be a
one—one correspondence between them and the natural numbers.
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One can use a square array to show that no enumeration of the real
numbers in (0, 1) can be complete; there must always be a number
which has been missed out. Suppose that the real numbers are given
in terms of their binary decimal expansion, then when we list them
we get an array:

1 0. 1 1 0
2 0 >SN0 1 1
\

31 1 1 0
4 1 0 1 >~ 1

Define a new number r given by reading down the diagonal of the
array and interchanging zeros and ones, i.¢. given by the decimal
expansion .1100.... This number differs from all those listed
because, for each n, it differs in the nth decimal place from 7, . This
means that there are no immediate grounds for supposing either
that there is a well-ordering of the points in a line or that there is not.

The extension of the ordinal number sequence into the transfinite
gives a way of generating not only infinite ordinal numbers, but also
a sequence of infinite cardinal numbers, the numbers of the succes-
sive number classes, which is such that each one is the ‘next greatest’
after the one which it follows. So the ordinal number sequence also
provides a scale of cardinal numbers on which one might hope to
locate 2™, But the problem, as Cantor saw, was that the two routes
to cardinal numbers are largely independent. There is no guarantee
that every cardinality (the power of every set) will have a represen-
tative amongst the cardinalities of the number classes (classes of
ordinal numbers) generated by Cantor’s three principles. Without
such a guarantee one has no reason to suppose that there must be a
definite answer to ‘Where on the sequence of alephs indexing the
number classes, does 2™ lie? In proposing that 2% = R, Cantor also
assumed that every set, not just the set of points on a line, can be
well-ordered, and it was this assumption that entitled him to claim
that every set, including the set of points on a line, has at least one
ordinal number. Any set which has an ordinal number will have a
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cardinal number which is amongst the alephs. If it is not the case
that every set can be well-ordered, then the cardinalities of those
sets which cannot be so ordered will not be represented by cardinal
numbers arising from the construction of the ordinal number
sequence.

But if the ordinal number sequence is just a construct, something
Cantor brought into existence by defining certain symbols, prin-
ciples for generating more of them and rules for manipulating them,
there would be an essential asymmetry between the status of infinite
cardinal and infinite ordinal numbers. This asymmetry would not
justify Cantor’s persistent attempts to prove his continuum hypo-
thesis. For he believed not only that it was true but that, as a
mathematical truth, it should also be provable.

4 Order Types

Cardinal numbers were introduced in terms of one-one correspon-
dences between independently given sets. The continuum hypo-
thesis seeks to equate the cardinality of one such independently
given set with that of a set of ordinal numbers, a constructed set. But
if the ordinal numbers are purely mental constructs there are no
grounds for supposing that this equation can be proved as a
mathematical theorem, any more than one would suppose that the
number of planets can be mathematically proved to be nine. Only
those properties of ordinal numbers which follow from the way in
which they have been constructed could be expected to be
provable, not anything about their relation to independently given
sets. This raises the philosophically crucial question of whether it
makes sense to suppose that there are mathematical truths which
are not provable. Could the continuum hypothesis be true (or false)
but not provably one or the other? If it were true but not provable
(Cantor believed it to be true but could not prove it) what sort of
grounds, if any, could we have for thinking it to be true? These are
questions whose discussion is to be postponed until chapter 9, but
which can never be very far away when exploring a newly created
branch of mathematics (the study of transfinite numbers, the
discipline of transfinite set theory, was created by Cantor and his
successors, whether the object of their study was created by them or
not).
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But although Cantor first introduced the transfinite ordinals via
principles of construction, he did not regard these numbers as mere
products of mental construction. Their justification to the title
‘number’ requires more than generation in a sequence and more
than definition of ‘arithmetic’ operations as purely symbolic
manipulations. They must function something like numbers in that
they can be applied and seen as giving a certain kind of information
about the sets to which they are applied. In other words they have to
be shown to have a use. This requires that the arithmetic operations
be interpretable as operations applied to well-ordered sets. To
make the parallel with cardinal numbers closer Cantor gives a
definition, in terms of one-one correspondence, of what it is for two
sets to have the same ordinal number.

Definition Two well-ordered sets A, ordered by <,;, and B
ordered by <,, have the same order type (or ordinal number) (O(4,
§)) = O(B, §,)) if, and only if, there is a one-one, order preserving
correspondence ¢ between A and B, i.e. c is such that for every
x,yin A, x &, yiff c(x) 5, c().

Definition The segment A, of an element a of a well-ordered set
(A, <) is the subset of A which consists of those elements of A
which precede a, ie.

A, =[x:x€ A & x< a}

It can then be proved that a well-ordered set does not have the
same order type as any of its segments, although in the case of an
infinite set it is still possible for the whole set to have the same order
type as one of its proper subsets (one which is not a segment). For
example, take the set N of natural numbers given in their natural
order. Any segment of N will be a finite set, the set of numbers less
than n for some natural number n. Since every finite set has a
greatest member and N does not, none of these segments is of the
same order type as N. But the set of even numbers does have the
same order type as N, since the mapping f(n) = 2n from N to E is
one-one and order preserving.

Definition 1f(A,<,)and (B, <,) are well-ordered sets then O(A,
<)) <0O(B, <) if, and only if, A has the same order type as some
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segment of B, i.e.if, and only if, there is an element b of B, such that
O(A,<) =O(By, %))

The comparability of well-ordered sets can then be proved, ie.
given any two well-ordered sets (A, <,) and (B, <,) either

O(4,<) = O(B,<,), 0or O(4, <) < O(B, <), or
O(B, <) <O(4,<,).

The ordinal numbers are themselves well-ordered and, in the
finite case, the set of numbers which are less than n, {O,' 1,2,...
n — 1}, itself contains » members. This suggests using the ordinal
number sequence as a standard well-ordered set, a scale against
which all others can be compared, and thereby assigned an ordinal
number.

Definition A set M, well-ordered by <, has ordinal number a if,
and only if, M ordered by < has the same order type as the set of
ordinal numbers less than o under their natural ordering.

Addition and multiplication of ordinal numbers can now be
associated with operations on well-ordered sets.

Definition H O(A,<,)=a and O(B,<,;)=p and A and B are
disjoint then a + f = O((A v B)), where (A U B) is the ordered
union of A and B, ie. A Y B ordered by the relation < defined as
follows: x < y if,and onlyif (a) x,y€ A & x <; y,or(b)x,y€ B &
xS, y,0or(c)x€A&y€EB. ‘

In other words a + f is the ordinal number of the well-ordered set
which results from first running through all of A and following this
by all of B in their given orders, and this definition holds whether A
and B are sets of ordinal numbers or of objects of other kinds.
Multiplication was defined in terms of repeated addition:
a-B=a+a+a ... times. Thus a - will be the ordinal
number of the ordered union of a whole sequence, whose ordinal
number is 8, of disjoint sets, each with ordinal number a.

Itis now also possible to give an alternative definition of cardinal
number.
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Definition The cardinal number C(X) of a set X is the least
ordinal number a such that there is a one-one correspondence
between X and {x: x is an ordinal number and x < a}.

This definition can replace the preceding one, on the assumption
that every set can be well-ordered. If this assumption fails then
either it has to be allowed that there are some sets which lack
cardinal numbers or it has to be allowed that there are cardinal
numbers which cannot be identified with ordinal numbers.

In this way the theory of infinite ordinal and cardinal numbers
can be integrated, but this is done in such a way that the basis for
further investigation lies in a study of sets. For questions about what
numbers there are, and what their relations are, have been made
dependent on questions concerning what sets exist and what are the
relations between them. Even the generation of the ordinal number
sequence is dependent on the power of the principle of limitation to
mark off the ordinal numbers into sets, or classes, to which the
second principle of generation can then be applied. So the question
of what ordinal numbers there are depends, for its answer, on an
answer to the question ‘What classes of ordinal numbers are
there?’

5 Set Theoretic Paradoxes

Moreover, this becomes a pressing question in the light of what has
become known as the Burali-Forti paradox. If one supposes that
there are no limitations on the formation of classes of ordinal
numbers, then it must be the case that there is a class consisting of
all the ordinal numbers. But if these numbers can be ‘limited’ to
form a class, it is certainly a well-ordered class and so must itself
have an ordinal number. The second principle of generation would
assign it a new number, that which is the next greatest after all the
ordinals But there can be no ordinal number greater than all the
ordinals. Yet the ordinal number, Q, of the set of all ordinals cannot
be an ordinal number belonging to that set, for then it would be a
well-ordered set which has the same ordinal number as a segment
of itself, {x: x is an ordinal number & x <Q)]. But it can be proved
that no well-ordered set can have the same ordinal number as a
proper segment of itself. So if the theory of ordinal numbers is to be
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consistent, clearly the totality of ordinal numbers cannot be
allowed to form a set or class to which the second principle of
generation can be applied or to which the notion of ordinal number
can be applied. Some more precise delimitation of the permissible
‘limitations’ of the ordinal number sequence is required. The
second principle of generation is what allows entry into the
transfinite domain; without it there would be no infinite ordinal
numbers. But the vagueness inherent in it concerns what is to count
as a defined definite succession of real integers; clearly not every
candidate for being a definite succession of ordinal numbers
will do.

The problem is not limited to the ordinal numbers, however. A
very similar situation, exhibited by Cantor’s paradox, occurs in the
case of cardinal numbers. Cantor proved that for any set A, the
cardinal number of P(A) is strictly greater than that of A,
C(P(A)) > C(A). This entails that there can be no greatest cardinal
number, for given a set of no matter what cardinality, its power set
will have a greater cardinality. But consider now the set U consist-
ing of all objects (including classes). This is the greatest possible set,
since it includes all other sets as subsets. Moreover for any two sets
A and B, if A is asubset of B, C(A) < C(B). So that every set must
have a cardinal number less than or equal to that of U. Hence C(U)
is the greatest cardinal number, contradicting our previous conclu-
sion. So again consistency would seem to require that the set U
should not be treated as a totality to which the notion of number can
be applied.

These paradoxes clearly pose a threat to the whole theory of
transfinite numbers. At the very least their claim to mathematical
legitimacy requires that use of these notions should not lead to
contradictions. Even the most ardent proponent of the view that
mathematics is a free creative activity recognizes the consistency
constraint — the mathematician can create what realms he wants
provided they are free from contradiction. In a pure dream world
contradictions don’t matter, but if mathematicians are to go in for
giving proofs, and if their theories are to be used, then contradic-
tions must be avoided. However, the appearance of contradictions
in a new theory does not condemn it at once. It is quite possible that
it has been incorrectly formulated, or that some inappropriate
assumption has been made. In any new development, whether of a
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game, a piece of legislation, a computer program or a radar system,
the prototype will need improving, modifying and generally tidying
up before it will function properly.

Cantor’s reaction to the paradoxes was to introduce a distinction
between the ordinary infinite, which is, in his view, a proper domain
of mathematical study and subject to the numerical methods
proposed in his transfinite arithmetic, and the absolute inﬁr.ﬁte
which is beyond all numbering, measuring and human reasoning.
He thus effectively extends the notion of number so that it can now
be applied to totalities which previously had to be regarded as being
without number, but even so there still have to be some totalities
which are without number. The members of any absolutely infinite
collection are without either ordinal or cardinal number. But this
still Ieaves a problem which is how to tell whether a given collection
is absolutely infinite or just ordinarily infinite.

That the fundamental difficulty here lies not so much with the
notion of number as with the notion of set to which it has been
inseparably linked in Cantor’s theory, is suggested by Russell-’s
paradox which does not involve numbers at all, only sets. This
paradox arises by modifying the proof (given on pp. 63-4) that
there can be no one-one correspondence between a set A and its
power set P(A). Since sets (power sets in particular) can contain
other sets as members, it seems sensible to ask whether a given set
belongs to itself. For example the set of all sets containing more
than two elements must belong to itself, whereas the set of sets
containing less than two elements does not. Consider then the set R
of all those sets which do not belong to themselves. R must either
belong to itself or not. If R belongs to itself, then it satisfies its own
defining conditions, i.e. it does not belong to itself. So R cannot
belong to itself, but then it does satisfy its own defining condition
and does belong to itself. So we are caught in a contradiction either
way. A consistent set theory cannot then allow R to exist, foritisa
contradictory set. But this raises the difficult question of the
grounds on which R is to be excluded. It will not be enough simply
to legislate R out of existence since there might well be other
problematic sets waiting to surprise us. To be sure of getting a
consistent set theory, something without which the theory of
transfinite numbers can never be assured of consistency, there have
to be general principles governing set existence. These principles
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have either to be laid down or discovered by appeal to some more
general considerations.

There are two slightly divergent concerns here. There is-the
concern of the mathematician to get a working theory, one about
which he can be reasonably confident, and there is that of the
philosopher worried about the nature and status of this mathemati-
cal activity. He wants to know not merely what principles will
produce a workable set theory, but what sort of justification, if any,
these principles can have, whether they are ultimate first principles
or whether they can be justified by appeal to some more basic
principles. A justification from principles known to be reliable
would constitute a guarantee of consistency, but in the absence of
any justification he will want to know what possible assurance there
can be of consistency.

The mathematical approach to systematizing and rigorizing a
body of unsystematized procedures is that established with Euclid,
namely, axiomatization. Producing a minimal list of axioms or
postulates about what exists and about what operations can be
performed and then proceeding systematically to show that most of
the previously used results, together with many others, can now be
proved from these axioms. It is this approach which gives the
question concerning the number of points on a line its present
meaning and so this is what will be sketched in the next chapter. The
more philosophical concerns, which have been raised here will be
postponed until we have a clearer view of the mathematical
situation.




