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Every theory, philosophical or otherwise, must take some notions for granted. The
philosopher inherits a fully developed language, a U-language in Curry’s sense (see
the previous chapter). Nevertheless, in both historical and contemporary philosophy,
the most basic concepts of discourse are open to articulation and analysis. Every notion
or principle in the inherited U-language is up for scrutiny and perhaps revision, at
least in principle—even if one cannot revise every notion, all at once. In Neurath’s

~ metaphor, the philosopher is at work rebuilding parts of the floating ship of concepts.

The notions of existence, object, and identity occur in just about every philosophical
work, usually without further ado. Indeed, it is hard to imagine writing philosophy
without invoking and presupposing these notions. Should we conclude that every-
one already has clear and distinct ideas of them? Is any attempt to articulate such
notions a waste of time and effort?

Presumably, one cannot go about articulating basic notions without presupposing
and even using them. We have to start somewhere. This part of the book exhibits what
is sometimes called a “dialectical” approach. We begin by using certain notions.
As we go, some of these notions get refined and even modified. This tempers some of
the very statements we use in getting the procedure off the ground. As the notions get
further modified, the statements used to make the modifications themselves get modi-
fied. In the end, the original statements should be regarded as first approximations.

Structuralism has interesting consequences for the basic building biocks of ontol-
ogy. Among other things, structuralists have something to say about what an object
is and what identity is, at least in mathematics. Along the way, we speculate about
how far the structuralist notion of object carries over to ordinary, nonmathematical
contexts (see also chapter 8). The problem, however, is that structuralism cannot be
articulated without invoking the notion of object, and so I ask for the reader’s dialec-
tical indulgence.
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72 STRUCTURALISM

My structuralist program is a realism in ontology and a realism in truth-value—
once the requisite notions of object and objectivity are on the table. Structuralists
hold that a nonalgebraic field like arithmetic is about a realm of objects—numbers—
that exist independently of the mathematician, and they hold that arithmetic asser-
tions have nonvacuous, bivalent, objective truth-values in reference to this domain.

Structuralism is usually contrasted with traditional Platonism. Ultimately, the dif-
ferences may not amount to much when it comes to ontology, but the contrast is a
good place to begin our first approximation. Like any realist in ontology, the Platonist
holds that the subject matter of a given nonalgebraic branch of mathematics is a col-
lection of objects that have some sort of ontological independence. The natural num-
bers, for example, exist independently of the mathematician. As I noted in the previ-
ous chapter, Resnik [1980, 162] defines an “ontological platonist” to be someone
who holds that ordinary physical objects and numbers are “on a par.” Numbers are
the same kind of thing—objects—as beach balls, only there are more numbers than
beach balls and numbers are abstract and eternal.

To pursue this analogy, one might attribute some sort of ontological independence
to the individual natural numbers. Just as each beach ball is independent of every
other beach ball, each natural number is independent of every other natural number.
Just as a given red beach ball is independent of a blue one, the number 2 is indepen-
dent of the number 6. An attempt to articulate this idea will prove instructive. When
we say that the red beach ball is independent of the blue one, we might mean that the
red one could have existed without the blue one and vice versa. However, nothing of
this sort applies to the natural numbers, as conceived by traditional Platonism. Ac-
cording to the Platonist, numbers exist necessarily. So we cannot say that 2 could
exist without 6, because 6 exists of necessity. Nothing exists without 6. To be sure,
there is an epistemic independence among the numbers in the sense that a child can
learn much about the number 2 while knowing next to nothing about 6 (but having it
the other way around does stretch the imagination). This independence is of little
interest here, however.

The Platonist view may be that one can state the essence of each number without
referring to the other numbers. The essence of 2 does not invoke 6 or any other num-
ber (except perhaps 0 and 1). If this notion of independence could be made out, we
structuralists would reject it. The essence of a natural number is its relations to other
natural numbers. The subject matter of arithmetic is a single abstract structure, the
pattern common to any infinite collection of objects that has a successor relation with
a unique initial object and satisfies the (second-order) induction principle. The num-
ber 2, for example, is no more and no less than the second position in the natural-
number structure; 6 is the sixth position. Neither of them has any independence from
the structure in which they are positions, and as places in this structure, neither num-
ber is independent of the other. The essence of 2 is to be the successor of the succes-
sor of 0, the predecessor of 3, the first prime, and so on.

Plato himself distinguishes two studies involving natural numbers. Arithmetic
“deals with the even and the odd, with reference to how much each happens to be”
(Gorgias 451 A—C). If “one becomes perfect in the arithmetical art,” then “he knows
also all of the numbers” (Theatetus 198 A-B; see also Republic VII 522C). The study
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called logistic deals also with the natural numbers but differs from arithmetic “in so
far as it studies the even and the odd with respect to the multitude they make both
with themselves and with each other” (Gorgias 451A—C; see also Charmides
165E-166B). So arithmetic deals with the natural numbers, and logistic concems the
relations among the numbers. In ancient works, logistic is usually understood as the
theory of calculation. Most writers take it to be a practical discipline, concerning
measurement, business dealings, and so forth (e.g., Proclus [485, 39]; see Heath {1921,
chapter 1]). For Plato, however, logistic is every bit as theoretical as arithmetic. As
Jacob Klein [1968, 23] puts it, theoretical logistic “raises to an explicit science that
knowledge of relations among numbers which . . . precedes, and indeed must pre-
cede, all calculation.”

The structuralist rejects this distinction between Plato’s arithmetic and theoreti-
cal logistic. There is no more to the individual numbers “in themselves” than the
relations they bear to each other. Klein [1968, 20] wonders what is to be studied in
arithmetic, as opposed to logistic. Presumably, the art of counting—reciting the nu-
merals—is arithmetic par excellence. Yet “addition and also subtraction are only an
extension of counting.” Moreover, “counting itself already presupposes a continual
relating and distinguishing of the numbered things as well as of the numbers.” In the
Republic (525C-D), Plato said that guardians should pursue logistic for the sake of
knowing. It is through this study of the relations among numbers that their soul is
able to grasp the nature 0f numbers as they are in themselves. We structuralists agree.!

The natural-number structure is exemplified by the strings on a finite alphabet in
lexical order, an infinite sequence of strokes, an infinite sequence of distinct moments
of time, and so on. Similarly, group theory studies not a single structure but a type of
structure, the pattern common to collections of objects with a binary operation, an iden-
tity element thereon, and inverses for each element. Euclidean geometry studies
Euclidean-space structure; topology studies topological structures, and so forth.?

One lesson we have learned from Plato is that one cannot delineate a philosophical
notion just by giving a list of examples. Nevertheless, the examples point in a certain
direction. To continue the dialectic, I define a system to be a collection of objects
with certain relations. An extended family is a system of people with blood and marital

1. Klein [1968, 24] tentatively concludes that logistic concermns ratios among pure units, whereas
arithmetic concerns counting, addition, and subtraction. In line with the later dialogues, it might be
better to think of logistic as what we would call “arithmetic,” with Plato’s *“arithmetic” being a part of
higher philosophy. I am indebted to Peter King for useful conversations on this historical material.

2. Sometimes mathematicians use phrases like “the group structure” and “the ring structure” when
speaking loosely about groups and rings. Taken literally, these locutions presuppose that there is a single
structure common to all groups and a single structure common to all rings. Here, I prefer to use “struc-
ture” to indicate the subject of nonalgebraic theories, those that mathematicians call “concrete.” To
say that two systems have the same structure is to say that they share something like an isomorphism
type. This is what allows us to speak of numbers as individual objects. So, in the present sense, group
theory is not about a single structure, but rather a class of similar structures. My fellow structuralist,
Michael Resnik (e.g. [1996]) denies the importance of this distinction. For Resnik, it seems, all math-
ematical theories are algebraic, none are “concrete” (or to be precise, there is no “fact of the matter”
whether a given structure is “concrete”).
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relationships, a chess configuration is a system of pieces under spatial and “possibk‘:-
move” relationships, a symphony is a system of tones under temporal and harmoqlc
relationships, and a baseball defense is a collection of people with on-field spgtlal
and “defensive-role” relations. A structure is the abstract form of a system, high-
lighting the interrelationships among the objects, and ignoring any features of them
that do not affect how they relate to other objects in the system.

Although epistemology is treated in the next chapter, it will help here to mention
a few ways that structures are grasped. One way to apprehend a particular structure
is through a process of pattern recognition, or abstraction. One observes a system, or
several systems with the same structure, and focuses attention on the relations among
the objects—ignoring those features of the objects that are not relevant to these rela-
tions. For example, one can understand a baseball defense by going to a game (or
several games) and noticing the spatial relations among the players who wear gloves,
ignoring things like height, hair color, and batting average, because these have noth-
ing to do with the defense system. It is similar to how one comes to grasp the type of
a letter, such as an “E,” by observing several tokens of the letter and focusing on the
typographical pattern, while ignoring the color of the tokens, their height, and the
like.

1 do not offer much to illuminate the psychological mechanisms involved in pat-
tern recognition. They are interesting and difficult problems in psychology and in
the young discipline of cognitive science. Nevertheless, it is reasonably clear that
humans do have an ability to recognize patterns.’ Sometimes, ostension is at work.
One points to the system and somehow indicates that it is the pattern being ostendeq,
and not the particular people or objects. That is, one points to a system that ex.emph—
fies the structure in order to ostend the structure itself. Similarly, one can point to a
capital “E,” not to ostend that particular token but to ostend the type, the abstract
pattern. Ordinary discourse clearly has the resources to distinguish between patt'em
and patterned, the psychological problems with pattern recognition and the philo-
sophical problems with abstracta notwithstanding. ‘

A second way to understand a structure is through a direct description of it. Thus,
one might say that a baseball defense consists of four infielders, arranged thus and
so, three outfielders, and so on. One can also describe a structure as a variation of a
previously understood structure. A “lefty shift defense” occurs when the shortstop
plays to the right of second base and the third baseman moves near the sho.rtstop
position. Or a “softball defense” is like a baseball defense, except that there is one
more outfielder. In either case, most competent speakers of the language will under-
stand what is meant and can then go on to discuss the structure itself, independent of
any particular exemplification of it.*

3. Dieterle [1994, chapter 3] contains a brief survey of some of the psychological literature on pat-
tern recognition, relating the process to structuralism. She argues that pattern recognition is the central
component of a reliabilist epistemology of abstract patterns. I return to this in chapter 4.

4. An anecdote: Several years ago, I was called on to observe a remedial mathematics class. The
students were among the worst prepared in mathematics, While waiting for the class to begin, I over-

STRUCTURE 75

For our first (or second) approximation, then, pure mathematics is the study of
structures, independently of whether they are exemplified in the physical realm, or
in any realm for that matter. The mathematician is interested in the internal relations
of the places of these structures, and the methodology of mathematics is, for the most
part, deductive. As Resnik puts it:

In mathematics, I claim, we do not have objects with an “internal’ 'Eomposition arranged
in structures, we have only structures. The objects of mathematics, that is, the entities
which our mathematical constants and quantifiers denote, are structureless points or
positions in structures. As positions in structures, they have no identity or features
outside a structure. ({1981, 530})

Take the case of linguistics. Let us imagine that by using the abstractive process ... a
grammarian arrives at a complex structure which he calls English. Now suppose that it
later turns out that the English corpus fails in significant ways to instantiate this pat-
tern, so that many of the claims which our linguist made concerning his structure will
be falsified. Derisively, linguists rename the structure Tenglish. Nonetheless, much of
our linguist’s knowledge about Tenglish qua pattern stands; for he has managed to
describe some pattern and to discuss some of its properties. Similarly, I claim that we
know much about Euclidean space despite its failure to be instantiated physically.
(11982, 101))

Of course, some of the examples mentioned above are too simple to be worthy of
the mathematician’s attention. What can we prove about an infield structure, or about
the type of the letter “E”? There are, however, nontrivial theorems about chess games.
For example, it is not possible to force a checkmate with a king and two knights against
a lone king. This holds no matter what the pieces are made of, and even whether or
not chess has ever been played. This fact about chess is 2 more or less typical mathe-
matical theorem about a certain structure. Here, it is the structure of a certain game.

Most of the structures studied in mathematics have an infinite, indeed uncount-
able, number of positions. The set-theoretic hierarchy has a proper class of positions.
It is contentious to suggest that we can come to understand structures like this by
abstraction, or pattern recognition, from perceptual experience. That would require
a person to view (or hear) a system that consists of infinitely many objects. There is
thus an interesting epistemological problem for structuralism, which will be dealt
with in due course (chapter 4). My present purpose is to point to the notion of struc-
ture and to characterize mathematics as the science of structure.

There is a revealing error in Hartry Field’s Science without numbers [1980]. The
purpose of that book is to articulate a view, now called “nominalism,” that there are
no abstract objects. According to Field, everything is concrete (in the philosophers’
sense of that word). Because, presumably, numbers are abstracra par excellence, the

heard a conversation between two of them concerning the merits of a certain basketball defense. The
discussion was at a rather high level of abstraction and complexity, at least as great as that of the sub-
ject matter of the class that day (the addition of fractions). It seems to me that there is not much differ-

ence in kind between abstract discussions of basketball defenses and the addition of fractions (but see
section 5).
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nominalist rejects the existence of numbers. A central item on Field’s agenda is to
show how science can proceed, at least in principle, without presupposing the exist-
ence of numbers and other abstract objects. He develops one example, Newtonian
gravitational theory, in brilliant detail. The ontology of Field’s nominalistic theory
includes points and regions of space-time, but he argues that points and regions are
concrete, not abstract, entities. There is no need to dispute the last claim here (but
see Resnik [1985]). Whether abstract or concrete, Field’s Newtonian space-time is
Euclidean, consisting of continuum-many points and even more regions. Space-time
exemplifies most (but not all) of the structure of R%, the system of quadruples of real
numbers. Field himself insightfully exploits the fact that any model of space-time
can be extended to a model of R* by adding a reference frame and units for the metrics.
Each line of space-time is then isomorphic to R, and so addition and multiplication
can be defined on a line. So something like addition and multiplication, as well as
the calculus of real-valued functions, can be carried out in this nominalistic theory.
All of this is supposed to be consistent with nominalistic rejection of abstracta.

Field considers the natural objection that “there doesn’t seem to be a very signifi-
cant difference between postulating such a rich physical space and postulating the
real numbers.” He replies, “[T]he nominalistic objection to using real numbers was
not on the grounds of their uncountability or of the structural assumptions (e.g.,
Cauchy completeness) typically made about them. Rather, the objection was to their
abstractness: even postulating ore real number would have been a violation of nomi-
nalism. . . . Conversely, postulating uncountably many physical entities . . . is not an
objection to nominalism; nor does it become any more objectionable when one pos-
tulates that these physical entities obey structural assumptions analogous to the ones
that platonists postulate for the real numbers” (p. 31). The structuralist balks at this
point. For us, a real number is a place in the real-number structure. It makes no sense
to “postulate one real number,” because each number is part of a large structure. It
would be like trying to imagine a shortstop independent of an infield, or a piece that
plays the role of the black queen’s bishop independent of a chess game. Where would
it stand? What would its moves be? One can, of course, ask whether the real-number
structure is exemplified by a given system (like a collection of points). Then one could
locate objects that have the roles of individual numbers, just as on game day one can
identify the people who have the roles of shortstop on each team, or in a game of
chess one can identify the pieces that are the bishops. But it is nonsense to contem-
plate numbers independent of the structure they are part of.

It is common for mathematicians to claim that mathematics has not really been
eliminated from Field’s system. Even if the title, Science without numbers, is an ac-
curate description of the enterprise, it is not science without mathematics.” Some
philosophers might be inclined to let the response of the mathematicians settle the

5. This response was made by the mathematicians who attended an interdisciplinary seminar I once
gave on Science without numbers. In correspondence, Field himself reported similar observations from
colleagues in mathematics departments. Of course, mathematicians are not the only ones to balk at the

. claim that Field’s system does not significantly reduce the mathematical presuppositions of Newtonian
gravitational theory. A number of philosophers and prominent logicians have joined the chorus.
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matter. After all, mathematicians should be able to recognize their subject when they
see it. In response, Field could point out that these mathematicians are simply not
interested in questions of ontology, or that they do not understand or care about the
distinction between abstract and concrete. This, of course, may be true. But observa-
tions about the typical interests of mathematicians miss the point. Field concedes that
nominalistic physics makes substantial “structural assumptions™ about space-time,
and he articulates these assumptions with admirable rigor. Although Field would not
put it this way, the “structural assumptions” characterize a structure, an uncountable
one. This is a consequence of the fact that (the second-order version of) Field’s theory
of space-time is categorical—all of its models are isomorphic. Field’s nominalistic
physicist would study this structure as such, at least sometimes. Field himself proves
theorems about this structure. As I see it, he thereby engages in mathematics. The
activity of proving things about space-time is the same kind of activity as proving
theorems about real numbers. Both are the deductive study of a structure, no more
and certainly no less.

Field might reply that he is interested in one particular (concrete) exemplification
of the structure, not the structure itself. This is fair, but it misses the point. As far as
mathematics goes, it does not matter where, how, or even if the relevant structure is
exemplified. The substructure of R*is in the purview of mathematics, and both Field
and his nominalistic physicist use typical mathematical methods to illuminate this
structure, along with the concrete system that exemplifies it. I suggest that these
observations underlie the mathematicians’ response to Field. They are correct.

~ 2 Ontology: Object

On the ontological front, there are two groups of issues. One is the status of whole
structures, such as the natural-number structure, the real-number structure, and the
set-theoretic hierarchy, as well as more mundane structures like a symphony, a chess
configuration, and a baseball defense. The other issue concerns the status of mathe-
matical objects, the places within structures: natural numbers, real numbers, points,
sets, and so on.

We begin with the issue concerning mathematical objects. The existence of struc-
tures will be addressed directly later, but because of the interconnections, we will go
back and forth between the issues. Once again, a natural number is a place in the
natural-number structure, a particular infinite pattern. The pattern may be exempli-
fied by many different systems, but it is the same pattern in each case. The number
2 is the second place in that pattern. Individual numbers are analogous to particular
offices within an organization. We distinguish the office of vice president, for ex-
ample, from the person who happens to hold that office in a particular year, and we
distinguish the white king’s bishop from the piece of marble that happens to play
that role on a given chess board. In a different game, the very same piece of marble
might play another role, such as that of white queen’s bishop or, conceivably, black
king’s rook. Similarly, we can distinguish an object that plays the role of 2 in an
exemplification of the natural-number structure from the number itself. The number
is the office, the place in the structure. The same goes for real numbers, points of
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Euclidean geometry, members of the set-theoretic hierarchyZ and jyst a}bout every
object of a nonalgebraic field of mathematics. Each mthematwal objectisa plage in
a particular structure. There is thus a certain priority in the status of ma}hemancal
objects. The structure is prior to the mathematical objects it contains, just as any
organization is prior to the offices that constitute it. The natural-number structure is
prior to 2, just as “baseball defense” is prior to “shortstop” and “U.S. Government”
is prior to “vice president.”

Structuralism resolves one problem taken seriously by at least some Platonists—
or realists in ontology—and which has been invoked by its opponents as an argu-
ment against realism. Frege [1884], who has been called an “arch-Platonist,” argued
that numbers are objects. This conclusion was based in part on the grammar of num-
ber words. Numerals, for example, exhibit the trappings of singular terms. Frege went
on to give an insightful and eminently plausible account of the use of number terms
in certain contexts, typically forms like “the number of F is y,” where F stands for a
predicate like “moons of Jupiter” or “cards on this table.” But then Frege noted that
this preliminary account does not sustain the conclusion that numbers are objects.
For this, we need a criterion to decide whether any given number, like 2, is the same
or different from any other object, say Julius Caesar. That is, Frege’s preliminary
account does not have anything to say about the truth-value of the identity “Julius
Caesar = 2.” This quandary has come to be called the Caesar problem. A solution to
it should determine how and why each number is the same or different fromany object
whatsoever. The Caesar problem is related to the Quinean dictum that we need cri-
teria to individuate the items in our ontology. If we do not have an identity relation,
then we do not have bona fide objects. The slogan is “no entity without identity.”
Frege attempted to solve this problem with the use of extensions. He proposed that
the number 2 is a certain extension, the collection of all pairs. Thus, 2 is not Julius
Caesar because, presumably, persons are not extensions. This turned out to be a tragic
maneuver, because Frege’s account of extensions (in [1903]) is inconsistent. With
the wisdom that hindsight brings, Frege should have quit while he was ahead.

Paul Benacerraf’s celebrated [1965] and Philip Kitcher [1983, chapter 6] raise a
variation of this problem. After the discovery that virtually every field of mathemat-
ics can be reduced to (or modeled in) set theory, the foundationally minded came to
think of the set-theoretic hierarchy as the ontology for all of mathematics. An economy
in regimentation suggests that there should be a single type of object. Why have sets
and numbers when sets alone will do? But there are several reductions of arithmetic
to set theory, an embarrassment of riches. If numbers are mathematical objects and
all mathematical objects are sets, then we need to know which sets the natural num-

6. A number of writers have shown that the essence of Frege’s account of arithmetic is consistent
(e.g., Boolos [1987]). The idea is to speak of numbers directly, not mediated by extensions. But then
the Caesar problem remains unsolved, One can also consistently identify numbers with extensions, as
long as one does not maintain that every open formula determines an extension and that two formulas
determine the same extension if and only if they are coextensive (cf. Frege’s infamous Principle V). 1
return to Frege’s notion of “object” in chapter 5.
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bers are. According to one account, due to von Neumann, it is correct to say that 1 is
a member of 4. According to Zermelo’s account, 1 is not a member of 4. Moreover,
there seems to be no principled way to decide between the reductions. Each serves
whatever purpose a reduction is supposed to serve. So we are left without an answer
to the question, “Is 1 reaily a member of 4, or not?”’ What, after all, are the natural
numbers? Are they finite von Neumann ordinals, Zermelo numerals, or some other
sets altogether? From these observations and questions, Benacerraf and Kitcher con-
clude, against Frege, that numbers are not objects. This conclusion, I believe, is not
warranted. It all depends on what it is to be an object, a matter that is presently under
discussion.”

I would think that a good philosophy of mathematics need not answer questions
like “Is Julins Caesar = 27” and “Is 1 € 47" Rather, a philosophy of mathematics
should show why these questions need no answers, even if the questions are intelli-
gible. It is not that we just do not care about the answers; we want to see why there
is no answer to be discovered—even for a realist in ontology. Again, a number is a
place in the natural-number structure. The latter is the pattern common to all of the
models of arithmetic, whether they be in the set-theoretic hierarchy or anywhere else.
One can form coherent and determinate statements about the identity of two num-
bers: 1 =1 and 1 # 4. And one can look into the identity between numbers denoted
by different descriptions in the language of arithmetic. For example, 7 is the largest
prime that is less than 10. And one can apply arithmetic in the Fregean manner and
assert, for example, that the number of cards in a deck is 52. But it makes no sense to
pursue the identity between a place in the natural-number structure and some other
object, expecting there to be a fact of the matter. Identity between natural numbers is
determinate; identity between numbers and other sorts of objects is not, and neither
is identity between numbers and the positions of other structures.

Along similar lines, one can ask about numerical relations between numbers, re-
lations definable in the language of arithmetic, and one can expect determinate an-
swers to these questions. Thus, 1 < 4 and 1 evenly divides 4. These are questions
internal to the natural-number structure. But if one inquires whether 1 is an element
of 4, there is no answer waiting to be discovered. It is similar to asking whether 1 is
braver than 4, or funnier.

Similar considerations hold for our more mundane structures. It is determinate
that the shortstop position is not the catcher position and that a queen’s bishop can-
not capture the opposing queen’s bishop, but there is something odd about asking
whether positions in patterns are identical to other objects. It is nonsense to ask whether
the shortstop is identical to Ozzie Smith—whether the person is identical to the po-

7. In chapter 2, we encountered an argument of Putnam [1981, 72-74] against metaphysical real-
ism: “[Clouldn’t there be some kind of abstract isomorphism, or . . . mapping of concepts onto things
in the (mind-independent) world? . . . The trouble with this suggestion is . . . that toe many correspon-
dences exist. To pick out just one correspondence between words or mental signs and mind-independent
things we would have to already have referential access to the mind-independent things.” Again, it all
depends on what it is to be a “thing,” and it depends on what “reference” is.



80 STRUCTURALISM

sition. Ozzie Smith is, of course, a shortstop and, arguably, he is (or was) the qui.nt—
essential shortstop, but is he the position? There is also something odd about asking
whether the shortstop position is taller or faster or a better hitter than the catcher
position. Shortness, tallness, and batting average do not apply to positions.

Similar, less philosophical questions are asked on game day, about a particular
lineup, but those questions concern the people who occupy the positions of short-
stop and catcher that day, not the positions themselves. When a fan asks whether
Ozzie Smith is the shortstop or whether the shortstop is a better hitter than the catcher,
she is referring to the people in a particular lineup.? Virtually any person prepared to
play ball can be a shortstop—anybody can occupy that role in an infield system (some
better than others). Any small, moveable object can play the role of (i.e., can be) black
queen’s bishop. Similarly, and more generally, anything at all can “be” 2—anything
can occupy that place in a system exemplifying the natural-number structure. The
Zermelo 2 ({{¢}}), the von Neumann 2 ({9, {¢}}), and even Julius Caesar can each
play that role. The Frege-Benacerraf questions do not have determinate answers, and
they do not need them.

One can surely ask the Frege-Benacerraf questions. Are Julius Caesar or {0, {¢}}
places in the natural-number structure? Do the monarch and the ordinal have essen-
tial properties relating them to other places in the natural-number structure? If the
question is taken seriously, the answer will surely be “of course not.” The retort is
“How do you know?” or, to paraphrase Frege, “Of course these items are not places
in the natural-number structure, but this is no thanks to structuralism.” A structural-
ist could reply that Julius Caesar and {¢, {¢}} have essential properties other than
those relating to other places in the natural-number structure, but that would miss
the point.

We point toward a relativity of ontology, at least in mathematics. Roughly, math-
ematical objects are tied to the structures that constitute them. Benacerraf [1965,
$1I1.A] himself espoused a related view, at least temporarily. In order to set up his
dilemma, he “treated expressions of the form n = s, where n is a number expression
and s a set expression as if . . . they made perfectly good sense, and . . . it was our job
to sort out the true from the false. . . . I did this to dramatize the kind of answer that
a Fregean might give to the request for an analysis of number. . . . To speak from
Frege’s standpoint, there is a world of objects . . . in which the identity relation [has]
free reign.” Benacerraf’s suggestion is to hold that at least some identity statements
are meaningless: “Identity statements make sense only in contexts where there exist
possible individuating conditions. . . . [Qluestions of identity contain the presuppo-
sition that the ‘entities’ inquired about both belong to some general category.” We
need not go this far, but notice that items from the same structure are certainly in the
same “general category,” and there are “individuating conditions” among them.
Whether Benacerraf has given the only ways to construe identity statements remains

8. In professional baseball, shortstops are generally faster than catchers, and they are better hitters
(even though there are notable exceptions). Statements like this have to do with the particular skills
needed to play each position well.
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to be seen. He concluded, “What constitutes an entity is category or theory-dependent.
... There are . . . two correlative ways of looking at the problem. One might con-
clude that identity is systematically ambiguous, or else one might agree with Frege,
that identity is unambiguous, always meaning sameness of object, but that (contra-
Frege now) the notion of object varies from theory to theory, category to category.”
In mathematics, at least, the notions of “object” and “identity” are unequivocal but
thoroughly relative. Objects are tied to the structures that contain them. It is thus
strange that Benacerraf should eventually conclude that natural numbers are not
objects. Arithmetic is surely a coherent theory, “natural number” is surely a legiti-
mate category, and numbers are its objects.”

Suppose that mathematicians develop a new field. Call its objects “hypernumbers.”
Analogues in (reconstructed) history are the study of negative, irrational, and com-
plex numbers, and quaternions. It would surely be pompous of the philosopher to
suggest that the field of hyperarithmetic is somehow illegitimate and is destined to
remain so until we know how to individuate hypernumbers. The mathematicians do
not have to tell us, once and for all, how to figure out whether, say, the additive iden-
tity of the hypernumbers is the same thing as the zero of arithmetic or the zero of
analysis or the empty set. It is enough for them to differentiate hypernumbers from
each other.

As hinted earlier, there is an important caveat to this relativity. I do not wish to go
as far as Benacerraf in holding that identifying positions in different structures (or
positions in a structure with other objects) is always meaningless. On the contrary,
mathematicians sometimes find it convenient, and even compelling, to identify the
positions of different structures. This occurs, for example, when set theorists settle
on the finite von Neumann ordinals as the natural numbers. They stipulate that 2 is
{9, {9}}, and so it follows that 2  {{¢}}. For a more straightforward example, it is
surely wise to identify the positions in the natural-number structure with their coun-
terparts in the integer-, rational-, real-, and complex-number structures. Accordingly,
the natural number 2 is identical to the integer 2, the rational number 2, the real num-
ber 2, and the complex number 2 (i.e., 2 + 0i). Hardly anything could be more straight-
forward. For an intermediate case, mathematicians occasionally look for the “natu-
ral settings” in which a structure is best studied. An example is the embedding of the
complex numbers in the Euclidean plane, which illuminates both structures. It is not
an exaggeration to state that some structures grow and thrive in certain environments.
This phenomenon will occupy us several times, in chapters 4 and 5. The point here
is that cross-identifications like these are matters of decision, based on convenience,
not matters of discovery.

Parsons [1990, 334] puts the relativity into perspective:

[Olne should be cautious in making such assertions as that identity statements involv-
ing objects of different structures are meaningless or indeterminate. There is an obvi-

9. 1 will return to this relativity throughout the book, notably in section 6 of chapter 4 on episte-
mology, section 3 of chapter 5 on Frege, and chapter 8. I am indebted to Crispin Wright and Bob Hale
for pressing the Caesar issue.
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ous sense in which identity of natural numbers and sets is indeterminate, in that differ-
ent interpretations of number theory and set theory are possible which give different
answers about the truth of identities of numbers and sets. In a lot of ordinary, mathe-
matical discourse, where different structures are involved, the question of identity or
non-identity of elements of one with elements of another just does not arise (even to
be rejected). But of course some discourse about numbers and sets makes identity state-
ments between them meaningful, and some of that . . . makes commitments as to the
truth value of such identities. Thus it would be quite out of order to say (without ref-
erence to context) that identities of numbers and sets are meaningless or that they lack
truth-values.

Even with this caveat, the ontological relativity threatens the semantic uniformity
between mathematical discourse and ordinary or scientific discourse. Of course, this
depends on what is required for uniformity, of which more later (section 9 of chapter
4, onreference). The threat also depends on the extent to which ordinary objects are
not relative. I briefly return to this in chapter 8.

On a related matter, Azzouni [1994, 7-8, 146-147] accuses structuralists of
being “ontologically radical” in the sense that we “replace the traditional metaphysi-
cally inert mathematical object with something else.” It depends on what one thinks
was there to be accepted or replaced. Structuralism is a view about what the objects
of, say, arithmetic are, not what they should be, and we claim to make sense of what
goes on in mathematics. Mathematicians do not usually use phrases like “metaphysi-
cally inert.” Perhaps Azzouni’s view is that we structuralists are being radical with
respect to traditional philosophies of mathematics, Platonism in particular. I leave it
to the reader to determine the extent to which I am proposing a replacement or fur-
ther articulation of prior realist philosophies of mathematics.

One slogan of structuralism is that mathematical objects are places in structures.
We must be careful here, however, because there is an intuitive difference between
an object and a place in a structure, between an officeholder and an office. We can
accommodate this intuition and yet maintain that numbers and sets are objects by
invoking a distinction in linguistic practice. There are, in effect, two different orien-
tations involved in discussing structures and their places (although the border be-
tween them is not sharp). Sometimes the places of a structure are discussed in the
context of one or more systems that exemplify the structure, We might say, for ex-
ample, that the shortstop today was the second baseman yesterday, or that the cur-
rent vice president is more intelligent than his predecessor. Similarly, we might say
that the von Neumann 2 has one more element than the Zermelo 2. Call this the places-
are-offices perspective. This office orientation presupposes a background ontology
that supplies objects that fill the places of the structures. In the case of baseball de-
fense and that of government, the background ontology is people; in the case of chess
games, the background ontology is small, movable objects—pieces with certain col-
ors and shapes. In the case of arithmetic, sets—or anything else—will do for the
background ontology. With mathematics, the background ontology can even consist
of places from other structures, when we say, for example, that the negative, whole
real numbers exemplify the natural-number structure, or that a Euclidean line exem-
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plifies the real-number structure. Indeed, the background ontology for the places-
are-offices perspective can even consist of the places of the very structure under
discussion, when it is noted, for example, that the even natural numbers exemplify
the natural-number structure. We will have occasion later to consider structures whose
places are occupied by other structures.. One consequence of this is that, in mathe-
matics at least, the distinction between office and officeholder is a relative one. What
is an object from one perspective is a place in a structure from another. .

In contrast to this office orientation, there are contexts in which the places of a -
given structure are treated as objects in their own right, at least grammatically. That
is, sometimes items that denote places are bona fide singular terms. We say that the
vice president is president of the Senate, that the chess bishop moves on a diagonal,
or that the bishop that is on a black square cannot move to a white square. Call this
the places-are-objects perspective. Here, the statements are about the respective struc-
ture as such, independent of any exemplifications it may have. Arithmetic, then, is
about the natural-number structure, and its domain of discourse consists of the places
in this structure, treated from the places-are-objects perspective. The same goes for
the other nonalgebraic fields, such as real and complex analysis, Euclidean geom-
etry, and perhaps set theory.

It is common to distinguish the “is” of identity from the “is” of predication. The
sentence “Cicero is Tully” does not have the same form as “Cicero is Roman.” When,
in the places-are-objects perspective, we say that 7 is the largest prime less than 10,
and that the number of outfielders is 3, we use the “is” of identity. We could just as
well write “=" or “is identical to.” In contrast, when we invoke the places-are-
offices perspective and say that {{¢}} is 2 and that {¢, {¢}} is 2, we use something
like the “is” of predication, but here it is predication relative to a system that exem-
plifies a structure. Let us call this the “is” of office occupancy. We are saying that
{{¢}} plays the role of 2 in the system of Zermelo numerals and that {¢, {¢}} plays
the role of 2 in the system of finite von Neumann ordinals. When we say that Ozzie
Smith is the shortstop, or that Al Gore is the vice president, we also invoke the “is”
of office occupancy.

This does not exhaust the uses of the copula in mathematics. I noted earlier that
for convenience, mathematicians sometimes identify places from different structures.
For example, when set theorists settle on the von Neumann account of arithmetic,
and thereby declare that 2 is {¢, {¢} }, they invoke what may be called the “is of identity
by fiat.”

The point here is that sometimes we use the “is” of identity when referring to
offices, or places in a structure. This is to treat the positions as objects, at least when
it comes to surface grammar. When the structuralist asserts that numbers are objects,
this is what is meant. The places-are-objects perspective is thus the background for
the present realism in ontology toward mathematics. Places in structures are bona
fide objects.

My perspective thus presupposes that statements in the places-are-objects perspec-
tive are to be taken literally, at face value. Bona fide singular terms, like “vice presi-
dent,” “shortstop,” and “2” denote bona fide objects. This reading might be ques-
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tioned. Notice, for example, that places-are-objects statements entail generalizations
over all systems that exemplify the structure in question. Everyone who is vice presi-
dent—whether it be Gore, Quayle, Bush, or Mondale—is president of the Senate in
that government. Every chess bishop moves on a diagonal, and none of those on black
squares ever move to white squares (in the same game), No person can be shortstop
and catcher simultaneously; and anything playing the role of 3 in a natural-number
system is the successor of whatever plays the role of 2 in that system. In short, places-
are-objects statements apply to the particular objects or people that happen to oc-
cupy the positions with respect to any system exemplifying the structure. Someone
might hold, then, that places-are-objects statements are no more than a convenient
rephrasing of corresponding generalizations over systems that exemplify the struc-
ture in question. If successful, a maneuver like this would eliminate the places-are-
objects perspective altogether. The apparent singular terms mask implicit bound
variables. This rephrasing plan, however, depends on being able to generalize over
all systems that exemplify the structure in question. To assess this idea, we turn to
our other main ontological question, the status of structures themselves.

3 Ontology: Structure

Because the same structure can be exemplified by more than one system, a structure
is a one-over-many. Entities like this have received their share of philosophical at-
tention throughout the ages. The traditional exemplar of one-over-many is a univer-
sal, a property, or a Form. In more recent philosophy, there is the type/token di-
chotomy. In philosophical jargon, one says that several tokens have a particular type,
or share a particular type; and we say that an object has a universal or, as Plato put
it, an object has a share of, or participates in a Form. As defined above, a structure
is a pattern, the form of a system. A system, in turn, is a collection of related objects.
Thus, structure is to strictured as pattern is to patterned, as universal is to subsumed
particular, as type is to token. '

The nature and status of types and universals is a deep and controversial matter in
philosophy. There is no shortage of views on such issues. Two of the traditional views
stand out. One, due to Plato, is that unjversals exist prior to and independent of any
itemns that may instantiate them. Even if there were no red objects, the Form of Red-
ness would still exist. This view is sometimes called “ante rem realism,” and univer-
sals so construed are “ante rem universals.” The main alternative, attributed to
Aristotle, is that universals are ontologically dependent on their instances. There is
no more to redness than what all red things have in common. Get rid of all red things,
and redness goes with them. Destroy all good beings, all good things, and all good
actions, and you destroy goodness itself. A sobering thought. Forms so construed
are called “in re universals,” and the view is sometimes called “in re realism.” Advo-
cates of this view may admit that universals exist, after a fashion, but they deny that
universals have any existence independent of their instances.

Of course, there are other views on universals. Conceptualism entails that univer-
sals are mental constructions, and nominalism entails that they are linguistic con-
structions or that they do not exist at all. For present purposes, I lump these alternate
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views with in re realism. The important distinction is between ante rem realism and
the others. Our question is whether, and in what sense, structures exist independently
of the systems that exemplify them. Is it reasonable to speak of the natural-number
structure, the real-number structure, or the set-theoretic hierarchy on the off chance
that there are no systems that exemplify these structures?

One who thinks that there is no more to structures than the systems that exem-
plify them—an advocate of an in re view of structures—might be attracted to the
program suggested at the very end of the previous section. Recall that from the struc-
turalist perspective, it is the places-are-objects perspective that sanctions the thesis
that numbers are objects. On the program in question, however, places-are-objects
statements are not taken at face value but are understood as generalizations in the
places-are-offices perspective. So “3 + 9 = 12” would come to something like “in
any natural-number system S, the object in the 3 place of § S-added to the object in
the 9 place of S results in the object in the 12 place of S.” When paraphrased like
this, seemingly bold ontological statements become harmless—analytic truths if you
will. For example, ““3 exists” comes to “every natural-number system has an object
in its 3 place,” and “numbers exist” comes to “every natural-number system has
objects in its places.”

In sum, the program of rephrasing mathematical statements as generalizations is
a manifestation of structuralism, but it is one that does not countenance mathemati-
cal objects, or structures for that matter, as bona fide objects. Talk of numbers is
convenient shorthand for talk about all systems that exemplify the structure. Talk of
structures generally is convenient shorthand for talk about systems. A slogan for the
program might be “structuralism without structures.”!0

" Dummett [1991, chapter 23] makes the same distinction concerning the nature of
structures. According to “mystical” structuralism, “mathematics relates to abstract
structures, distinguished by the fact that their elements have no non-structural prop-
erties” (p. 295). Thus, for example, the zero place of the natural-number structure
“has no other properties than those which follow from its being the zero” of that
structure. It is not a set, or anything else whose nature is extrinsic to the structure.
Dummett’s mystical structuralist is thus an ante rem realist about structures. The other
version of structuralism takes a “hardheaded” orientation: “According to it, a mathe-
matical theory, even if it be number theory or analysis which we ordinarily take as
intended to characterize one particular mathematical system, can never properly be
so understood: it always concerns all systems with a given structure” (Dummett [1991,
296]). If the hardheaded structuralist countenances structures at all, it is only in an in
Te sense.

Parsons [1990, §§. 2—7] presents, but eventually rejects, a hardheaded view like
this, which he dubs eliminative structuralism: “It . . . avoids singling out any one . . .
system as the natural numbers. . . . [Eliminative structuralism] exemplifies a very
natural response to the considerations on which a structuralist view is based, to see
statements about a kind of mathematical objects as general statements about struc-

10. This slogan was adopted by Hellman {1996], after he read a draft of this chapter.
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tures of a certain type and to look for a way of eliminating reference to mathematical
objects of the kind in question by means of this idea” (p. 307). Benacerraf [1965,
291] settles on a hardheaded, eliminative, in re version of structuralism, when he
writes, “Number theory is the elaboration of the properties of all structures of the
order type of the numbers.” This, of course, is of a piece with his rejection, noted
earlier, of the thesis that numbers are objects.!!

Thus, the eliminative structuralist program paraphrases places-are-objects state-
ments in terms of the places-are-offices perspective. Recall that the places-are-
offices orientation requires a background ontology, a domain of discourse. This do-
main contains objects that fill the places in the requisite (in re) structures. In the case
of baseball defenses, the background ontology consists of people ready to play ball;
in the case of chess configurations, the ontology consists of pieces of marble, wood,
plastic, metal, and so on, manufactured in a certain way. In the case of mathematics,
any old objects will do—so long as there are enough of them.

The main stumbling block of the eliminative program is that to make sense of a
substantial part of mathematics, the background ontology must be quite robust. The
nature of the objects in the final ontology does not matter, but there must be a lot of
objects there. To see this, let ® be a sentence in the language of arithmetic. Accord-
ing to eliminative structuralism, ® amounts to something in the form:

(@) for any system S, if S exemplifies the natural-number structure, then ®[S],

where ®[S] is obtained from P by interpreting the nonlogical terminology and re-
stricting the variables to the objects in S. If the background ontology is finite, then
there are no systems that exemplify the natural-number structure, and so @' and (- ®)'
are both true. Because mathematics is not vacuous, this is unacceptable. We do not
end up with a rendering of arithmetic if the background ontology is finite. Similarly,
an eliminative-structuralist account of real analysis and Euclidean geometry requires
a background ontology whose cardinality is at least that of the continuum, and set
theory requires a background ontology that has the size of a proper class (or at least
an inaccessible cardinal).

I suppose that one can maintain that there are infinitely many physical objects, in
which case an eliminative account of arithmetic may get off the ground with a physi-
cal ontology. As we have seen (section 1), Field {1980} holds that each space-time
point is a physical object. If this claim is plausible, then an eliminative structuralist
might follow this lead with an account of analysis and geometry. Nevertheless, it
seems reasonable to insist that there is some limit to the size of the physical universe.
If so, then any branch of mathematics that requires an ontology larger than that of
the physical universe must leave the realm of physical objects if these branches are
not to be doomed to vacuity. Even with arithmetic, it is counterintuitive for an ac-
count of mathematics to be held hostage to the size of the physical universe.!?

11. Here, Benacerraf uses “structure” as I use “system.”
12. See Parsons [1990]. This is why Field {1980] himself does not attempt to reduce analysis and
geometry to a theory of space-time points and regions. Incidentally, according to the view developed
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There are three structuralist responses to this threat of vacuity. One is to maintain
an eliminative program but postulate that enough abstract objects exist for all of the
structures under study to be exemplified. That is, for each field of arithmetic, we
assume that there are enough objects to keep that field from being vacuous. I call
this the ontological option.

On this program, if one wants a single account for all (or almost all) of mathemat-
ics, then the background ontology of abstract objects must be quite big. As noted
earlier, several logicians and philosophers think of the set-theoretic hierarchy as the
ontology for all of mathematics. The universe is V. If one assumes that every set in
the hierarchy exists, then there will surely be enough objects to exemplify just about
any structure one might consider. Because, historically, one purpose of set theory
was to provide as many isomorphism types as possible, set theory is rich fodder for
eliminative structuralism. A structure, on this account, is an order type of sets, no
more and no less.

The crucial feature of this version of eliminative structuralism is that the back-
ground ontology is not understood in structuralist terms. If the iterative hierarchy is
the background, then set theory is not, after all, the theory of a particular structure.
Rather, it is about a particular class of objects, the background ontology V. Perhaps
from a different point of view, set theory can be thought of as the study of a particu-
lar structure U, but this would require another background ontology to fill the places
of U. This new background ontology is not to be understood as the places of another
structure or, if it is, we need yet another background ontology for its places. On the
ontological option, we have to stop the regress of system and structure somewhere.
The final ontology is not understood in terms of structures, even if everything else in
mathematics is. ’

To be sure, there is nothing sacrosanct about Zermelo-Fraenkel set theory.
Foundationalists have shown that mathematics can be rendered in theories other than
that of the iterative hierarchy (e.g., Quine [1937]; Lewis [1991], [1993]). Among
these are a dedicated contingent of mathematicians and philosophers who hold that
the category of categories is the proper foundation for mathematics (see, for example,
Lawvere [1966]).!* The ultimate background ontology for eliminative structuralism
can thus be the domain of any of several set theories or category theories.

A structuralist might be tempted to step back from this competition of background
theories and wonder if there is a structure common to all of them. However, on the
ontological option, this temptation needs to be resisted. The structures studied in two
theories can be compared only in terms of a more inclusive theory.

Of course, eliminative structuralists need not consider their most powerful theory

+ (or theories) to be about the background ontology. They may regard, say, ZFC and

in Maddy {1990, chapter 5], if the transitive closure of a set s contains only physical objects, then s
itself is a physical object. It follows that there is a proper class of physical objects, and there are sys-
tems of physical objects that exemplify the set-theoretic hierarchy. Such systems are located where the
original objects are. The thesis that sets of physical objects are themselves physical objects is criti-
cized by Chihara {1990, chapter 10] and Balaguer [1994].

13. McLarty [1993] is a lucid and insightful start of a structuralist program in terms of category
theory—topos theory in particular.
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topos theory both as theories of specific structures. On the present version of elimi-
native structuralism, they do need to acknowledge the existence of the ultimate back-
ground ontology, but they need not develop a formal theory of this system.

On all versions of structuralism, the nature of the objects in the places of a struc-
ture does not matter—only the relations among the objects are significant. On the
ontological option, then, the only relevant feature of the background ontology is its
size. Are there enough objects to exemplify every structure the mathematician might
consider? If a theory of this ontology is developed, the only relevant factor is the
size of the ontology.

In correspondence and conversation, some nominalists express sympathy with a
structuralist account of mathematics, but they quickly add that one should speak of
“possible structures” rather than just structures. Our second option pursues this sug-
gestion by modalizing eliminative structuralism. Instead of saying that arithmetic is
about all systems of a certain type, one says that arithmetic is about all possible sys-
tems of a certain type. Again, let ® be a sentence in the language of arithmetic. Ear-
lier, on behalf of eliminative structuralism, I rendered ® as “for any system S, if §
exemplifies the natural-number structure, then ®[S].” With the present option, ® is
understood as

for any possible system S, if S exemplifies the natural-number structure, then ®[S],
or

necessarily,'for any system S, if S exemplifies
the natural-number structure, then ®{S].

The problem, of course, is to keep arithmetic from being vacuous without assuming
that there is a system that exemplifies the structure. The solution here is to merely
assume that such a system is possible. The same goes for real analysis and even set
theory. Unlike the ontological option, here we do not require an actual, rich back-
ground onfology. Instead, we need a rich background ontology to be possible. I call
this the modal option.

Hellman [1989] carries out a program like this in meticulous detail. The title of
the book, Mathematics without numbers, sums things up nicely. It is a structuralist
account of mathematics that does not countenance the existence of structures—or
any other mathematical objects for that matter. Statements in a nonalgebraic branch
of mathematics are understood as generalizations inside the scope of a modal opera-
tor. Instead of assertions that various systems exist, Hellman has assertions that the
systems might exist.

Probably the central issue with the modal option is the nature of the invoked
modality. What are we to make of the “possibilities” and “necessities” used to ren-
der mathematical statements? I presume that thinking of the possibility as physical
possibility is a nonstarter, for reasons already given. Perhaps it is physically possible
for there to be a system that exemplifies the natural-number structure, the real-number
structure, or Euclidean space, but it is stretching this modal notion beyond recogni-
tion to claim that a system that exemplifies the set-theoretic hierarchy is physically
possible (Maddy {1990, chapter 5] notwithstanding; see note 12 above). The relevant
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modal operator is not to be understood as metaphysical possibility either. Intuitively,
if mathematical objects—like numbers, points, and sets—exist at all, then their exis-
tence is metaphysically necessarily. According to this intuition, “the natural num-
bers exist” is equivalent to both “possibly, the natural numbers exist”” and “necessar-
ily, the natural numbers exist” (assuming that the modal logic system S5 is sound for
metaphysical necessity). Now, recall that on the first, ontological option there must
be a sufficiently large realm of objects. Presumably, the items in the ontology are
not metaphysically different from natural numbers. Thus, the existence and the pos-
sible existence of the items in the background ontology are equivalent. Thus, the use
of metaphysical modality does not really weaken the ontological burden of elimina-
tive structuralism (for an elaboration of a similar point, see Resnik [1992]).

For this reason, Hellman mobilizes the logical modalities for his eliminative struc-
turalism. Our arithmetic sentence @ becomes

for any logically possible system S, if S exemplifies
the natural-number structure, then ®[S].

This maneuver gives the modal option its best shot. The modal structuralist needs to
assume only that it is logically possible that there is a system that exemplifies the
natural-number structure, the real-number structure, and so on.

Recall that in conternporary logic textbooks and classes, the logical modalities
are understood in terms of sets. To say that a sentence is logically possible is to say
that there is a certain set that satisfies it. According to the modal option of elimina-
tive structuralism, however, to say that there is a certain set is to say something about
every logically possible system that exemplifies the structure of the set-theoretic
hierarchy. This is an unacceptable circularity. It does no good to render mathemati-
cal “existence” in terms of logical possibility if the latter is to be rendered in terms of
existence in the set-theoretic hierarchy. Putting the views together, the statement that
a sentence is logically possible is really a statement about all set-theoretic models of
set theory. Who says there are such models? Once again, we have a menacing threat
of vacuity. Hellman accepts this straightforward point, and so he demurs from the
standard, model-theoretic accounts of the logical modalities. Tnstead, he takes the
logical notions as primitive, not to be reduced to set theory. I return to this exchange
of ontology for modality in chapter 7.

The third option avoids the eliminative program altogether and adopts an ante rem
realism toward structures. Structures exist whether they are exemplified in a
nonstructural realm or not. On this option, statements in the places-are-objects mode
are taken literally, at face value. In mathematics, anyway, the places of mathemati-
cal structures are as bona fide as any objects are. So, in a sense, each structure exem-
plifies itself. Its places, construed as objects, exemplify the structure.

First, a disclaimer: In the history of philosophy, ante rem universals are some-
times given an explanatory primacy. It might be said, for example, that the reason
the White House is white is that it participates in the Form of Whiteness. Or what
makes a basketball round is that it participates in the Form of Roundness. No such
explanatory claim is contemplated here on behalf of ante rem structures. I do not
hold, for example, that a given system is a model of the natural numbers because it
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exemplifies the natural-number structure. If anything, it is the other way around. What
makes the system exemplify the natural-number structure is that it has a one-to-one
successor function with an initial object, and the system satisfies the induction prin-
ciple. That is, what makes a system exemplify the natural-number structure is that it
is a model of arithmetic. In much of the current literature, types do not carry this sort
of explanatory burden, either. Thus, in this respect, ante rem structures are like types.

Michael Hand [1993, 188] states that an ante rem structuralist is indeed commit-
ted to structures that bear the explanatory burden: “Admittedly, . . . [t]he motivation
behind structuralism has nothing to do with the possible explanatory function of
abstract patterns. . . . Nonetheless, the structuralist is committed to more than [the]
limited motivation suggests. After all, abstract patterns, structures, are not entities
newly posited by the structuralist. . . . Instead, the structuralist is making-use of things
we already know something about, and that we already put to use metaphysically in
various ways. Since this is so, she is responsible . . . to the metaphysical uses to which
we already put them.” The idea behind this pronouncement seems to be that since
we ante rem structuralists are using a notion like the traditional one-over-many, we
are committed to all of the features and uses of ante rem universals as traditionally
conceived. Hand goes on to argue, quite insightfully, that nothing can bear the ex-
planatory burden, and he concludes that structures do not exist. According to his
pronouncement, it seems, once a (philosophical) notion has been debunked, no one
is allowed to use a variation on that notion—even a variation that survives the de-
bunking. Readers sympathetic with this pronouncement are invited to construe struc-
tures as a new sort of notion, one that is similar in some ways to traditional ante rem
universals but does not bear their explanatory burden. To paraphrase Kripke, call
structures “shmuniversals.” Hand suggests that this maneuver leaves ante rem struc-
turalism unmotivated. I take this book to provide some motivation, and I leave it to
the reader to judge the matter.

To sum up, the three options are ontological eliminative structuralism, modal elimi-
native structuralism, and ante rem realism. I believe that the ante rem option is the
most perspicuous and least artificial of the three. It comes closest to capturing how
mathematical theories are conceived. Nevertheless, I do not mean to rule out the other
options. Indeed, it follows from the thesis of structuralism that, in a sense, all three
options are equivalent. As will be shown, each delivers the same “structure of struc-
tures.” The next section provides a brief account of each option and a defense of their
equivalence (see also chapter 7).

4 Theories of Structure

No matter how it is to be articulated, structuralism depends on a notion of two sys-
tems that exemplify the “same” structure. That is its point. Even if one eschews struc-
tures themselves, we still need to articulate a relation among systems that amounts
to “have the same structure.” }

There are several relations that will do for this. I mention two, both of which are
equivalence relations. The first is isomorphism, a common (and respectable) mathe-
matical notion. Two systems are isomorphic if there is a one-to-one correspondence
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from the objects and relations of one to the objects and relations of the other that
preserves the relations. Suppose, for example, that the first system has a binary rela-
tion R. If fis the correspondence, then f{R) is a binary relation of the second system
and, for any objects m, n, of the first system, R holds between m and » in the first
system if and only if AR) holds between f{m) and f(rn) in the second system. Infor-
mally, it is sometimes said that isomorphism “preserves structure.”

Isomorphism is too fine-grained for present purposes. Intuitively, one would like
to say that the natural numbers with addition and multiplication exemplify the same
structure as the natural numbers with addition, multiplication, and less-than. How-
ever, the systems are not isomorphic, for the trivial reason that they have different
sets of relations. The first has no binary relation to correspond with the less-than
relation, even though that relation is definable in terms of addition: x < y if and only
if 3z(z # 0 & x + z =y). There is, in a sense, nothing new in the “richer” system.
Similarly, we would like to say that the various formulations of Euclidean plane
geometry with different primitives all exemplify the same structure.

Resnik {1981] has formulated a more coarse-grained equivalence relation among
systems (and structures) for this purpose. First, let R be a system and P a subsystem.
Define P to be a full subsystem of R if they have the same objects (i.e., every object
of R is an object of P) and if every relation of R can be defined in terms of the rela-
tions of P. The idea is that the only difference between P and R is that some defin-
able relations are omitted in P. So the natural numbers with addition and multiplica-
tion are a full subsystem of the natural numbers under addition, multiplication, and
less-than. Let M and N be systems. Define M and N to be structure-equivalent, or
simply equivalen, if there is a system R such that M and N are each isomorphic to
full subsystems of R. Equivalence is a good candidate for “sameness of structure”
among systems.!*

Notice that structure equivalence is characterized in terms of definability, a bla-
tant linguistic notion. One consequence is that equivalence is dependent on the re-
sources available in the background metalanguage (or the U-language). For example,
in a standard first-order background, the natural numbers with successor alone are
not equivalent to the natural numbers with addition and multiplication, because ad-
dition cannot be defined from successor in the first-order theory. However, the theo-
ries are equivalent in a second-order background (see Shapiro [1991, chapter 5]).
The dependence on the background theory and, in particular, on its language should
not be surprising. A recurring theme in this book is that a number of ontological
matters are tied to linguistic resources.

Let us briefly consider what would be involved in rigorously developing each of
the three options for structuralism: the ontological in re route, the modal in re route,
and the ante rem route. Recall that the ontological option presupposes an ultimate
(nonstructural) background ontology for all of mathematics. The first item on the
agenda would thus be a detailed account of this background ontology. As above, the
set-theoretic hierarchy V is a natural choice for the background, in which case there

14, Structure equivalence is analogous to definitional equivalence among theories (see chapter 7).
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already is a developed theory—Zermelo-Fraenkel set theory. Next, we need an ac-
count of systems in this background ontology. This, too, has been done already, via
standard model theory. An n-ary “relation” is a set of n-tuples and an n-place func-
tion is a many-one set of (n + 1)-tuples. A system is an ordered pair that consists of
a domain and a set of relations and functions on it. Model theorists sometimes use
words like “structure,” “model,” and “interpretation” for what I call a “system.” In
set theory, isomorphism and structure equivalence are also easily defined, thus com-
pleting the requisite eliminative theory of structuralism. In other words, using
common model-theoretic techniques, set theorists can speak of systems that share
a common structure. Notice that we do not find what I am calling “structures” in the
ontology. All we have is isomorphism and structure-equivalence among systems.
Recall that the slogan of eliminative structuralism is “structuralism without
structures.”

Because isomorphism and structure-equivalence are equivalence relations, one
can informally take a structure to be an isomorphism type or a structure-equivalence
type. So construed, a structure is an equivalence class in the set-theoretic hierarchy.
Notice, however, that each nonempty “structure” is a proper class, and so it is not in
the set-theoretic hierarchy. The relevant notions could be expanded to include proper
class systems, but then we could not take a structure to be an equivalence class of
systems unless we moved to a third-order background.

With admirable rigor and attention to detail, Hellman [1989] develops the modal
option. Modal operators are added to a standard formal language, and the aforemen-
tioned notions of “system” and isomorphism are invoked. A sentence of arithmetic,
say, is rendered as a statement about all possible systems that satisfy the (second-
order) Peano axioms.!> Although the program is correctly characterized as “struc-
turalist,” there is no notion of structure in the official modal language.

Finally, the ante rem option requires a theory of structures. The plan is to stop the
regress of system and structure at a universe of structures. Because structures them-
selves are in the ontology, we need an identity relation on structures. Resnik [1981]
seems to hold that there is no such identity relation, arguing that there is no “fact of
the matter” as to whether two structures are the same or different, or even whether
two systems exemplify the same structure (but see Resnik [1988, 411 note 16]). Notice
that this goes against the Quinean dictum “no entity without identity.” Quine’s the-
sis is that within a given theory, language, or framework, there should be definite
criteria for identity among its objects. There is no reason for structuralism to be the
single exception to this. If we are to have a theory of structures, we need an identity
relation on them. Perhaps Resnik demurs at the development of such a theory (see
Resnik [1996]). It seems to me, however, that if one is to speak coherently about
structures and avoid the ontological and modal options, then such a theory is needed,
atleast at some stage of analysis. In Quinean terms, the need to regiment one’s infor-

15. Hellman’s account avoids the use of the notion of “possible system,” because he does not

countenance an ontology of possibilia. The program also does not directly use semantic notions like
“satisfaction.”
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mal language applies to its philosophical parts as well as the more respectable scien-
tific neighborhoods.

When Resnik states that there is no “fact of the matter” concerning the identity of
structures, he may just mean that the ordinary use of the relevant terms does not
determine a unique identity relation. This much is quite correct. To regiment our
language, we would need to define the requisite identity relations, but there is no
uniquely best candidate for this. Like the identification of places from different struc-
tures (see section 2), the identity relation we need is more a matter of decision or
invention, based on convenience, rather than a matter of discovery. But we do need
to decide.

We take identity among structures to be primitive, and isomorphism is a congru-
ence among structures. That is, we stipulate that two structures are identical if they
are isomorphic. There is little need to keep multiple isomorphic copies of the same
structure in our structure ontology, even if we have lots of systems that exemplify
each one.6 We could also “identify” structures that are structure-equivalent, but it is
technically inconvenient to do so.

With the ontological option just delimited, systems are constructed from sets in
the fashion of model theory, and structures are certain equivalence types on systems.
For the ante rem option, we axiomatize the notion of structure directly. The envi-
sioned theory has variables that range over structures, and thus a quantifier “all struc-
tures.” Each structure has a collection of “places” and relations on those places. Once
again, the places-are-objects perspective is taken seriously. The theory thus has a
second sort of variable that ranges over places in structures.

The category theorist characterizes a structure or a type of structure in terms of
the structure-preserving functions, called “morphisms,” between systems that exem-
plify the structures. For many purposes, this is a perspicuous approach (see McLarty
[1993]), but here I provide an outline of a more traditional axiomatic treatment. In
effect, structure theory is an axiomatization of the central framework of model theory.

Because it appears to be necessary to speak of relations and functions on places,
I adopt a second-order background language (see Shapiro [1991]). An alternative to
this would be to include a rudimentary theory of collections as part of the theory.

First, a structure has a collection of places and a finite collection of functions and
relations on those places. The isomorphism relation among structures and the satis-
faction relation between structures and formulas of an appropriate formal language

" are defined in the standard way. We could stipulate that the places of different struc-

tures are disjoint, but there is no reason to do so. Our first axiom, concerning the
existence of structures is simpleminded but ontologically nontrivial:

Infinity: There is at least one structure that has an infinite number of places.

Because structures, places, relations, and functions are the only items in the on-
tology, everything else must be constructed from those items. Thus, a system is de-
fined to be a collection of places from one or more structures, together with some

16. The sequence of natural numbers contains many isomorphic copies of itself, but there is only
one natural-number structure. In structure theory, the copies are systems.
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relations and functions on those places. For example, the even-number places of the
natural-number structure constitute a system, and on this system, a “successor” func-
tion could be defined that would make the system exemplify the natural-number struc-
ture. The “successor” of n would be n + 2. Similarly, the finite von Neumann ordi-
nals are a system that consists of places in the set-theoretic hierarchy struc;tgre, and
this system also exemplifies the natural-number structure, once the requisite rela-
tions and functions are added. Other systems consist of the places of several struc-
tures, with relations defined on their “objects.” For example, a nonstandard model
of simple first-order arithmetic (with successor alone) consists of the natural num-
bers “followed by’ the integers. .

The places of a given structure—considered from the places-are-objects perspec-

tive—are objects. As characterized here, then, each structure is also a system.

Our next axioms concern what may be called “substructures™:

Subtraction: If S is a structure and R is a relation of S, then there is a structure §°
isomorphic to the system that consists of the places, functions, and relations of §
except R. If S is a structure and fis a function of S, then there is a structure S"
isomorphic to the system consisting of the places, functions, and relations of S
except f. )

Subclass: If S is a structure and c is a subclass of the places of S, then there is a struc-
ture isomorphic to the system that consists of ¢ but with no relations and functions.

Addition: If S is a structure and R is any relation on the places of S, then there is a
structure S’ isomorphic to the system that consists of the places, functions, and rela-
tions of S together with R. If § is a structure and fis any function from the places of
S to places of S, then there is a structure §" isomorphic to the system that consists of
the places, functions, and relations of S together with f.

That is, one can remove places, functions, and relations at will; and one can add func-
tions and relations.

The remaining objective for my theory is to assure the existence of large struc~

tures. The next axiom is an analogue of the powerset axiom of set theory:

Powerstructure: Let S be a structure and s its collection of places. Then there is a struc-
tare T and a binary relation R such that for each subset s' c 5 thereis aplacexof T
such that Vz(z € ' = Rx2).

Each subset of the places of § is related to a place of 7, and so there are at least as
many places in T as there are subsets of the places of S. Thus, the collection of pla}ces
of Tis at least as large as the powerset of the places of S. The powerstructure axiom
can be formulated in the second-order background language.

So far, structure theory resembles what is called Zermelo set theory. We have the

“existence of the natural-number structure, the real-number structure, a structure whose
size is the powerset of that, and so on. The smallest standard model of the theory has
the size of V;,, the smallest standard model of Zermelo set theory.

To get beyond the analogue of Zermelo set theory, my next item is the analogue

of the replacement principle:

Replacement: Let S be a structure and f a function such that for each placex of S, fxis
a place of a structure, which we may call . Then there is a structure T that is (at
least) the size of the union of the places in the structures S,. That is, there is a func-
tion g such that for every place z in each S, there is a place y in T such that gy = z.
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The idea is the same as in set theory. There is a structure at least as large as the result
of “replacing” each place x of S with the collection of places of a structure S,. With
this axiom, every standard model of structure theory is the size of an inaccessible
cardinal. In effect, structure theory is a reworking of second-order Zermelo-Fraenkel
set theory.

The main principle behind structuralism is that any coherent theory characterizes
a structure, or a class of structures. For what it is worth, I state this much:

Coherence: If @ is a coherent formula in a second-order language, then there is a struc-

ture that satisfies ®.

The problem, of course, is that it is far from clear what “coherent” comes to here. .
The question of when a theory is coherent, and thus describes a structure (or class of
structures), will occupy us later several times (e.g., section 5 of this chapter, and
chapter 4).17 Notice, for now, that because we are using a second-order language,
simple (proof-theoretic) consistency is not sufficient to guarantee that a theory
describes a structure or class of structures. Because the completeness theorem fails,
there are consistent second-order theories that are not satisfiable (see Shapiro [1991,
chapter 4]). Consider, for example, the conjunction P of the axioms of Peano arith-
metic together with the statement that P is not consistent. Contra Hilbert, consistency
does not imply existence even for a structuralist. We need something more like
satisfiability, but the latter is usually formulated in terms of the set-theoretic hierar-
chy (or some other ontology): a theory is satisfiable if there is a model for it. There
is no getting away from this problem, but perhaps the circle is not vicious.

We can, of course, add an axiom that, say, second-order ZFC is coherent, and thus
conclude that there is a structure the size of an inaccessible cardinal. Another, less
ad hoc route to large structures is to assume that structure theory itself is coherent,
and so is any theory consisting of structure theory plus any truth of structure theory.
This suggests a reflection scheme. Let @ be any (first- or second-order) sentence in
the language of structure theory. Then the following is an axiom:

Reflection: If @, then there is a structure S that satisfies the (other) axioms of structure
theory and @.

Letting ® be a tautology, the principle entails the existence of a structure the size of
an inaccessible cardinal. Letting & be the conjunction of the other axioms of struc-
ture theory (or ZFC) plus the existence of a structure the size of an inaccessible car-
dinal, the reflection principle entails the existence of a structure the size of the sec-
ond inaccessible cardinal, and it goes on from there.'® '

One might think that I am inviting a version of Russell’s paradox. Is there a struc-
ture of all structures? The answer is that there is not, just as there is no set of all sets.

‘Because a “system” is a collection of places in structures (together with relations),

17. A more general principle is that every coherent collection I" of formulas is satisfied by a struc-
ture, but to be picky, one should add a proviso that I is not the size of a proper class.

18. A variation of the reflection principle, along the lines of Bernays [1961], entails the existence
of structures the size of a Mahlo cardinal, a hyper-Mahlo cardinal, up to an indescribable cardinal. A
suitable reflection also entails the powerstructure and replacement axioms. See Shapiro [1987] and
Shapiro [1991, chapter 6] for a study of higher-order reflection principles. See also Levy [1960].
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some systems are “too big” to exemplify a structure. This defect could be avoided,
as itis in set theory, by stipulating that there are no systems the size of a proper class.
The relevant axioms would be that for every system S, there is no function from the
places of S onto the class of all places in all structures.

The point is that structuralism is no more (and no less) susceptible to paradox than
set theory, modal structuralism, or category theory. Some care is required in regi-
menting the informal discourse, but it is a familiar sort of care. One can ascend to
another level and interpret the objects of the domain of the structure language as the
places in a superstructure. But, as with set theory, we cannot take this structure to be
in the range of the (structure) variables of the original theory. The ontology changes
as we go to a metalanguage. This, however, is rarified analysis. Normally, there is
little need to ascend beyond the original structuralist language, at least not in this
way, just as there is little need to ascend to some sort of superset theory.

Enough on the details of structure theory. For someone familiar with axiomatic
set theory, everything is straightforward. The reason the development goes smoothly
is that structure theory, as I conceive it, is about as rich as set theory. It has to be if
set theory itself is to be accommodated as a branch of mathematics. In a sense, set
theory and the envisioned structure theory are notational variants of each other. In
particular, structure theory without the reflection principle is a variant of second-order
ZFC, and structure theory with the reflection principle is a notational variant of set
theory with a corresponding reflection principle.

Nevertheless, for present purposes, structure theory is a more perspicuous and less
artificial framework than set theory. If nothing else, structure theory regards set theory
(and perhaps even structure theory itself) as one branch of mathematics among many,
whereas the ontological option makes set theory (or another designated theory) the
special foundation. However, even this is not a major advantage, because the equiva-
lence and mutual interpretability of the frameworks are straightforward. Anything
that can be said in either framework can be rendered in the other. Talk of structures,
as primitive, is easily “translated” as talk of isomorphism or equivalence types over
a universe of (primitive) sets. In the final analysis, it does not really matter where we
start.

The same goes for the modal option, but the articulation and details of that equiva-
lence will be postponed (chapter 7). The upshot is the same as with set theory and
structure theory. Anything that can be said in the modal structural system (of Hellman
[1989]) can be rendered in either the set language or the structure language.

In short, on any structuralist program, some background theory is needed. The
present options are set theory, modal model theory, and ante rem structure theory.
The fact that any of a number of background theories will do is a reason to adopt the
program of ante rem structuralism. Ante rem structuralism is more perspicuous in
that the background is, in a sense, minimal. On this option, we need not assume any
more about the background ontology of mathematics than is required by structural-
ism itself.!® But when all is said and done, the different accounts are equivalent.

19. McLarty [1993] makes the same claim on behalf of a category-theoretic foundation of mathe-
matics,
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The smooth translations between the various theories also suggest that none of
them can claim a major epistemological advantage over the others. The sticky
epistemic problems get “translated” as well. Probably the deepest epistemic prob-
lem with standard set theory is how we can know anything about the abstract, acausal
universe of sets. Which sets exist? How do we know? Formidable problems indeed.
In the case of structure theory, the corresponding problems concern how we can know
anything about the realm of structures. Which structures exist? How can we tell? The
very same problem, in the case of modal structuralism, is how we know anything
about the various possibilities. Which structures are possible? How can we tell?

The upshot of this section, then, is that there are several ways to render structur-
alism in a rigorous, carefully developed background theory, and there is very little
to choose among the options. In a sense, they all say the same thing, using different
primitives. The situation with structuralism is analogous to that of geometry. Points
can be primitive, or lines can be primitive. It does not matter because, in either case,
the same structure is delivered. The same goes for structuralism itself. Set theory and
structure theory are equivalent, in the sense defined above. To speak loosely, the same
“structure of structures” is delivered. Modal structuralism also fits, once the notion
of “equivalence” is modified for the modal language.

5 Mathematics: Structures, All the Way Down

I articulate the picture of ante rem structuralism here, to demonstrate why this ac-
count is more perspicuous than the others, and to continue the dialectic of articulat-
ing the notions of structure, theory, and object.

Thus far, T have spoken freely of ordinary, nonmathematical structures, such as
baseball defenses, governments, and chess configurations, along with mathematical
structures like the natural numbers and the set-theoretic hierarchy. One might won-
der whether the word “structure” is univocal across these uses. What if anything dis-
tinguishes mathematical structures from the others?

One possible answer is that in principle, there is no difference in kind between
mathematical and nonmathematical structures. This has a clean, holistic ring to it—
at least on the ontological front. A cocky holist might go on to claim that the only
difference between the “mathematical” structures and the others is that the former
are the ones studied by mathematicians qua mathematicians. If enough mathemati-
cians took a professional interest in baseball defenses, then baseball defenses would
be mathematical structures. If mathematicians took a professional interest in chess,
then chess configurations would be mathematical structures. Typically, the structures
studied by mathematicians are complex and interesting, but this does not mark a dif-
ference in kind.?0

A slightly more cautious claim would be that the difference between mathemati-
cal and ordinary structures is not so much in the structures themselves but in the way

20. Mea culpa. In the past, when responding to questions, I would usually take this cocky holistic
line. This would be greeted with frowns and incredulous stares from my audiences—with the possible
exception of ontic holists.
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they are studied. Mathematics is the deductive study of structures. The mathemati-
cian gives a description of the structure in question, independentily of any systems
this structure may be the structure of. Anything the mathematician, qua mathemati-
cian, goes on to say about the structure must follow from this description. Ordinary
structures are not usually studied this way, or not studied this way exclusively. Re-
call the passage from Resnik [1982] in section 1. When the imaginary linguists dis-
cover that Tenglish is not the structure of spoken English, presumably by comparing
the structure as defined to the spoken language, they lose interest in the structure.
Their methodology is focused on what Tenglish is supposed to be a structure of. In
contrast, if Tenglish is internally coherent, a mathematician can go on to study the
structure, independently of whether it is exemplified in any real or even possible lin-
guistic community. On this orientation, ontic holism is maintained, but mathematics
is distinguished by its deductive epistemology.

This account is not cautious enough. Although there are interesting borderline cases
between mathematical and ordinary structures, which will further occupy us when
we get to applications (chapter 8), there are important differences between the two
types of structures. A vague border is still a border.

One difference between the types of structures concerns the nature of the rela-
tions between the officeholders of exemplifying systems. Consider our standby, the
baseball-defense structure. Imagine a system that consists of nine people placed in
the configuration of a baseball defense but hundreds of miles apart—the “right fielder”
in New York, the “center fielder” in Detroit, and so on. This system does not exem-
plify the structure of baseball defense, although one might say that it simulates or
models the structure. There is an implicit requirement that the player at first base be
within a certain distance of first base, the pitcher, and so forth. If not, then it is no
baseball defense. In mathematical structures, on the other hand, the relations are ali
formal, or structural. The only requirements on the successor relation, for example,
are that it be a one-to-one function, that the item in the zero place not be in its range,
and that the induction principle hold. No spatiotemporal, mental, personal, or spiri-
tual properties of any exemplification of the successor function are relevant to its
being the successor function.

Although these examples may point in a certain direction, there is a problem of
precisely formulating this notion of a “formal” relation. There are clear cases of for-
mal relations and there are clear cases of nonformal relations. Surely, if a relation
involves a physical magnitude like distance or a personal property like intelligence
or age, then it is not formal. Being thirty-five years of age or older is not a formal
property. One can leave things at this intuitive level, letting borderline cases take
care of themselves. Accordingly, the border between mathematical and nonmathe-
matical structures may not be sharp. Perhaps we can do better. If each relation of a
structure can be completely defined using only logical terminology and the other
objects and relations of the system, then they are all formal in the requisite sense. A
slogan might be that formal languages capture formal relations. This is still not an
adequate definition of “formal” or “structural” relation, however, because it is not
clear how to formulate the logical/nonlogical boundary without begging any ques-
tions (see Shapiro [1997]). '
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Tarski {1986] proposed a criterion for the logical/nonlogical boundary that seems
particularly apt here—whatever its fate in the philosophy of logic (see Sher [1991]
for an insightful elaboration). His idea is that a notion is logical if its extension is
unchanged under every permutation of the domain. Thus, for example, the property
among sets of being nonempty is logical, because any permutation of the domain
takes nonempty sets (of objects in the domain) to nonempty sets, and any such per-
mutation takes the empty set to itself. The property of being thirty-five years of age
or older is not logical, because there are permutations of the domain (of people) that
take someone older than thirty-five to someone younger.

Because, in a permutation, any object can be replaced by any other, a notion that
is invariant under all permutations ignores any nonstructural or intrinsic features of
the individual objects. In these terms, the present proposal is that a relation is formal
if it can be completely defined in a higher-order language, using only terminology
that denotes Tarski-logical notions and the other objects and relations of the system,
with the other objects and relations completely defined at the same time. All rela-
tions in a mathematical structure are formal in this sense.

If this definition of “formal” is adopted, then it is immediate that any relation that
is logical in Tarski’s sense is formal. However, it does not follow that all formal
relations are logical. For example, neither 0 nor the successor function is Tarski-
logical, because there are permutations of the natural numbers that take 0 to some-
thing else and there are permutations that do not preserve the successor function. Sup-
pose, however, that we go up a level. Notice that any permutation of the natural
numbers takes the successor function to the successor function of a (possibly differ-
ent) natural-number system on the same domain. Likewise for 0. That is, if fis a
permutation of the natural numbers, then {0) occupies the 0 place in a new system S,
and m is the successor of # in S if f7(m) is the successor of f7(n) in the original
natural numbers. The new system S exemplifies the natural-number structure. Thus,
the notion of natural-number system <N, 0, s> is logical in Tarski’s sense: any per-
mutation of the domain takes a natural-number system to a natural-number system.
In general, for any mathematical structure S, the notion of “exemplifies structure S”
is logical in Tarski’s sense. This is a pleasing feature of the combination of structur-
alism and the given account of logical notions. It manifests the two slogans that math-
ematics is the science of structure, and that logic is topic-neutral.

Another important difference between mathematical and ordinary structures con-
cerns the sorts of items that can occupy the places in the structures. Imagine a sys-
tem that consists of a ballpark with nine piles of rocks, or nine infants, placed where
the fielders usually stand. Imagine also a system of chalk marks on a diagram of a
field, on which a baseball manager makes assignments and discusses strategy. Intu-
itively, neither of these systems exemplifies the defense structure. A system is not a
baseball defense uniess its positions are filled by people prepared to play ball. Piles
of rocks, infants, and chalk marks are excluded. Prima facie, these requirements on
the officeholders in potential defense systems are not “structural.” For example, the
requirement that the officeholders be people prepared to play is not described solely
in terms of relations among the offices and their occupants. The system of rock piles
and the system of chalk marks can perhaps be said to model or simulate the baseball-
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jefense structure, but they do not exemplify it. Similarly, there is no possible system
‘hat exemplifies the U.S. government (before the year 2017) in which my eldest
Jaughter is president. The president must be thirty-five years of age, chosen by .the
zlectoral college, and be a native-born citizen. The age, birth, and election require-
ments are not structural, in that those requirements are not described in terms of re-
lations of the officeholders to each other. There are, again, systems that model or
simulate the government, and my daughter has the office of president in some of these,
but simulating and exemplifying are not the same thing.

In contrast, mathematical structures are freestanding. Every office is character-
ized completely in terms of how its occupant relates to the occupants of the other
offices of the structure, and any object can occupy any of its places. In the natural-
number structure, for example, there is no more to holding the 6 office than being
the successor of the item in the 5 office, which in turn is the successor of the item in
the 4 office. Anything at all can play the role of 6 in a natural-number system. Any
thing. There are no requirements on the individual items that occupy the places; the
requirements are solely on the relations between the items. A consequence of this
feature is that in mathematics there is no difference between simulating a structure
and exemplifying it.?!

The freestanding nature of mathematical structures and the “formal” or “struc-
tural” nature of their relations are connected to each other. Suppose that a structure
S has a nonformal relation, say, one that involves a physical magnitude, such as dis-
tance. For example, let it be required that the occupants of two particular places be
ninety feet apart. Then S cannot be free-standing. The places of S that bear the dis-
tance relations cannot be filled with abstract objects, for example, because such ob-
jects do not have distance relations with each other. Similarly, if some relations of §
require the objects to be movable, then objects that cannot be easily moved, like stars,
cannot fill those places. If, on the other hand, all of the relations in a structure are
formal, then any objects at all can fill the places. Insofar as the relations are formal,
the structure is freestanding.

As we have seen, the places in the natural-number structure can be occupied by
places in other structures (like finite von Neumann ordinals). Even more, the places
in the natural-number structure can be occupied by the same or other natural num-
bers. The even numbers and the natural numbers greater than 4 both exemplify the
natural-number structure. In the former, 6 plays the 3 role, and in the latter 8 plays
the 3 role. In the series of primes, 7 plays the 3 role. The ante rem account of struc-
tures easily accommodates this freestanding feature of mathematical structures. Places
of structures, considered from the places-are-objects perspective, can occupy places
in the same or in different structures.

As noted earlier, there is one trivial example. In the system of natural numbers, 3
itself plays the 3 role. That is, the number 3, in the places-are-objects perspective,
occupies the 3 office. The natural-number structure itself exemplifies the natural-

21. T am indebted to Diana Raffman and Michael Tye for several insightful conversations on these
matters.
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number structure. Hand [1993] argues that the freestanding feature of structures,
construed ante rem, invites a Third Man regress. It is a Third . Both the system of
finite von Neumann ordinals and the system of Zermelo numerals exemplify the
natural-number structure. So do the natural numbers themselves, qua places-are-
objects. Thus, the argument goes, we need a new structure, a super natural-number
structure, which the original natural-number structure shares with the finite von
Neumann ordinals and the Zermelo numerals. Actually, we need no such thing. The
best reading of “the natural-number structure itself exemplifies the natural-number
structure” is something like “the places of the natural-number structure, considered
from the places-are-objects perspective, can be organized into a system, and this
system exemplifies the natural-number structure (whose places are now viewed from
the places-are-offices perspective).” In each case, there is no need for a Third.?2 The
natural-number structure, as a system of places, exemplifies itself. The Third w is
the first ®.

Eliminative in re structuralist programs do not fully accommodate the freestand-
ing nature of mathematical structures. As we have seen, on both eliminative options,
there is no places-are-objects perspective. On this view, numbers are not objects, and
so cannot be organized into systems. Strictly speaking, on either eliminative program,
neither the natural-number structure nor numbers exist (as objects), and so such items
cannot fill the places of structures.

On the other side of the ledger, there is not even a prima facie Third Man concern
with eliminative in re structuralism. In general, if a structure is not freestanding, then
there is no problem with a Third. No one would say, for example, that the baseball-
defense structure is itself a baseball defense. You cannot play ball with the places of
a structure; people are needed. Thus, if one is still bothered by the possibility of a
Third o, it might be best to eschew freestanding structures and adopt an eliminative
program.

Parsons [1990] delimits an important distinction between different levels of
abstracta: “Pure mathematical objects are to be contrasted not only with concrete
objects, but also with certain abstract objects, that I call quasi-concrete, because they
are directly ‘represented’ or ‘instantiated’ in the concrete. Examples might be geo-
metric figures (as traditionally conceived), symbols whose tokens are physical utter-
ances or inscriptions, and perhaps sets or sequences of concrete objects” (p. 304).
Parsons’s contrast is aligned with the matters under discussion here. His quasi-
concrete objects are naturally organized into systems; his point is that the structures
of such systems are not freestanding. Prima facie, only inscriptions of some sort can
exemplify linguistic types, and, at least traditionally, only points in space can exem-
plify geometric points.

Parsons argues that a “purely structuralist account does not seem appropriate for
quasi-concrete objects, because the representation relation is something additional

22. See Dieterle [1994, chapter 1] for a further discussion of the Third Man argument in the con-
text of structuralism and a more detailed reply to Hand [1993]. Dieterle relates the present issue to some
contemporary treatments of the traditional Third Man problem.
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to intra structural relations.” Because quasi-concrete objects “have a claim to be the
most elementary mathematical objects,” structuralism is ot the whole story about
mathematics. There is more to mathematics than what is indicated by the slogan “the
science of structure.”

Several responses to Parsons’s charge are available. First, the structuralist might
argue that quasi-concrete objects are not really mathematical objects. This is surely
counterintuitive, because sets, geometric figures, and strings seem to be mathemati-
cal if anything is. Second, one might argue that Parsons’s distinction is ill founded.
There are not really any levels of abstracta to accommodate. As indicated, I demur
from this option. The distinction is well taken, if not precise. Third, and less radi-
cally, one might claim that structures of quasi-concrete abstracta lie on the border
between mathematical and ordinary structures and that the structures of quasi-
concrete abstracta can be replaced with freestanding, formal ones. As far as math-
ematics goes, this replacement is virtually without loss. In particular, we can con-
cede Parsons’s point and try to delimit the role of quasi-concrete objects, showing
how they are perhaps restricted to motivation and epistemology. The latter strategy
is consistent with Parsons’s own conclusions.

A brief look at the history of mathematics shows that the structures of quasi-
concrete objects have been gradually supplanted by freestanding structures whose
relations are formal. Consider geometry. From antiquity through the eighteenth cen-
tury, geometry was the study of physical space, perhaps idealized. The points and
lines of Euclidean geometry are points and lines of space. Thus, they are concrete or
quasi-concrete, and their structure is not freestanding. Moreover, relations like “be-
tweenness” and “congruence” are not formal. For point B to be between A and C, it
must lie on a line connecting them, with A (physically) on one side and C on the other.
For two line segments to be congruent, they must be the same length. Because of
various internal developments, however, geometry came to be construed more and
more formally, and thus more and more structurally. Along the way, nonspatial sys-
tems were construed as exemplifying the structure of various geometries. In analytic
geometry, for example, the structure of Euclidean geometry is exemplified with a
system of triples of real numbers. There is, of course, a “betweenness” relation of
real analysis, in which = is between 3.1 and 3.2. This relation is similar to the “be-
tweenness” of geometry, but the similarity is just structural, or formal. Real numbers
are not actually parts of locations in space—but, as we now know, the structures are
the same.? The subsequent use of idealized “points” and the use of analogues of com-
plex analysis in geometry provided the crucial motivation for the move to a formal,
structural construal of geometry. It became ever more difficult to understand the tech-
niques, “constructions,” and even the ontology of geometry as connected essentially
to physical space. In chapter 5, I take a further look at some of these developments.

Unlike geometry, string theory does not have a long and hallowed history, but
one can see a similar, if abbreviated development. Intuitively, strings are linguistic

23. Dedekind [1872] effectively exploited the structural similarities between the points on a line
and real numbers in his celebrated treatment of continuity.
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types, the forms of written marks. Because only written marks can be tokens of these
types, the structures are not freestanding. Moreover, the central operation of the theory
is concatenation, which is not formal. Two strings are concatenated when they are
placed (physically) next to each other. Thus, strings are quasi-concrete. Neverthe-
less, itis not much of a stretch to see 2 more formal look to contemporary string theory.
For one thing, it is now common to consider more abstract models of string theory.
With Godel numbering, for example, logicians consider natural numbers or sets to
be strings, in which case concatenation is given an interpretation as an arithmetic or
set-theoretic operation. In other words, systems of numbers or sets exemplify the
structure of strings. Moreover, logicians now regularly consider infinitely long strings
in a variety of contexts. Surely those strings cannot be instantiated with physical or
spoken inscriptions. I return to the nature of strings and their role in epistemology in
chapter 4.

Set theory is a most interesting case study for ante rem structuralism, and Par-
sons himself treats it at some length (in [1990] and in much more detail in [1995]).
Like geometry and string theory, the intuitive ideas that underlie and motivate
current axiomatic set theory are not structural. Teachers and elementary textbooks
usually define a set to be a collection of its elements. Although it is quickly added
that a set is not to be thought of as the result of a physical or even a mental collect-
ing, there still seems to be more to membership than a purely formal relation be-
tween officeholders. Parsons and others note that there are actually different con-
ceptions of “set” that are invoked in the motivation of axiomatic set theory.?* One
of them “is the conception of a set as a totality ‘constituted’ by its elements, so that
it stands in some kind of ontological dependence on its elements, but not vice versa.
This would give to the membership relation some additional content, still very
abstract but recognizably more than a pure structuralism would admit” (Parsons
[1990, 332]). A second motivating notion is the idea of a set as the extension of a
predicate, so that each set is somehow ontologically dependent on the predicate
and not on its elements. Parsons argues that neither of these motivating notions
quite matches the one delivered in Zermelo-Fraenkel set theory. The Zermelo-
Fraenkel notion departs “from concrete intuition at least when it admits infinite
sets,” and it departs from the predicative notion when it “admits impredicatively
defined sets” ([1990, 336]). The upshot is that it may be best to view the structure
delivered in modern set theory as freestanding and formal: “The result of these
extensions . . . is that the elements of the original [nonstructural] ideas that are
preserved in the theory have a purely formal character. For example, the priority
of the elements of a set to the set, which is usually motivated by appealing to the
first of [the] two informal conceptions is reflected in the theory itself by the fact
that membership is a well-founded relation” (p. 336). Well-foundedness can be
characterized in a second-order language using no nonlogical terminology: a rela-
tion E is well-founded if and only if VP[IxPx ~ Ix(Px & Vy(Eyx - ~Py))] (see

24. Parsons is a major contributor to a substantial literature on the philosophical underpinnings of
axiomatic set theory. See Benacerraf and Putnam [1983, part 4].
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Shapiro {1991, chapter 5]). Thus, well-foundedness is a formal property in the
Zermelo-Fraenkel structure, and it replaces the quasi-concrete notion of “priority.”
Parsons’s careful conclusion is that one can and should overcome some intuitive,
prereflective reasons for taking the domain of Zermelo-Fraenkel set theory non-
structurally. The “universe of sets” is a collection of places “related in a relation called
‘membership’ satisfying conditions that can be stated in the language of set theory”
(Parsons [1990, 332]). The set-theoretic hierarchy is a freestanding structure.?

This conclusion generalizes to all of mathematics, or at least to all of pure mathe-
matics: “A structuralist view of higher set theory will then oblige us to accept the
idea of a system of objects that is really no more than a structure. But then there is no
convincing reason not to adopt it in other domains of mathematics, in particular in
the case of the natural numbers. It would be highly paradoxical to accept Benacerraf’s
conclusion that numbers are not objects and yet accept as such the sets of higher set
theory” (Parsons [1990, 332]). Amen. The path urged here, via ante rem structural-
ism, is to accept both numbers and sets, on a par, as objects. They are places-as-objects.
Parsons comes close to the same conclusion: “The absence of notions whose non-
formal properties really matter . . . makes mathematical objects on the structuralist
view continue to seem elusive, and encourages the belief that there is some scandal
to human reason in the idea that there are such objects. My claim is that something
close to the conception of objects of this kind, already encouraged by the modern
developments of arithmetic, geometry, and algebra, is forced on us by higher set
theory” (p. 335).

So far, so good; but where is the problem? We have spoken of the “transition . . .
from dealing with domains of a more concrete nature to speaking of objects only in
a purely structural way.” The problem is that this transition “leaves a residue. The
more concrete domains, often of quasi-concrete objects, still play an ineliminable
role in the explanation and motivation of mathematical concepts and theories. . . .
The explanatory and justificatory role of more concrete models implies . . . that [struc-
turalism] is not the right legislation even for the interpretation of modern mathemat-
ics” (p. 338). So Parsons proposes a caveat to structuralism. If we kick away the lad-
der of the concrete or quasi-concrete objects, then we cannot motivate or even justify
some mathematical theories. For example, teachers often refer to sequences of lin-
guistic types in order to motivate the natural-number structure. Hilbert [1925] him-
self invoked a collection of sequences of strokes, a quasi-concrete structure, to de-
fine the objects of finitary mathematics. Parsons also notes that at least the, lower
portions of the set-theoretic hierarchy have quasi-concrete instantiations. The quasi-
concrete seem to be a main exemplar of mathematical structures.

Maddy [1990, 174-175] makes a related point, claiming that there is an episte-
mological disanalogy between arithmetic and set theory. She agrees that a structur-
alist understanding of the natural numbers is “appealing partly because our under-
standing of arithmetic doesn’t depend on which instantiation of the number structure

25. Hellman [1989, 53-73] also treats set theory structurally, but not as the theory of a freestand-
ing structure.
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we choose to study.” Set theory is different: “Experience with any endless row might
lead us to think that every number has a successor, but it is experience with sets them-
selves that produces the intuitive belief that any two things can be collected into a
set. . .. [TThough any instantiation of the natural number structure-can give us access
to information about that structure, our information about the set-theoretic hierarchy
structure comes from our experience with one particular instantiation.”

I can put the point in present terms. Recall the coherence principle in the develop-
ment of structuralism in section 4:

If @ is a coherent formula in a second-order language,
then there is a structure that satisfies ®.

This is a central (albeit vague) principle of structuralism. There is no getting around
the fact that systems of quasi-concrete objects play a central role in convincing us
that some mathematical theories are coherent and thus characterize well-defined struc-
tures (especially because consistency is not sufficient for coherence). The best way
to show that a structure exists is to find a system that exemplifies it. At some point,
we have to appeal to items that are not completely structural (unless somehow every-
thing—every thing—is completely structural; see chapter 8). And at some point, we
have to appeal to items that are not completely concrete, given the size of most math-
ematical structures. So we appeal to the quasi-concrete. If we completely eschew
quasi-concrete systems, we lose any motivation or intuitive justification that even
arithmetic and geometry (and string theory) are well motivated or even coherent.

Another reason to think that the quasi-concrete cannot be eliminated is that I have
appealed to quasi-concrete items in order to characterize the very notion of a struc-
ture. Recall that a structure is the form of a system, and a system is a collection of
objects under various relations. The notion of “collection” is an intuitive one. There
is something fishy about appealing to the set-theoretic hierarchy, as a freestanding
ante rem structure, in order to explicate the notion of “collection” in the characteri-
zation of “system” and thus “structure.” Where did we get on this merry-go-round,
and how do we get off?

A related point concerns the practice of characterizing specific structures using a
second-order language. Such languages make literal use of intuitive notions like
“predication” or “collection.” A crucial step in the defense of second-order languages
is that we have a serviceable, intuitive grasp of notions like “all subsets” (see Shapiro
[19917). This notion is also quasi-concrete. Boolos [1984] (and [1985]) has proposed
an alternate understanding of monadic, second-order logic, in terms of plural quan-
tifiers, which many philosophers have found attractive. Parsons [1995] contains an
insightful discussion of pluralities in the context of structuralism. He shows that we
are dealing with yet another quasi-concrete notion.

In all cases, then, the conclusion is the same. We can try to hide the quasi-concrete,
but there is no running away from it. Parsons’s caveat is well taken. However, the
caveat does not undermine the main ontological thesis of ante rem structuralism, the
idea that the subject matter of a branch of pure mathematics is well construed as a
class of freestanding structures with formal relations. The role of concrete and quasi-
concrete systems is the motivation of structures and the justification that structures
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with certain properties exist. The history of mathematics shows a trend from con-
crete and quasi-concrete systems to more formal, freestanding structures. There is
no contradiction in the idea of a system of quasi-concrete objects’ exemplifying a
freestanding ante rem structure. Nevertheless, Parsons’s caveat is a reminder not to
forget the roots of each theory. Without reference to the quasi-concrete, some mathe-
matical theories are left unmotivated and unjustified. In the next chapter, I turn to
the epistemology of structuralism. However, to recall the dialectical pattern of this
book, I am not finished with ontological matters. First, a brief interlude to note a
connection with the philosophy of mind.

6 Addendum: Function and Structure

In contemporary philosophy, several views go by the name of “functionalism.” If
we limit ourselves to philosophy of mind and philosophy of psychology, the frame-
work of this chapter provides convenient terminology in which to recapitulate some
common themes. Functionalism is an in re structuralism of sorts.

Ned Block [1980] describes three types of functionalism. First, functional analy-
sis is a research strategy aimed at finding explanations of a certain type: “A func-
tional explanation is one that relies on a decomposition of a system into its compo-
nent parts; it explains the working of the system in terms of the capacities of the parts
and the way that the parts are integrated with one another. For example, we can explain
how a factory can produce refrigerators by appealing to the capacities of the various
assembly lines, their workers and machines, and the organization of these compo-
nents” (p. 171). Block uses the word “system” to refer to a collection of related objects
or people, just as I do here. A functional explanation is an account of what a system
is like and what it does. The explanation begins by noting that the system exempli-
fies a certain structure and then invokes features of the structure itself, ignoring prop-
erties of the system (and its constituents) that do not relate to the structure. In the
sketch cited, the only relevant facts about the people on the assembly lines are their
relationships to each other and to the items playing other roles in the structure. Their
hair color and gender do not matter. I take it that an explanation of why a shift defense
is effective against a left-handed pull hitter is also a functional analysis.

Second, Block defines computation-representation functionalism to be a special
case of functional analysis in which “psychological explanation is seen as akin to
providing a computer program for the mind. . . . [Flunctional analysis of mental pro-
cesses [is taken to] the point where they are seen to be composed of [mechanical]
computations. . . . The key notions . . . are representation and computation. Psycho-
logical states are seen as systematically representing the world via a language of
thought, and psychological processes are seen as computations involving these rep-
resentations” (p. 179). Again, the connections with structuralism are straightforward.
According to computation-representation functionalism, the theorist is to find an
equivalence between psychological processes and something like a natural language,
a formal language, or a computer language. This equivalence is of a piece with iso-
morphism and structure equivalence. The plan is to establish a systematic correla-
tion between microprocesses and something like grammatical transformation rules
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or machine-language instructions. The brain is an ensemble of microprocesses and
is seen to be “equivalent” to either the functioning of language as a whole or to the
function of a programmed computer. Much of the work in the emerging discipline
of cognitive science can be seen as an attempt to fit this mold.

Block’s third theme, metaphysical functionalism, has the most interesting con-
nections with structuralism. This functionalism is not, or is not merely, a theory of
psychological explanation but is rather a theory of the nature of the mind and mental
states like pain, belief, and desire. The metaphysical functionalist is “concerned not
with how mental states account for behavior, but with what they are” (p. 172). Ac-
cording to the metaphysical functionalist, mental states are functional states. In present
terms, the metaphysical functionalist characterizes a structure, and identifies mental
states with places in this structure. In other words, a functional state just is a place in
a structure. As Block puts it, “Metaphysical functionalists characterize mental states
in terms of their causal roles, particularly, in terms of their causal relations to sen-
sory stimulatjons, behavioral outputs, and other mental states. Thus, for example, a
metaphysical functionalist theory of pain might characterize pain in part in terms of
its tendency to be caused by tissue damage, by its tendency to cause the desire to be
rid of it, and by its tendency to produce action designed to separate the damaged part
of the body from what is thought to cause the damage” (p. 172). According to meta-
physical functionalism, then, pain is to be characterized in terms of its relation to
other mental states and to certain inputs and outputs. This is not much different from
characterizing a natural number in terms of its relations to other numbers. Of course,
the characterization of the natural numbers is rigorous and precise, whereas the above
characterization of pain is admittedly inadequate. The metaphysical functionalist
envisions a program for filling it in, much as the Peano postulates fill in the details of
the natural-number structure.

Block describes this functionalist program in terms much like those of the present
chapter. He envisions that we start with a psychological theory T that describes the
relations among pain, other mental states, sensory inputs, and behavioral outputs.
Reformulate T as a single sentence, with mental-state terms all as singular terms. So
T has the form

T(sys - - -5 Sp)s

where s, . . ., s, are the aforementioned singular terms for mental states. Now, if s;
is the term for “pain,” then we can define an organism y to be in pain as follows,
adapting the technique of Ramsey sentences:

y has pain if and only if dx, . . . Ix,(T(x,, . . ., x,) and y has x)).

In other words, y is in pain if and only if y has states that relate to each other in vari-
ous ways and tend to produce such and such outputs when confronted with thus and
so inputs. Block illustrates this with a nonmental example: “Consider the ‘theory’
that says: ‘The carburetor mixes gasoline and air and sends the mixture to the igni-
tion chamber, which, in turn . . . * [Block’s ellipsis] Let us consider ‘gasoline’ and
‘air’ to be input terms, and let x; replace ‘carburetor’, and x, replace ‘ignition cham-
ber’” (p. 175). Then, according to the metaphysical functionalist, we can say thatyis
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a carburetor if and only if “Jx, . . . 3x,[(The x; mixes gasoline and air and sends the
mixture to the x,, which, in turn, . ..) and y is an x;]” (p. 175).

Block thus uses the term “functional state” for something like the present “place
in a structure.” To continue the automotive examples, “valve-lifter” is a functional
term, because anything “that lifts valves in an engine with a certain organizational
structure is a valve-lifter.” Similarly, “carburetor” is a functional term, as are mental-
state terms like “pain,” “belief,” and “desire.” They all denote places in structures.
Block uses “structural term” to refer to something like an officeholder. For example,
“camshaft” is said to be a structural term, relative to “valve-lifter,” because a “cam-
shaft is one kind of device for lifting valves” (p. 174). In contemporary philosophy,
“C-fiber” would be a structural term.

Presumably, the theory of pain is more sophisticated than the theory of carburation,
but the form of the metaphysical functionalist analysis is the same. Notice that the
structuralist definition of the natural numbers also has this form. We say that a given
object z plays the 2 role in a certain system S if and only if S satisfies the Peano axi-
oms and z is the S-successor of the S-successor of the zero object of S.

The structures delimited by metaphysical functionalism are not freestanding, and
most of their places are not formal. Carburetors must mix gasoline and air. One can-
not locate a carburetor in anything but an internal-combustion device. Computers
and humans do not have systems that mix gasoline and air in preparation for com-
bustion, and so computers and humans do not have carburetors. In the case of (physi-
cal) pain, the indicated inputs and outputs must also be held fixed. If an organism
does not have something like the capacity for tissue damage, then it is not capable of
pain. We can locate the exemplification of the pain structure in humans and animals,
and perhaps we can locate a pain system in extraterrestrials and in future machines,
but certainly not in abstract objects or planets.

If the concepts given functional definitions are made a little more formal and free-
standing—along the lines of the development of geometry—then borderline cases
of the concepts are produced. Eventually, the boundary with mathematics is crossed.
Suppose there were a device that mixed two things other than gasoline and air, and
sent the mixture to an ignition chamber. The functional definition would be some-
thing like this:

Aw,3w,3x, . . . 3x,[(The x, mixes w; and w, and sends the mixture to the x,,
which, in turn, . . . ) and y is an x].

Would the y be a carburetor? Perhaps. Suppose it did not mix the two things but did
something else to them, and rather than sending the result somewhere, did something
else with it:

3X3w, 3w, 3z, ...z, 3x .. 3 [(ewiw, & L) &y =x].

Clearly, this does not define “carburetor” in any sense of the word. At the limit, we
would produce a purely formal definition, which characterizes a freestanding struc-
ture. In theory, any object could play the x, role, including the number 2 and Julius
Caesar. There would be systems of sets and numbers that exemplify the resulting
structure. “Carburetor” would be an object of pure mathematics, and carburetor theory
would have gone the route of geometry, dealing with an ante rem structure.

Epistemology and Reference

| Epistemic Preamble

For a philosopher who takes the full range of contemporary mathematics seriously,
the most troublesome issues lie in epistemology. The situation is especially acute for
traditional realism in ontology. Almost every realist agrees that mathematical ob-
Jjects are abstract. Although there is surprisingly little discussion of the abstract/con-
crete dichotomy in the literature,! the idea seems to be that abstracta are not located
in space-time and are (thus) outside the causal nexus. We do not bump up against
abstract objects, nor do we see them or hear them. If mathematical objects are like
this, then how can we know anything about them? How can we formulate warranted
beliefs about mathematical objects and have any confidence that our beliefs are true?
Most of us believe that every natural number has a successor, and I would hope that
at least some of us are fully justified in this belief. But how?

Benacerraf’s celebrated [1973] develops this difficulty into an objection to real-
ism in ontology by invoking the so-called causal theory of knowledge. According to
this epistemology, there is no knowledge of a type of object unless there is some sort
of causal connection between the knower and at least samples of the objects. On this
account, it seems, knowledge of abstracta is impossible, because, by definition, there
is no causal contact with such objects. In recent decades, the causal theory of knowl-
edge has been roundly criticized from several quarters, and not just by friends of
abstracta. There is no consensus on any epistemology, causal or otherwise. There is
no leading contender.

1. One very notable exception to the lack of discussion on the abstract/concrete dichotomy is the
fine study in Hale [1987]. See also Zalta [1983]. As noted in previous chapters, mathematicians use
the “abstract/concrete” label for a different distinction. For them, arithmetic is a “concrete” study,
because its subject is a single structure (up to isomorphism). Group theory is more “abstract.” The
mathematicians’ “abstract/concrete” is my “algebraic/nonalgebraic.”
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