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This, therefore, is mathematics: she reminds you of the in-
visible form of the soul; she gives life to her own discoveries;
she awakens the mind and purifies the intellect; she brings
light to our intrinsic ideas; she abolishes oblivion and ig-
norance which are ours by birth. PROCLUS

NOT!ICE
This mezerial may be
protected by copyright
law (Title 17 U.S. Code.)

1. Background

In the history of civilization the Greeks are preeminent, and in the history
of mathematics the Greeks are the supreme event. Though they did borrow
from the surrounding civilizations, the Greeks built a civilization and culture
of their own which is the most impressive of all civilizations, the most in-
fluential in the development of modern Western culture, and decisive in
founding mathematics as we understand the subject today. One of the great
problems of the history of civilization is how to account for the brilliance and
creativity of the ancient Greeks.

Though our knowledge of their early history is subject to correction and
amplification as more archeological research is carried on, we now have
reason to believe, on the basis of the Iliad and the Odyssey of Homer, the
decipherment of ancient languages and scripts, and archeological investiga-
tions, that the Greek civilization dates back to 2800 B.c. The Greeks settled
in Asia Minor, which may have been their original home, on the mainland
of Europe in the area of modern Greece, and in southern Italy, Sicily, Crete,
Rhodes, Delos, and North Africa. About 775 B.c. the Greeks replaced various
hieroglyphic systems of writing with the Phoenician alphabet (which was
also used by the Hebrews). With the adoption of an alphabet the Greeks
became more literate, more capable of recording their history and ideas.

As the Greeks became- established they visited and traded with the
Egyptians and Babylonians. There are many references in classical Greek
writings to the knowledge of the Egyptians, whom some Greeks erroneously
considered the founders of science, particularly surveying, astronomy, and
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arithmetic. Many Greeks went to Egypt to travel and study. Others visited
Babylonia and learned mathematics and science there.

The influence of the Egyptians and Babylonians was almost surely felt
in Miletus, a city of Ionia in Asia Minor and the birthplace of Greek phil-
osophy, mathematics, and science. Miletus was a great and wealthy trading
city on the Mediterranean. Ships from the Greek mainland, Phoenicia, and
Egypt came to its harbors; Babylonia was connected by caravan routes
leading eastward. Ionia fell to Persia about 540 B.c., though Miletus was
allowed some independence. After an Ionian revolt against Persia in 494 B.c.
was crushed, Ionia declined in importance. It became Greek again in 479 B.c.
when Greece defeated Persia, but by then cultural activity had shifted to the
mainland of Greece with Athens as its center.

Though the ancient Greek civilization lasted until about a.n. 600, from
the standpoint of the history of mathematics it is desirable to distinguish two
periods, the classical, which lasted from 600 to 300 B.c., and the Alexandrian
or Hellenistic, from 300 B.c. to A.p. 600. The adoption of the alphabet,
already mentioned, and the fact that papyrus became available in Greece
during the seventh century B.c. may account for the blossoming of cultural
activity about 600 B.c. The availability of this writing paper undoubtedly
helped the spread of ideas.

2. The General Sources

The sources of our knowledge of Greek mathematics are, peculiarly, less
authentic and less reliable than our sources for the much older Babylonian
and Egyptian mathematics, because no original manuscripts of the important
Greek mathematicians are extant. One reason is that papyrus is perishable;
though the Egyptians also used papyrus, by luck a few of their mathematical
documents did survive. Some of the voluminous Greek writings might still
be available to us if their great libraries had not been destroyed.

Our chief sources for the Greek mathematical works are Byzantine
Greek codices (manuscript books) written from 500 to 1500 years after the
Greek works were originally composed. These codices are not literal repro-
ductions but critical editions, so that we cannot be sure what changes may
have been made by the editors. We also have Arabic translations of the Greek
works and Latin versions derived from Arabic works. Here again we do.not
know what changes the translators may have made or how well they under-
stood the original texts. Moreover, even the Greek texts used by the Arabic
and Byzantine authors were questionable. For example, though we do not
have the Alexandrian Greek Heron’s manuscript, we know that he made a
number of changes in Euclid’s Elements. He gave different proofs and added
new cases of the theorems and converses. Likewise Theon of Alexandria (end
of 4th cent. A.p.) tells us that he altered sections of the Elements in his edition.



20 THE CREATION OF CLASSICAIL GREEK MATHEMATICS

The Greek and Arabic versions we have may come from such versions of the
originals. However, in one or another of these forms we do have the works
of Euclid, Apollonius, Archimedes, Ptolemy, Diophantus, and other Greek
authors. Many Greek texts written during the classical and Alexandrian
periods did not come down to us because even in Greek times they were
superseded by the writings of these men.

The Greeks wrote some histories of mathematics and science. Eudemus
(4th cent. B.c.), a member of Aristotle’s school, wrote a history of arithmetic,
a history of geometry, and a history of astronomy. Except for fragments
quoted by later writers, these histories are lost. The history of geometry dealt
with the period preceding Euclid’s and wou!ld be invaluable were it available.
Theophrastus (c. 372—. 287 B.c.), another disciple of Aristotle, wrote a
history of physics, and this, too, except for a few fragments, is lost.

In addition to the above, we have two important commentaries.
Pappus (end of 3rd cent. A.p.) wrote the Synagoge or Mathematical Collection;
almost the whole of it is extant in a twelfth-century copy. This is an account
of much of the work of the classical and Alexandrian Greeks from Euclid to
Ptolemy, supplemented by a number of lemmas and theorems that Pappus
added as an aid to understanding. Pappus had also written the Treasury of
Analysis, a collection of the Greek works themselves. This book is lost, but in
Book VII of his Mathematical Collection he tells us what his Treasury contained.

The second important commentator is Proclus (a.p. 410-485), a prolific
writer. Proclus drew material from the texts of the Greek mathematicians
and from prior commentaries. Of his surviving works, the Commentary, which
treats Book I of Euclid’s Elements, is the most valuable. Proclus apparently
intended to discuss more of the Elements, but there is no evidence that he ever
did so. The Commentary contains one of the three quotations traditionally
credited to Eudemus’ history of geometry (see sec. 10) but probably taken
from a later modification. This particular extract, the longest of the three, is
referred to as the Eudemian summary. Proclus also tells us something about
Pappus’ work. Thus, besides the later editions and versions of some of the
Greek classics themselves, Pappus® Mathematical Collection and Proclus’ Com-
mentary are the two main sources of the history of Greek mathematics.

Of original wordings (though not the manuscripts) we have only a
fragment concerning the lunes of Hippocrates, quoted by Simplicius (first
half of 6th cent. A.p.) and taken from Eudemus’ lost History of Geometry, and
a fragment of Archytas on the duplication of the cube. And of original manu-
scripts we have some papyri written in Alexandrian Greek times. Related
sources on Greek mathematics are also immensely valuable. For example,
the Greek philosophers, especially Plato and Aristotle, had much to say about
mathematics and their writings have survived somewhat in the same way as
have the mathematical works.

The reconstruction of the history of Greek mathematics, based on sources
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such as we have described, has been an enormous and complicated task.
Despite the extensive efforts of scholars, there are gaps in our knowledge and
some conclusions are arguable. Nevertheless the basic facts are clear.

3. The Major Schools of the Classical Period

The cream of the classical period’s contributions are Euclid’s Elements and
Apollonius’ Conic Sections. Appreciation of these works requires some knowl-
edge of the great changes made in the very nature of mathematics and of Ehc
problems the Greeks faced and solved. Moreover, these polished works give
little indication of the three hundred years of creative activity preceding

_them or of the issues which became vital in the subsequent history.

Classical Greek mathematics developed in several centers that succeeded
one another, each building on the work of its predecessors. At each center
an informal group of scholars carried on its activities under one or more
great leaders. This kind of organization is common in modern times also and
its reason for being is understandable. Today, when one great man locates at
a particular place—generally a university—other scholars follow, to learn
from the master.

The first of the schools, the Ionian, was founded by Thales (c. 640
¢. 546 B.c.) in Miletus. We do not know the full extent to which Thales may
have educated others, but we do know that the philosophers Anaximander
(c. 610—c. 547 B.c.) and Anaximenes (¢. 550-480 B.c.) were his pupils.
Anaxagoras (¢c. 500—c. 428 B.c.) belonged to this school, and Pythagoras
(c. 585-¢. 500 B.c.) is supposed to have learned mathematics from Thales.
Pythagoras then formed his own large school in southern Italy. Toward the
end of the sixth century, Xenophanes of Colophon in Ionia migrated to
Sicily and founded a center to which the philosophers Parmexﬁdf:s (5th
cent. B.c.) and Zeno (5th cent. B.c.) belonged. The latter two resided in
Elea in southern Italy, to which the school had moved, and so the group
became known as the Eleatic school. The Sophists, active from the latter
half of the fifth century onward, were concentrated mainly in Athens.
The most celebrated school is ‘the Academy of Plato in Athens, where
Aristotle was a student. The Academy had unparalleled importance for
Greek thought. Its pupils and associates were the greatest philosophers,
mathematicians, and astronomers of their age; the school retained its pre-
eminence in philosophy even after the leadership in mathematics passed to
Alexandria. Eudoxus, who learned mathematics chiefly from Archytas of
Tarentum (Sicily), founded his own school in Cyzicus, a city of northern
Asia Minor. When Aristotle left Plato’s Academy he founded another school,
the Lyceum, in Athens. The Lyceum is commonly referred to as th.e Peri-
patetic school. Not all of the great mathematicians of the classical period can
be identified with a school, but for the sake of coherence we shall occasionally
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discuss the work of a man in connection with a particular school even though
his association with it was not close.

4, The Ionian School

The leader and founder of this school was Thales. Though there is no sure
knowledge about Thales’ life and work, he probably was born and lived in
Miletus. He traveled extensively and for a while resided in Egypt, where he
carried on business activities and reportedly learned much about Egyptian
mathematics. He is, incidentally, supposed to have been a shrewd business-
man. During a good season for olive growing, he cornered all the olive
presses in Miletus and Chios and rented them out at a high fee. Thales is
said to have predicted an eclipse of the sun in 585 B.c., but this is disputed on
_ the ground that astronomical knowledge was not adequate at that time.

He is reputed to have calculated the heights of pyramids by comparing
their shadows with the shadow cast by a stick of known height at the same
time. By some such use of similar triangles he is supposed to have calculated
the distance of a ship from shore. He is also credited with having made
mathematics abstract and with having given deductive proofs for some
theorems. These last two claims, however, are dubious. Discovery of the
attractive power of magnets and of static electricity is also attributed to
Thales.

The Ionian school warrants only brief mention so far as contributions
~ to mathematics proper are concerned, but its importance for philosophy and
the philosophy of science in particular is unparalleled” (see Chap. 7, sec. 2).
The school declined in importance when the Persians conquered the area.

5. The Pythagoreans

The torch was picked up by Pythagoras who, supposedly having learned
from Thales, founded his own school in Croton, a Greek settlement in
southern Italy. There are no written works by the Pythagoreans; we know
about them through the writings of others, including Plato and Herodotus.
In particular we are hazy about the personal life of Pythagoras and his
followers; nor can we be sure of what is to be credited to him personally or
to his followers. Hence when one speaks of the work of Pythagoras one really
refers to the work done by the group between 585 B.c., the reputed date of
his birth, and roughly 400 B.c. Philolaus (5th cent. B.d.) and Archytas
(428-347 B.c.) were prominent members of this school.

Pythagoras was born on the island of Samos, just off the coast of Asia
Minor. After spending some time with Thales in Miletus, he traveled to other
places, including Egypt and Babylon, where he may have picked up some
mathematics and mystical doctrines. He then settled in Croton. There he
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founded a religious, scientific, and philosophical brotherhood. It was a
formal school, in that membership was limited and members learned from
leaders. The teachings of the group were kept secret by the members, though
the secrecy as to mathematics and physics is denied by some historians. The
Pythagoreans were supposed to have mixed in politics; they allied themselves
with the aristocratic faction and were driven out by the popular or democratic
party. Pythagoras fled to nearby Metapontum and was murdered there
about 497 B.c. His followers spread to other Greek centers and continued his
teachings.

One of the great Greek contributions to the very concept of mathe-
matics was the conscious recognition and emphasis of the fact that mathe-
matical entities, numbers, and geometrical figures are abstractions, ideas
entertained by the mind and sharply distinguished from physical objects or
pictures. It is true that even some primitive civilizations and certainly the
Egyptians and Babylonians had learned to think about numbers as divorced
from physical objects. Yet there is some question as to how much they were
consciously aware of the abstract nature of such thinking. Moreover, geo-
metrical thinking in all pre-Greek civilizations was definitely tied to matter.
To the Egyptians, for example, a line was no more than either a stretched
rope or the edge of a field and a rectangle was the boundary of a field.

The recognition that mathematics deals with abstractions may with
some confidence be attributed to the Pythagoreans. However, this may not
have been true at the outset of their work. Aristotle declared that the Pythag-
oreans regarded numbers as the ultimate components of real, material
objects.! Numbers did not have a detached existence apart from objects of
sense. When the early Pythagoreans said that all objects were composed of
(whole) numbers or that numbers were the essence of the universe, they
meant it literally, because numbers to them were like atoms are to us. It is
also believed that the sixth- and fifth-century Pythagoreans did not really
distinguish numbers from geometrical dots. Geometrically, then, a2 number
was an extended point or a very small sphere. However, Eudemus, as
reported by Proclus, says that Pythagoras rose to higher principles (than had
the Egyptians and Babylonians) and considered abstract problems for the
pure intelligence. Eudemus adds that Pythagoras was the creator of pure
mathematics, which he made into a liberal art.

The Pythagoreans usually depicted numbers as dots in sand or as pebbles.
They classified the numbers according to the shapes made by the arrange-
ments of the dots or pebbles. Thus the numbers 1, 3, 6, and 10 were called
triangular because the corresponding dots could be arranged as triangles
(Fig. 3.1). The fourth triangular number, 10, especially fascinated the
Pythagoreans because it was a prized number for them, and had 4 dots on

1. Metaphys. 1, v, 986a and 9862 21, Loeb Classical Library ed.
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each side, 4 being another favorite number. They realized that the sums
I, 1 +2,1+ 2+ 3, and so forth gave the triangular numbers and that
14+2+.--+n=[n2)n+ 1)

The numbers 1, 4, 9, 16, ... were called square numbers because as
dots they could be arranged as squares (Fig. 3.2). Composite (nonprime)
numbers which were not perfect squares were called oblong.

From the geometrical arrangements certain properties of the whole
numbers became evident. Introducing the slash, as in the third illustration
of Figure 3.2, shows that the sum of two consecutive triangular numbers is a
square number. This is true generally, for as we can see, in modern notation,

n +

g(n+l)+ 21(n+2)=(n+1)2.

That the Pythagoreans could prove this general conclusion, however, is
doubtful.

To pass from one square number to the next one, the Pythagoreans had
the scheme shown in Figure 3.3. The dots to the right of and below the lines
in the figure formed what they called a gnomon. Symbolically, what they
saw here was that n? + (2n + 1) = (n + 1)2 Further, if we start with 1 and
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Figure 3.4. The shaded area is the gnomon.

add the gnomon 3 and then the gnomon 5, and so forth, what we have in our
symbolism is
14+34+54+---+2n—1)=n%

As to the word “gnomon,” originally in Babylonia it probably meant
an upright stick whose shadow was used to tell time. In Pythagoras’ time it
meant a carpenter’s square, and this is the shape of the above gnomon. It
also meant what was left over from a square when a smaller square was cut

" out of one corner. Later, with Euclid, it meant what was left from a paral-

lelogram when a smaller one was cut out of one corner provided that the
parallelogram in the lower right-hand corner was similar to the one cut out
(Fig. 3.4).

The Pythagoreans also worked with polygonal numbers such as pen-
tagonal, hexagonal, and higher ones. As we can see from Figure 3.5, where
each dot represents a unit, the first pentagonal number is 1, the second,
whose dots form the vertices of a pentagon, is 5; the thirdis I + 4 + 7, or
12, and so forth. The nth pentagonal number, in our notation, is (32* — n)/2.
Likewise the hexagonal numbers (Fig. 3.6) are 1, 6, 15, 28, . . . and generally
2n% — n.

A number that equaled the sum of its divisors including 1 but not the
number itself was called perfect; for example, 6, 28, and 496. Those exceed-
ing the sum of the divisors were called excessive and those which were less
were called defective. Two numbers were called amicable if each was the
sum of the divisors of the other, for example, 284 and 220.

The Pythagoreans devised a rule for finding triples of integers which
could be the sides of a right triangle. This rule implies knowledge of the Py-
thagorean theorem, about which we shall say more later. They found that
when mis odd, then m, (m? — 1)/2, and (m? + 1)/2 are such a triple. However,

Figure 3.5. Pentagonal numbers
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Figure 3.6. Hexagonal numbers

this rule gives only some sets of such triples. Any set of three integers which
can be the sides of a right triangle is now called a Pythagorean triple.

The Pythagoreans studied prime numbers, progressions, and those
ratios and proportions they regarded as beautiful. Thus if  and ¢ are two
numbers, the arithmetic mean 4 is (p + ¢)/2, the geometric mean G is Vg,
and the harmonic mean H, which is the reciprocal of the arithmetic mean of
1/p and 1/g, is 2pg/(p + ¢). Now G is seen to be the geometric mean of
A and H. The proportion 4/G = G[H was called the perfect proportion
and the proportion p:(p + 9)/2 = 2pq/(p + g):q was called the musical
proportion.

Numbers to the Pythagoreans meant whole numbers only. A ratio of

two whole numbers was not a fraction and therefore another kind of number,
as it is in modern times. Actual fractions, expressing parts of 2 monetary unit
or a measure, were employed in commerce, but such commercial uses of
arithmetic were outside the pale of Greek mathematics proper. Hence the
Pythagoreans were startled and disturbed by the discovery that some ratios—
for example, the ratio of the hypotenuse of an isosceles right triangle to an
arm or the ratio of a diagonal to a side of a square—cannot be expressed by
whole numbers. Since the Pythagoreans had concerned themselves with
whole-number triples that could be the sides of a right triangle, it is most
likely that they discovered these new ratios in this work. They called ratios
expressed by whole numbers commensurable ratios, which means that the
two quantities are measured by a common unit, and they called ratios not so
expressible, incommensurable ratios. Thus what we express as 4/2/2 is an
incommensurable ratio. The ratio of incommensurable magnitudes was
called aloyos (alogos, inexpressible). The term appn7os (arratos, not having
a ratio) was also used. The discovery of incommensurable ratios is attributed
to Hippasus of Metapontum (5th cent. B.c.). The Pythagoreans were sup-
posed to have been at sea at the time and to have thrown Hippasus over-
board for having produced an element in the universe which denied the
Pythagorean doctrine that all phenomena in the universe can be reduced to
whole numbers or their ratios.
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The proof that V/2 is incommensurable with 1 was given by the Pythag-
oreans. According to Aristotle, their method was a reductio ad absurdum—
that is, the indirect method. The proof showed that if the hypotenuse were
commensurable with an arm then tHe same number would be both odd and
even. It runs as follows: Let the ratio of hypotenuse to arm of an isosceles
right triangle be «:f and let this ratio be expressed in the smallest numbers
Then «* = 282 by the Pythagorean theorem. Since «? is even, o must bl;
even, for the square of any odd number is odd.? Now the ratio «:8 is in its
l(;wcst terms. Hence § must be odd. Since o is even, let « = 2y. Then
o? = 492 = 282 Hence 82 = 2y% and so B2 is even. Then B is even. But g is
also odd and so there is a contradiction.

. :I‘his proof, which is of course the same as the modern one that V2 is
rrational, was included in older editions of Euclid’s Elements as Proposition
11'{ of Book X. However, it was most likely not in Euclid’s original text and
so is omitted in modern editions.

) .Incommensurable ratios are expressed in modern mathematics by
Irrational numbers. But the Pythagoreans would not accept such numbers.
The Babylonians did work with such numbers by approximating them
though. they probably did not know that their sexagesimal fractionai
appr?xz.mations could never be made exact. Nor did the Egyptians recognize
the d}stmctive nature of irrationals. The Pythagoreans did at least recognize
that incommensurable ratios are entirely different in character from com-
mensurable ones.

This discovery posed a problem that was central in Greek mathematics.

The Pythagoreans had, up to this point, identified number with geometry.
But the existence of incommensurable ratios shattered this identification
They did not cease to consider all kinds of lengths, arzas, and ratios ir;
geometry, but they restricted the consideration of numerical ratios to com-
mens.urable ones. The theory of proportions for incommensurable ratios and
all k.mds of magnitudes was provided by Eudoxus, whose work we shall
consider shortly.

Some geometrical results are also credited to the Pythagoreans. The
most famous is the Pythagorean theorem itself, a key theorem of Euclidean
geometry. The Pythagoreans are also supposed to have discovered what we
learn as theorems about triangles, parallel lines, polygons, circles, spheres
and the regular polyhedra. They knew in particular that the sum of th(;
angles of a triangle is 180°. A limited theory of similar figures and the fact
that a plane can be filled out with equilateral triangles, squares, and regular
hexagons are included among their results. ’

The Pythagoreans started work on a class of problems known as

2. Any odd whole number can be ex;
pressed as 2n + 1 for so . Th 2=
4n? + 4n + 1, and this is necessarily odd. mer en @n )
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application of areas. The simplest of these was to construct a polygon equal
in area to a given polygon and similar to another given one. Another was to
construct a specified figure with an area exceeding or falling short of another
by a given area. The most important form of the problem of application of
areas is: Given a line segment, construct on part of it or on the line segment
extended a parallelogram equal to a given rectilinear figure in area and
falling short (in the first case) or exceeding (in the second case) by a paral-
lelogram similar to a given parallelogram. We shall discuss application of
areas when we study Euclid’s work.

The most vital contribution of the Greeks to mathematics is the insis-
tence that all mathematical results be established deductively on the basis of
explicit axioms. Hence the question arises as to whether the Pythagoreans
proved their geometric results. No unequivocal answer can be given, but it
is very doubtful that deductive proof on any kind of axiomatic basis, explicit
or implicit, was a requirement in the early or middle period of Pythagorean
mathematics. Proclus does affirm that they proved the angle sum theorem;
this may have been done by the late Pythagoreans. The question of whether
they proved the Pythagorean theorem has been extensively pursued, and the
answer is that they probably did not. It is relatively easy to prove it by using
facts about similar triangles, but the Pythagoreans did not have a complete
theory of similar figures. The proof given in Proposition 47 of Book I of
Euclid’s Elements (Chap. 4, sec. 4) is a difficult one because it does not use the
theory of similar figures, and this proof was credited by Proclus to Euclid
himself. The most likely conclusion about proof in Pythagorean geometry is
that during most of the life of the school the memBers affirmed results on the
basis of special cases, much as they did in their arithmetic. However, by the
time of the late Pythagoreans, that is, about 400 B.c., the status of proof had
changed because of other developments; so these latter-day members of the
brotherhood may have given legitimate proofs.

6. The Eleatic School

The Pythagorean discovery of incommensurable ratios brought to the fore a
difficulty that preoccupied all the Greeks, namely, the relation of the dis-
crete to the continuous. Whole numbers represent discrete objects, and a
commensurable ratio represents a relation between two collections of dis-
crete objects, or two lengths that have a common unit measure so that each
length is a discrete collection of units. However, lengths in general are not
discrete collections of units; this is why ratios of incommensurable lengths
appear. Lengths, areas, volumes, time, and other quantities are, in other
words, continuous. We would say that line segments, for example, can have
irrational as well as rational lengths in terms of some unit. But the Greeks
had not attained this view.
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The problem of the relation of the discrete to the continuous was
brought into the limelight by Zeno, who lived in the southern Italian city of
Elea. Born some time between 495 and 480 B.c., Zeno was a philosopher
rather than a mathematician, and like his master Parmenides was said to
have been a Pythagorean originally. He proposed a number of paradoxes, of
which four deal with motion. His purpose in posing these paradoxes is not
clear because not enough of the history of Greek philosophy is known. He
was said to be defending Parmenides, who had argued that motion or change
is impossible. He was also attacking the Pythagoreans, who believed in ex-
tended but indivisible units, the points of geometry. We do not know precisely
what Zeno said but must rely upon quotations from Aristotle, who cites Zeno
in order to criticize him, and from Simplicius, who lived in the sixth century
A.D. and based his statements on Aristotle’s writings.

The four paradoxes on motion are distinct, but the import of all four
taken together was probably intended to be the significant argument. Two
opposing views of space and time were held in Zeno’s day: one, that space
and time are infinitely divisible, in which case motion is continuous and
smooth ; and the other, that space and time are made up of indivisible small
intervals (like a movie), in which case motion is a succession of minute jerks.
Zeno’s arguments are directed against both theories, the first two paradoxes
being against the first theory and the latter two against the second theory.
The first paradox of each pair considers the motion of a single body and the
second considers the relative motion of bodies.

Aristotle in his Physics states the first paradox, called the Dichotomy, as
follows: “The first asserts the nonexistence of motion on the ground that that
which is in motion must arrive at the half-way stage before it arrives at the
goal.” This means that to traverse AB (Fig. 3.7), one must first arrive at C;
to arrive at C one must first arrive at D; and so forth. In other words, on
the assumption that space is infinitely divisible and therefore that a finite
length contains an infinite number of points, it is impossible to cover even a
finite length in a finite time.

Aristotle, refuting Zeno, says there are two senses in which a thing may
be infinite: in divisibility or in extent. In a finite time one can come into
contact with things infinite in respect to divisibility, for in this sense time is
also infinite; and so a finite extent of time can suffice to cover a finite length.
Zeno’s argument has been construed by others to mean that to go a finite
length one must cover an infinite number of points and so must get to the
end of something that has no end.

The second paradox is called Achilles and the Tortoise. According to
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Aristotle: “It says that the slowest moving object cannot be overtaken by
the fastest since the pursuer must first arrive at the point from which the
pursued started so that necessarily the slower one is always abhead. The argu-
‘ment is similar to that of the Dichotomy, but the difference is that we are not
dividing in halves the distances which have to be passed over.” Aristotle
then says that if the slowly moving object covers a finite distance, it can be
overtaken for the same reason he gives in answering the first paradox.

The next two paradoxes are directed against ‘‘cinematographic”
motion. The third paradox, called the Arrow, is given by Aristotle as fol-
lows: “The third paradox he [Zeno] spoke about, is that a moving arrow is
at a standstill. This he concludes from the assumption that time is made up
of instants. If it would not be for this supposition, there would be no such
conclusion.” According to Aristotle, Zeno means that at any instant during
its motion the arrow occupies a definite position and se is at rest. Hence it
cannot be in motion. Aristotle says that this paradox fails if we do not grant
indivisible units of time.

The fourth paradox, called the Stadium or the Moving Rows, is put by
Aristotle in these words: “The fourth is the argument about a set of bodies
moving on a race-course and passing another set of bodies equal in number
and moving in the opposite direction, the one starting fpom the end, the other
from the middle and both moving at equal speed; he [Zeno] concluded that
it follows that half the time is equal to double the time. The mistake is to
assume that two bodies moving at equal speeds take equal times in passing,
the one a body which is in motion, and the other a body of equal size which
is at rest, an assumption which is false.”

The probable point of Zeno’s fourth paradox can be stated as follows:
Suppose that there are three rows of soldiers, 4, B, and C (Fig. 3.8), and that
in the smallest unit of time B moves one position to the left, while in that
time C moves one position to the right. Then relative to B, C has moved two
positions. Hence there must have been a smaller unit of time in which C was
one position to the right of B or else half the unit of time equals the unit of
time.

It is possible that Zeno merely intended to point out that speed is
relative. C’s speed relative to B is not C’s speed relative to 4. Or he may have
meant there is no absolute space to which to refer speeds. Aristotle says that
Zeno’s fallacy consists.in supposing that things that move with the same
speed past a moving object and past a fixed object take the same time.
Neither Zeno’s argument nor Aristotle’s answer is clear. But if we think of
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Figure 3.9

this paradox as attacking indivisible smallest intervals of time and indivisible
smallest segments of space, which Zeno was attacking, then his argument
makes sense.

We may include with the Eleatics Democritus (¢. 460—. 370 B.c.) of
Abdera in Thrace. He is reputed to have been a man of great wisdom who
worked in many fields, including astronomy. Since Democritus belonged to
the school of Leucippus and the latter was a pupil of Zeno, many of the
mathematical questions Democritus considered must have been suggested by
Zeno’s ideas. He wrote works on geometry, on number, and on continuous
lines and solids. The works on geometry could very well have been significant
predecessors of Euclid’s Elements.

Archimedes says Democritus discovered that the volumes of a cone and a
pyramid are 1/3 of the volumes of the cylinder and prism having the same
base and height, but that the proofs were made by Eudoxus. Democritus re-
garded the cone as a series of thin indivisible layers (Fig. 3.9), but was
troubled by the fact that if the layers were equal they should yield a cylinder
and if unequal the cone could not be smooth.

7. ~
After the fina ., Athens became
the major city in 2Ngague of Greek cities and a co rcial center. The wealth

Ionians, Pythagoreans, and 2 uals generally were attracted to Athens.
Here emphasis was given to abStragct reasoning and the goal of extending the



