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[This article is a revised- and expanded version of Gddel 1947. The

introductory note to both 1947and 1964 is found on page 154, immediately
preceding 1947.]

1. The concept of cardinal number

Cantor’s continuum problem is simply the question: How many points

are there on a straight line in Euclidean space? An equivalent question is:

- How many different sets of integers do-there exist?

" “This question, of course, could arise only after the concept of “number”
had been extended to infinite sets; hence it.might be doubted if this exten-
sion can be effected in a uniquely determined manner and if, therefore, the
statement of the problem in the simple terms used above is justified. Closer
examination, however, shows that Cantor’s definition of infinite numbers
really has this character of uniqueness. For whatever “number” as applied
to infinite sets may mean, we certainly want it to have the property that

the number of objects belonging to some class does not change if, leaving -

the objects the same, one changes in any way whatsoever their properties
or mutual relations (e.g., their colors or their distribution in space). From

" this, however, it follows at once that two sets (at least two sets of change-

able objects of the space-time world) will have the same cardinal number
if their elements can be brought into a one-to-one correspondence, which
is Cantor’s definition of equality between numbers. For if there exists such
a correspondence for two sets A and B it is possible (at least theoretically)
to change the properties and relations of each element of A into those

= of the corresponding element of B, whereby A is transformed into a set

completely indistinguishable from B, hence of the same cardinal number.
For example, assuming a square and a line segment both completely filled
with mass points (so that at each point of them exactly one mass point
is situated), it follows, owing to the | demonstrable fact that there exists
a one-to-one correspondence between the points of a square and of a line
segment and, therefore, also between the corresponding mass points, that
the mass points of the square can be so rearranged as exactly to fill out the
line segment, and vice versa. Such considerations, it is true, apply directly
only to physical objects, but a definition of the concept of “number” which

would depend on the kind of objects that are numbered could hardly be
considered to be satisfactory.

Mo OxForp UP

This materal may. be

So there is hardly any choice left but.to accept Cantor’s ((iiei{iin1-ttli((>)1111 zif'
equality between numbers, which can easily be ‘exten(‘ied t}(: z: d }?e rzlardmal
“greater” and «legs” for infinite numbers by stipulating t 2 ! ons
number M of a set A is to be called less than the ca.rdm?r mllm o
of a set B if M is different from N but equal to. the cartu}a m; o
of some subset of B. That a cardinal number having a certain prop

_exists is defined to mean that a set of such a cardinal number exists. On

the basis of these definitions, it becomes possible to pr:‘)ve tha‘i ther:iz tel)lc:lstt
infinitely many different infinite cardinal numbers or powers; ) af}ll th.;
i i f subsets of a set is always greater than o
in particular, the number o _ s B again
i ; t becomes possible to €
number of its elements; furthermore, 1t I . o e ers
i itrari ithmetical operations to inimite
thout any arbitrariness) the arit ical ¢
Zilcluding :ums and products with any infinite number .of terms or factors)
and to prove practically all ordinary rules of _coglputatxon.d' | b of
But, even after that, the problem of identifying t‘;ll(e1 cahrt ;)na nﬁ e o
indivi ; i tinuum, would not be wei- (
an individual set, such as the linear con - f D e e card
i i i tic representation of the 1
if there did not exist some systemat ! e A
he decimal notation of the integers.
nal numbers, comparable to the : ' JotegerS on that
i ion. however, does exist, oWing to the -
systematic representation, ( e e, cxists
i h set of cardinal number
for each cardinal number and eac num o
i i diately succeeding In magni
exactly one cardinal number imme ‘ in magn
i t occurs in the series thus o
that the cardinal number of every se : o ey
i i i denote the cardinal number 1mim
This theorem makes 1t possible to rdin e,
i i bers by Ro (which is the power ol the
succeeding the set of finite num of O ely
i ite” t one by R, etc.; the one 1m
numerably infinite” sets), the nex o ey
i i i i by N, the next one by Nuw+1,
cceeding all R; (where 7 is an integer) ws ' ‘ .
'sIl‘lhe theorgy of o;dinal numbers provides the means for extending this series

further and further.

i i s, See-
1Ag to the question of why there does not exist a set of all cardinal numbers,

footnote 15. . nd
2The axiom of choice is needed for the 'proo_f of this tal‘xleorefle é:;ae :(‘)rsast;gﬁei) ond
Bar-Hillel 1958). But it may be said that this axiom, from almos ve gas e ved
f vi is as well-founded today as the other axioms of set theory. - o bt
o Vslie;:’ént with the other axioms of set theory which are usually assum ‘\;11(:1-1?0 e
:ﬁgse other axioms are consistent (see my 1 940). Mpreover, it is p(;)fs?b e b sa.tisfying
terms of any system of objects satisfying the other axioms a system of ¢ th e S o
those axioms and the axiom of choice. Finally, the axiom of choxc;e is é](lix e o e 14,
the other set-theoretical axioms for the “pure” concept of set explain
7

L




260

256 ' Gédel 1964

| 2. The continuum problem, the continuum hypothesis,
and the partial results concerning its truth
obtained so far

So the analysis of the phrase “how many” unambiguously leads to a
definite meaning for the question stated in the second line of this paper:
The problem is to find out which one of the R’s is the number of points of a
straight line or (which is the same) of any other continuum (of any number
of dimensions) in a Euclidean space. Cantor, after having proved that
this number is greater than No, conjectured that it is X;. An equivalent
proposition is this: Any infinite subset of the continuum has the power
either of the set of integers or of the whole continuum. This is Cantor’s
continuum hypothesis.

But, although Cantor’s set theory now has had a development of more
than seventy years and the problem evidently is of great importance for
it, nothing has been proved so far about the question what the power of
the continuum is or whether its subsets satisfy the condition just stated,
except (1) that the power of the continuum is not a cardinal number of
a certain special kind, namely, not a limit of denumerably many smaller
cardinal numbers,3 and (2) that the proposition just mentioned about the
subsets of the continuum is true for a certain infinitesimal fraction of these
subsets, the analytic* sets.> Not even an upper bound, however large,
can be assigned for the power of the continuum. Nor is the quality of
the cardinal number of the continuum known any better than its quantity.
It is undecided whether this number is regular or singular, accessible or
inaccessible, and (except for Konig’s negative result) what its character of
cofinality (see footnote 4) is. The only thing that is known, in addition to
the results just mentioned, is a great number of consequences of, and some
propositions equivalent to, Cantor’s conjecture.’ .

This pronounced failure becomes still more striking if the problem is
considered in its connection with general questions of cardinal arithmetic.
It is easily proved that the power of the continuum is equal to 2%. So
the continuum problem turns out to be a question from the “multiplica—
tion table” of cardinal numbers, namely, the problem of evaluating a certain

3See Hauséorﬁ 1914, p. 68, or Bachmann 1955, p. 167. The discoverer of this
theorem, J. Konig, asserted more than he had actually proved (see his 1905.)

4See the list of definitions on pp. 268-9.
5See Hausdorff 1935, p. 32. Even for complements of analytic sets the question is

undecided at present, and it can be proved only that they either have the power Rg or
R; or that of the continuum or are finite (see Kuratowski 1933, p. 246.)

6See Sierpiriski 1934 and 1956.
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infinite product (in fact the simplest non-trivial one that can be formed).
There is, however, not one infinite product (of factors > 1) for which so
much as an upper bound for its value can be assigned. All one knows
about the evaluation of infinite products are two lower bounds due to Can-
tor and Konig (the latter of which implies the aforementioned negative
theorem on the power of | the continuum), and some theorems concerning
the reduction of products with different factors to exponentiations and of
exponentiations to exponentiations with smaller bases or exponents. These
theorems reduce’ the whole problem of computing infinite products to the
evaluation of Nf,f(““) and the performance of certain fundamental opera-
tions on ordinal numbers, such as determining the limit of a series of them.
All products and powers can easily be computed® if the “generalized con-
tinuum hypothesis” is assumed, i.e., if it is assumed that 2% = R,y for
every a, or, in other terms, that the number of subsets of a set of power R
is Ray1. But, without making any undemonstrated assumption, it is not
even known whether or not m < n implies 2™ < 2" (although it is trivial
that it implies 2™ < 2"), nor even whether 2% < 2%.

3. Restatement of the problem on the basis
of an analysis of the foundations of set theory
and results obtained along these lines

This scarcity of results, even as to the most fundamental questions in
this field, to some extent may be due to purely mathematical difficulties; it
seems, however (see Section 4), that there are also deeper reasons involved
and that a complete solution of these problems can be obtained only by
a more profound analysis (than mathematics is accustomed to giving) of
the meanings of the terms occurring in them (such as “set”, “one-to-one
correspondence”, etc.) and of the axioms underlying their use. Several
such analyses have already been proposed. Let us see then what they give
for our problem. ,

First of all there is Brouwer’s intuitionism, which is utterly destructive
in its results. The whole theory of the X’s greater than X, is rejected as
meaningless.? Cantor’s conjecture itself receives several different meanings,
all of which, though very interesting in themselves, are quite different from

7This reduction can be effected, owing to the results and methods of Tarski 1925.

8For regular numbers Rq, one obtains immediately:
RGP = ke = 2N = Rava.

9See Brouwer 1909.

-
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the original problem. They lead partly to affirmative, partly to negative
answers.!® Not everything in this field, however, has been sufficiently clar-
ified. The “semi-intuitionistic” standpoint along the lines of H. Poincaré
and H. Weyl'* would hardly preserve substantially more of set theory.

| However, this negative attitude toward Cantor’s set theory, and toward
classical mathematics, of which it is a natural generalization, is by no
means a necessary outcome of a closer examination of their foundations,
but only the result of a certain philosophical conception of the nature of

mathematics, which admits mathematical objects only to the extent to

which they are interpretable as our own constructions or, at least, can be
completely given in mathematical intuition. For someone who considers
mathematical objects to exist independently of our constructions and of
our having an intuition of them individually, and who requires only that
the general mathematical concepts must be sufficiently clear for us to be
able to recognize their soundness and the truth of the axioms concerning
them, there exists, I believe, a satisfactory foundation of Cantor’s set theory
in its whole original extent and meaning, namely, axiomatics of set theory
interpreted in the way sketched below. .

It might seem at first that the set-theoretical paradoxes would doom to
failure such an undertaking, but closer examination shows that they cause
no trouble at all. They are a very serious problem, not for mathematics,
however, but rather for logic and epistemology. As far as sets occur in
mathematics (at least in the mathematics of today, including all of Can-
tor’s set theory), they are sets of integers, or of rational numbers (i-e., of
pairs of integers), or of real numbers (i.e., of sets of rational numbers), or of
functions of real numbers (i.e., of sets of pairs of real numbers), etc. When
theorems about all sets (or the existence of sets in general) are asserted,
they can always be interpreted without any difficulty to mean that they
hold for sets of integers as well as for sets of sets of integers, etc. (respec-
tively, that there either exist sets of integers, or sets of sets of integers,
or ... etc., which have the asserted property). This concept of set,'2 how-

108ee Brouwer 1907, 1, 9; 111, 2.

HSee Weyl 1932. If the procedure of construction of sets described there (p. 20)
is iterated a sufficiently large (transfinite) number of times, one gets exactly the real
numbers of the model for set theory mentioned in Section 4, in which the continuum
hypothesis is true. But this iteration is not possible within the limits of the semi-
intuitionistic standpoint. ' )

121t must be admitted that the spirit of the modern abstract disciplines of mathemat-
ics, in particular of the theory of categories, transcends this concept of set, as becomes
apparent, e.g., by the self-applicability of categories (see Mac Lane 1961). It does not
seem, however, that anything is lost from the mathematical content of the theory if cat-
2gories of different levels are distinguished. If there existed mathematically interesting
proofs that would not go through under this interpretation, then the paradoxes of set
sheory would become a serious problem for mathematics.
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ever, according to which a set is something obtainable from the integers (or
some other well-defined objects) by iterated application'® of the operation
“set of”,'* not something obtained by | dividing the totality of all existing
things into two categories, has never led to any antinomy whatsoever; that
is, the perfectly “naive” and uncritical working with this concept of set has
so far proved completely self-consistent.*®

But, furthermore, the axioms underlying the unrestricted use of this con-
cept of set or, at least, a subset of them which suffices for all mathematical
proofs devised up to now (except for theorems depending on the existence
of extremely large cardinal numbers, see footnote 20), have been formu-
lated so precisely in axiomatic set theory'® that the question of whether
some given proposition follows from them can be transformed, by means
of mathematical logic, into a purely combinatorial problem concerning the
manipulation of symbols which even the most radical intuitionist must ac-
knowledge as meaningful. So Cantor’s continuum problem, no matter what
philosophical standpoint is taken, undeniably retains at least this meaning:
to find out whether an answer, and if so which answer, can be derived from
the axioms of set theory as formulated in the systems cited.

Of course, if it is interpreted in this way, there are (assuming the consis-
tency of the axioms) a priori three possibilities for Cantor’s conjecture: It
may be demonstrable, disprovable, or undecidable.!” The third alternative
(which is only a precise formulation of the foregoing conjecture, that the
difficulties of the problem are probably not purely mathematical) is the
most likely. To seek a proof for it is, at present, perhaps the most promis-
ing way of attacking the problem. One result along these lines has been

13This phrase is meant to include transfinite iteration, i.e., the totality of sets ob-
tained by finite iteration is considered to be itself a set and a basis for further applications
of the operation “set of”.

14The operation “set of z's” (where the variable “z” ranges over some given kind of
objects) cannot be defined satisfactorily (at least not in the present state of knowledge),
but can only be paraphrased by other expressions involving again the concept of set,
such as: “multitude of 2’s”, “combination of any number of z’s”, “part of the totality of
z's”, where a “multitude” (“compination”, “part”) is conceived of as something which
exists in itself no matter whether we can define it in a finite number of words (so that
random sets are not excluded).

151t follows at once from this explanation of the term “set” that a set of all sets
or other sets of a similar extension cannot exist, since every set obtained in this way
immediately gives rise to further applications of the operation “set of” and, therefore,
to the existence of larger sets.

16See, e.g., Bernays 1937, 1941, 1942, 19483, von Neumann 1925; cf. also von Neu-
mann 1928a and 1929, Gédel 1940, Bernays and Fraenkel 1958. By including very
strong axioms of infinity, much more elegant axiomatizations have recently become pos-
sible. (See Bernays 1961.)

171n case the axioms were inconsistent the last one of the four a priori possible alter-
natives for Cantor’s conjecture would occg, namely, it would then be both demonstrable
and disprovable by the axioms of set theory.
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obtained already, namely, that Cantor’s conjecture is not disprovable from
the axioms of set theory, provided that these axioms are consistent (see
Section 4).

It is to be noted, however, that on the basis of the point of view here
adopted, a proof of the undecidability of Cantor’s conjecture from the ac-
cepted axioms of set theory (in contradistinction, e.g., to the proof of the
transcendency of 7) would by no means solve the problem. For if the mean-
ings of the primitive terms of set theory as explained on page 262 and in
footnote 14 are accepted as sound, it follows that the set-theoretical con-

cepts and theorems describe some well-determined reality, in which Can- -

tor’s conjecture | must be either true or false. Hence its undecidability from
the axioms being assumed today can only mean that these axioms do not
contain a complete description of that reality. Such a belief is by no means
chimerical, since it is possible to point out ways in which the decision of a
question, which is undecidable from the usual axioms, might nevertheless
be obtained.

First of all the axioms of set theory by no means form a system closed
in itself, but, quite on the contrary, the very concept of set'® on which
they are based suggests their extension by new axioms which assert the
existence of still further iterations of the operation “set of”. These axioms
can be formulated also as propositions asserting the existence of very great
cardinal numbers (i.e., of sets having these cardinal numbers). The simplest
of these strong “axioms of infinity” asserts the existence of inaccessible
numbers (in the weaker or stronger sense) > Ng. The latter axiom, roughly
speaking, means nothing else but that the totality of sets obtainable by
use of the procedures of formation of sets expressed in the other axioms
forms again a set (and, therefore, a new basis for further applications of
these procedures).!® Other axioms of infinity have first been formulated
by P. Mahlo.2? These axioms show clearly, not only that the axiomatic

18Gimilarly the concept “property of set” (the second of the primitive terms of set the-
ory) suggests continued extensions of the axioms referring to it. Furthermore, concepts
of “property of property of set” etc. can be introduced. The new axioms thus’obta.ined
however, as to their consequences for propositions referring to limited domains of sets’
(such as the continuum hypothesis) are contained (as far as they are known today) in
the axioms about sets. Y

198ee Zermelo 1930.

20[Rev‘ised note of September 1966: See Mahlo 1911, pp. 190-200, and 1913, pp. 269
276. From Mahlo’s presentation of the subject, however, it does not a.ppear, th:;.t the
numbers he defines actually exist. In recent years great progress has been made in the
area of axioms of infinity. In particular, some propositions have been formulated which
if consistent, are extremely strong axioms of infinity of an entirely new kind (see K eisle;
and Tarski 1964 and the material cited there). Dana Scott (1961) has proved that one
of them implies the existence of non-constructible sets. That these axioms are implied
by the general concept of set in the same sense as Mahlo’s has not been made clear

Cantor's convinuwine prvvitiie ——— -

system of set theory as used today is incomplete, but also that it can be
supplemented without arbitrariness by new axioms which only unfold the
content of the concept of set explained above.

It can be proved that these axioms also have consequences far outside
the domain of very great transfinite numbers, which is their immediate
subject matter: each of them, under the assumption of its consistency, can
be shown to increase the number of decidable propositions even in the field
of Diophantine equations. As for the continuum problem, there is little
hope of | solving it by means of those axioms of infinity which can be set
up on the basis of Mahlo’s principles (the aforementioned proof for the
undisprovability of the continuum hypothesis goes through for all of them
without any change). But there exist others based on different principles
(see footnote 20); also ‘there may exist, besides the usual axioms, the ax-
ioms of infinity, and the axioms mentioned in footnote 18, other (hitherto
unknown) axioms of set theory which a more profound understanding of the
concepts underlying logic and mathematics would enable us to recognize
as implied by these concepts (see, e.g., footnote 23).

Secondly, however, even disregarding the intrinsic necessity of some new
axiom, and even in case it has no intrinsic necessity at all, a probable de-
cision about its truth is possible also in another way, namely, inductively
by studying its “success”. Success here means fruitfulness in consequences,
in particular in “verifiable” consequences, i.e., consequences demonstrable
without the new axiom, whose proofs with the help of the new axiom, how-
ever, are considerably simpler and easier to discover, and make it possible
to contract into one proof many different proofs. The axioms for the sys-
tem of real numbers, rejected by the intuitionists, have in this sense been
verified to some extent, owing to the fact that analytical number theory fre-
quently allows one to prove number-theoretical theorems which, in a more
cumbersome way, can subsequently be verified by elementary methods. A
much higher degree of verification than that, however, is conceivable. There
might exist axioms so abundant in their verifiable consequences, shedding
so much light upon a whole field, and yielding such powerful methods for
solving problems (and even solving them constructively, as far as that is
possible) that, no matter whether or not they are intrinsically necessary,

they would have to be accepted at least in the same sense as any well-

established physical theory.

yet (see Tarski 1962, p. 134). However, they are supported by strong arguments from
analogy, €.g., by the fact that they follow from the existence of generalizations of Stone’s
representation theorem to Boolean algebras with operations on infinitely many elements.
Mahlo’s axioms of infinity have been derived from a general principle about the totality
of sets which was first introduced by A. Levy (1960). It gives rise to a hierarchy of
different precise formulations. One, given by P. Bernays (1961), implies all of Mahlo's

axioms.] C
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4. Some observations about the question:
In what sense and in which direction may a solution
of the continuum problem be expected?

But are such considerations appropriate for the continuum problem?
Are there really any clear indications for its unsolvability by the accepted
axioms? I think there are at least two:

The first results from the fact that there are two quite differently defined
classes of objects both of which satisfy all axioms of set theory that have
been set up so far. One class consists of the sets definable in a certain
manner by properties of their elements;?! the other of the sets in the sense
of arbitrary multitudes, regardless of if, or how, they can be defined. Now,
before it has | been settled what objects are to be numbered, and on the
basis of what one-to-one correspondences, one can hardly expect to be able
to determine their number, except perhaps in the case of some fortunate
coincidence. If, however, one believes that it is meaningless to speak of sets
except in the sense of extensions of definable properties, then, too, he can
hardly expect more than a small fraction of the problems of set theory to be
solvable without making use of this, in his opinion essential, characteristic
of sets, namely, that they are extensions of definable properties. This char-
acteristic of sets, however, is neither formulated explicitly nor contained
implicitly in the accepted axioms of set theory. So from either point of
view, if in addition one takes into account what was said in Section 2, it
may be conjectured that the continuum problem cannot be solved on the
basis of the axioms set up so far, but, on the other hand, may be solvable
with the help of some new axiom which would state or imply something
about the definability of sets.??

The latter half of this conjecture has already been verified; namely, the
concept of definability mentioned in footnote 21 (which itself is definable
in axiomatic set theory) makes it possible to derive, in axiomatic set the-
ory, the generalized continuum hypothesis from the axiom that every set
is definable in this sense.?® Since this axiom (let us call it “A”) turns

21Namely, definable by certain procedures, “in terms of ordinal numbers” (i.e.
roughly speaking, under the assumption that for each ordinal number a symbol de
noting it is given). See my papers 1939a and 1940. The paradox of Richard, of course
does not apply to this kind of definability, since the totality of ordinals is ce’rta,inly notz
denumerable.

227). Hilbert’s program for a solution of the continuum problem (see his 1926); which
however, has never been carried through, also was based on a consideration of all possible’
definitions of real numbers. ’

230n the other hand, from an axiom in some sense opposite to this-one, the negation
of. C_a.ntor’s cqnjecture could perhaps be derived. I am thinking of an axiom which -
(similar to Hilbert’s completeness axiom in geometry) would state some ‘maximum
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out to be demonstrably consistent with the other .axioms, under the as-
sumption of the consistency of these other axioms, this result. (regardless

..of the philosophical position taken toward definability) shows the consis-
- tency of the continuum hypothesis with the axioms of set theory, provided

that these axioms themselves are consistent.?* This proof in its structure
is similar to the. consistency proof of non-Euclidean geometry by means of

. a model within Euclidean geometry. Namely, it follows from the axioms of
. set theory that the sets definable in the aforementioned sense form a model

of set theory in which the proposition A and, therefore, the geuneralized
continuum hypothesis is true.
A second argument in favor of the unsolvability of the continuum prob-

..lem on the basis of the gusual axioms can be based on certain facts (not
- known at Cantor’s time) which seem to indicate that Cantor’s conjecture

will turn out | to be wrong,?® while, on the other hand, a disproof of it is
demonstrably impossible on the basis of the axioms being assumed today.

One such fact is the existence of certain properties of point sets (asserting
an extreme rareness of the sets concerned) for which one has succeeded in

.proving the existence of non-denumerable sets having these properties, but
- no way is apparent in which one could expect to prove the existence of

examples of the power of the continuum. Properties of this type (of subsets
of a straight line) are: (1) being of the first category on every perfect set,2%
(2) being carried into a zero set by every continuous one-to-one mapping

‘of the line onto itself.2” Another property of a similar nature is that of
- being coverable by infinitely many intervals of any given lengths.. But.in

this. case one has so far not even succeeded in proving the existence of

.non-denumerable examples. From the continuum hypothesis, however, it

follows in all three cases that there exist, not only examples of the power

. of the continuum,?8. but even-such as are.carried into' themselves (up to

denumerably many points) by every translation of the straight line.2°
Other highly implaisible consequenees of the continuum hypothesis-are
.that there exist: (1) subsets of a straight line of the power of the contin-

- uum which are covered (up to.denumerably many points) by every dense set

»» property of the system of ES)l sets, whereas axiom A states a minimum property. Note that
- only a maximum property would seem to harmonize with the concept of set explained
" in footnote 14. :

24Gee my monograph 1940 and my paper 1939a. For a carrying through of the proof
in all details, my 1940 is to be consulted.

25Vjews tending in this direction have been expressed also by N. Luzin in his 1935,
pp. 129 f. See also Sierpiriski 1935.

26See Sierpiriski 1934a and Kuratowski 1933, pp- 269 f.

27See Luzin and Sierpiriski 1918 and Sierpifiski 1934a.

28Fqr the third case see Sierpiriski 1934, p. 39, Theorem 1.
- 298ee Sierpinski 1985a.
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of intervals;®® (2) infinite-dimensional subsets of Hilbert space which con-
tain no non-denumerable finite-dimensional subset (in the sense of Menger-
Urysohn);3! (3) an infinite sequence A* of decompositions of any set M of
the power of the continuum into continuum-many mutually exclusive sets
At such that, in whichever way a set AL _is chosen for each 1, .i)_'IOO(M —AL)
is denumerable.3? (1) and (3) are very implausible even if “;ower of the
continuum” is replaced by “N;”.

One may say that many results of point-set theory obtained withc;ut us-
ing the continuum hypothesis also are highly unexpected and implausible.33
But, true as that may be, still the situation is different there, in that, in
most of those instances (such as, e.g., Peano’s curves) the appearance to
the contrary can be explained by a lack of agreement between our intuitive
geometrical concepts and the set-theoretical ones occurring in the theo-
rems. Also, it is very | suspicious that, as against the numerous plausible
propositions which imply the negation of the continuum hypothesis, not
one plausible proposition is known which would imply the continuum hy-
pothesis. I believe that adding up all that has been said one has good
reason for suspecting that the role of the continuum problem in set theory
will be to lead to the discovery of new axioms which will make it possible
to disprove Cantor’s conjecture.

Definitions of some of the technical terms

Definitions 4-15 refer to subsets of a straight line, but can be literally
transferred to subsets of Euclidean spaces of any number of dimensions if
“interval” is identified with “interior of a parallelepipedon”.

1. I call the character of cofinality of a cardinal number m (abbreviated
by “cf(m)”) the smallest number n such that m is the sum of n
numbers < m. /

2. A cardinal number m is regular if ¢f(m) = m, otherwise singular.

3. An infinite cardinal number m is inaccesstble if it is regular and has
no immediate predecessor (i.e., if, although it is a limit of numbers
< m, it is not a limit of fewer than m such numbers); it is strongly
inaccessible if each product (and, therefore, also each sum) of fewer

thgan 1;1 numbers < m is < m. (See Sierpiriski and Tarski 1930, Tarsk:
1938.

30Gee Luzin 1914, p. 1259.
31Gee Hurewicz 1932.

328ece Braun and Sierpinski iti i i
rpiniski 1932, p. 1, proposition . This pro tion i iva-
lent with the continuum hypothesis. @ ° proposition 1s equiva

33Gee, e.g., Blumenthal 1940.

10.

11.

12.

13.
14.

15.

16.
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It follows from the generalized continuum hypothesis that these ..

two concepts are equivalent. Ng is evidently inaccessible, and also
strongly inaccessible. As for finite numbers, 0 and 2 and no others
are strongly inaccessible. A definition of inaccessibility, applicable to
finite numbers, is this: m is inaccessible if (1) any sum of fewer than m
numbers < m is < m, and (2) the number of numbers < m is m. This
definition, for transfinite numbers, agrees with that given above and,
for finite numbers, yields 0, 1, 2 as inaccessible. So inaccessibility and
strong inaccessibility turn out not to be equivalent for finite numbers.
This casts some doubt on their equivalence for transfinite numbers,
which follows from the generalized continuum hypothesis.

A set of intervals is dense if every interval has points in common
with some interval of the set. (The endpoints of an interval are not
considered as points of the interval.)

A zero set is a set which can be covered by infinite sets of intervals
with arbitrarily small lengths-sum.

A neighborhood of a point P is an interval containing P.

A subset A of B is dense in B if every neighborhood of any point of
B contains points of A.

A point P is in the ezterior of A if it has a neighborhood containing
no point of A. '

A subset A of B is nowhere dense in B if those points of B which are
in the exterior of A are dense in B, or (which is equivalent) if for no
interval I the intersection I A is dense in IB.

A subset A of B is of the first category in B if it is the sum of
denumerably many sets nowhere dense in B.

A set A is of the first category on B if the intersection AB is of the
first category in B.

A point P is called a limit point of a set A if any neighborhood of P
contains infinitely many points of A.

A set A is called closed if it contains all its limit points.

A set is perfect if it is closed and has no isolated point (i.e., no point
with a neighborhood containing no other point of the set).

Borel sets are defined as the smallest system of sets satisfying the
postulates: o

(1) The closed sets are Borel sets.

(2) The complement of a Borel set is a Borel set.

(3) The sum of denumerably many Borel sets is a Borel set.

A set is analytic if it is the orthogonal projection of some Borel set
of a space of next higher dimension. (Every Borel set therefore is, of
course, analytic.)



270

266 Gédel 1964

Supplement to the second edition

Since the publication of the preceding paper, a number of new results
pave been obtained; I would like to mention those that are of special interest
in connection with the foregoing discussions.

1. A. Hajnal has proved3® that, if 2% # R, could be derived from the
axioms of set theory, so could 2% = R;. This surprising result could greaﬂy

facilitate the solution of the continuum problem, should Cantor’s contin- -

uum hypothesis be demonstrable from the axioms of set theory, which
however, probably is not the case. ’ ’

2. Some new consequences of, and propositions equivalent with, Can-
tor’s hypothesis can be found in the new edition of W. Sierpinski’s b’ook 35
In the first edition, it had been proved that the continuum hypothesis' is
equivalent with the proposition that the Euclidean plane is the sum of de-
numerably many “generalized curves” (where a generalized curve is a point

set definable | by an equation y = f(x) in some Cartesian coordinate sys- -

tem). In the second edition, it is pointed out®® that the Euclidean plane can
be proved to be the sum of fewer than continuum-many generalized curves
under the much weaker assumption that the power of the continuum is not
an inaccessible number. A proof of the converse of this theorem would give
some plausibility to thée hypothesis 2% = the smallest inaccessible number
> No. However, great caution is called for with regard to this inference,3%?
because the paradoxical appearance in this case (like in Peano’s “curves’;) is
due (at least in part) to a transference of our geometrical intuition of curves
to something which has-only some of the characteristics of curves. Note
that nothing of this kind is involved in the counterintuitive consequences
of the continuum hypothesis mentioned on page 267.

3. C. Kuratowski has formulated a strengthening of the-continuum hypo- -

thesis;3” whose consistency follows from the consistency proof mentioned -
in Section 4. He then drew various consequences from this new hypothesis
4. Very interesting new results about the axioms-of ihﬁnity have beer;
obtained in recent years (see footnotes 20 and 16). :
In opposition to the viewpoint advocated in Section 4 it has been sug-
gested®® that, in case Cantor’s continuum problem should turn out to be

34Gee his 1956. -
358ee Sierpiriski 1956,

36Gee his 1956, p. 207 or his 1951 ’ i {
, P- , p- 9. Related 1t : i
(1951, 5 15) amd B Sikorski (1951). results are given by C.‘Kuratowski

Note added Sep € er 1 : It seems that this warni h since been v
36a d tember 1966: e warnin as i i
- . ( ) g n vindicated

37See his 1948.
38Gee Frrera 1952.
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undecidable from the accepted axioms of set thebry, the question of its
truth would lose its meaning, exactly as the question of the truth of Euclid’s
fifth postulate by the proof of the consistency of non-Euclidean geometry
became meaningless for the mathematician. 1 therefore would like to point
out that the situation in set theory is very different from that in geometry,
both from the mathematical and from the epistemological point of view.
In the case of the axiom of the existence of inaccessible numbers, e.g.,

* (which can be proved to be undecidable from the von Neumann-Bernays

axioms of set theory provided that it is consistent with them) there is
a striking asymmetry, mathematically, between the system in which it is
asserted and the one in which it is negated.®®

Namely, the latter (but not the former) has a model which can be de-
fined and proved to be a model in the original (unextended) system. This
means that the former is an extension in a much stronger sense. A closely
related fact is that the assertion (but not the negation) of the axiom im-
plies new theorems about integers (the individual instances of which can
be verified by computation). So the criterion of truth explained on page
264 is satisfied, to some extent, for the assertion, but not for the negation.
Briefly speaking, only the assertion | yields a “fruitful” extension, while the
pegation is sterile outside its own very limited domain. The generalized
continuum hypothesis, too, can be shown to be sterile for number theory
and to be true in a model constructible in the original system, whereas for
some other assumption about the power of 2%« this perhaps is not so. On
the other hand, neither one of those asymmetries applies to Euclid’s fifth
postulate. To be more precise, both it and its negation are extensions in
the weak sense.

As far as the epistemological situation is concerned, it is to be said that
by a proof of undecidability a question loses its meaning only if the system
of axioms under consideration is interpreted as a hypothetico-deductive
system, 1.e., if the meanings of the primitive terms are left undetermined.

_In geometry, €.g., the question as to whether Euclid’s fifth postulate is true

retains its meaning if the primitive terms are taken in a definite sense, i.e.,
as referring to the behavior of Tigid bodies, rays of light, etc. The situation
in set theory is similar; the difference is only that, in geometry, the meaning
usually adopted today refers#fo physics rather than to mathematical intu-
ition and that, therefore, a decision falls outside the range of mathematics.
On the other hand, the objects of transfinite set theory, conceived in the
-manner explained on page 262 and in footnote 14, clearly do not belong to

" the physical world, and even their indirect connection with.physical experi-

. ence is very loose (owing primarily to the fact that set-theoretical concepts

- play only a minor role in the physical theories of today).

39The same asymmetry also occurs on the lowest levels of set theory, where. the
consistency of the axioms in question is less subject to being doubted by skeptics.
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.Butz despite their remoteness from sense experience we do have som
thing like a perception also of the objects of set theory, ’as is seen from t}f-
fact that the axioms force themselves upon us as being l,:rue. I don’t see a .
reason Wh}.’ we should have less confidence in this kind of perception, i.e P
mathem.atlca,l intuition, than in sense perception, which induces us t’o bliig
up physical theories and to expect that future sense perceptions will a rl
with then_x, and, moreover, to believe that a question not decidable Iglo(i:
has meaning and may be decided in the future. The set-theoretical para-
doxes are hardly any more troublesome for mathematics than dece I‘Zio
of th(? §enses are for physics. That new mathematical intuitions leadyi)n ?z
a de(?lsxon of such problems as Cantor’s continuum hypothesis are erfegtl
possible was pointed out earlier (pages 264-265). perieey
It should be noted that mathematical intuition need not be conceived
of as a 'faculty giving an immediate knowledge of the objects concerned
Bather it seems that, as in the case of physical experience, we form o :
IQeas also of those objects on the basis of something else w,hich is immlelzr
diately given. Only this something else here is not, or not primaril th-
s?nsations. That something besides the sensations actually is immed}i,e,mtele
given follovxfs (independently of mathematics) from the fact that even ou}r’
ideas referring to physical objects contain constituents qualitatively diffe
ent' from sensations or mere combinations of sensations, e.g theyidea r-f
object itself, whereas, on the other hand, by our thinking’ we c';a,nnot crea;)e
any qualit?.tively new elements, but only | reproduce and combine those
that are given. Evidently the “given” underlying mathematics is closel
related to the abstract elements contained in our empirical ideas.*® It by
no means follows, however, that the data of this second kind beca:use th d
cannot be associated with actions of certain things upon our’ sense ;)r arfsy
are something purely subjective, as Kant asserted. Rather they, too gma;’
:flp.resent an aspect of objective reality, but, as opposed to the s:ensa’tionsy
! uilsrelg:s:ﬁfier:; IK&; .may be due to another kind of relationship between 7
Hc?werer, the question of the objective existence of the objects of matl
ematical intuition (which, incidentally, is an exact replica of the questi .
of the objective existence of the outer world) is not decisive for t}?e kro(l))l-l
lem. un(.ie_r discussion here. The mere psychological fact of the existeri:e of
an intuition which is sufficiently clear to produce the axioms of S(;t theor,
and an open series of extensions of them suffices to give meaning to thy
questw_n of the truth or falsity of propositions like Cantor’s contimglum h ;
pothesis. What, however, perhaps more than anything else, justifies t}}l’(;

4ONote that there is a i i
close relationship between the conce i ;
¢ pt of set expl i
iﬁoix:f);;e lfélbax:ﬁ .the‘ catigorles of pure understanding in Kant’s sense l\;cax.)maelgredt}iz
nction of both is “synthesis”, i.e., the generating of uniti ni -
¢ 5 es o i
Kant, of the idea of one object out of its various aspects). ut of manifolds (e, in

acceptance of this criterion of truth in set theory is the fact that contin-

. yed appeals to mathematical intuition are necessary not only for obtaining

unambiguous answers to the questions of transfinite set theory, but also
for the solution of the problems of finitary number theory! (of the type
of Goldbach’s conjecture),*?> where the meaningfulness and unambiguity
of the concepts entering into them can hardly be doubted. This follows
from the fact that for every axiomatic system there are infinitely many
undecidable propositions of this type.

It was pointed out earlier (page 265) that, besides mathematical intu-
ition, there exists another (though only probable) criterion of the truth of
mathematical axioms, namely their fruitfulness in mathematics and, one
may add, possibly also in physics. This criterion, however, though it may
become decisive in the future, cannot yet be applied to the specifically
set-theoretical axioms (such as those referring to great cardinal numbers),
because very little is known about their consequences.in other fields. The
simplest case of an application of the criterion under discussion arises when
some set-theoretical axiom has number-theoretical consequences verifiable
by computation up to any given integer. On the basis of what is known
today, however, it is not possible to make the truth of any set-theoretical
axiom reasonably probable in this manner.

\ Postscript

[Revised postscript of September 1966: Shortly after the completion
of the manuscript of the second edition [1964] of this paper the ques-
tion of whether Cantor’s continuum hypothesis is decidable from the von
Neumann-Bernays axioms of set theory (the axiom of choice included) was
settled in the negative by Paul J. Cohen. A sketch of the proof has ap-
peared in his 1963 and 1964. It turns out that for all R, defined by the
usual devices and not excluded by Kénig’s theorem (see page 260 above)
the equality 9® — R _ is consistent and an extension in the weak sense (i.e.,
it implies no new number-theoretical theorem). Whether, for a satisfac-
tory concept of wgtandard definition”, this is true for all definable X, not
excluded by Konig’s theorem is an open question. An affirmative answer
would require the solution of the difficult problem of making the concept of
standard definition, or some wider concept, precise. Cohen’s work, which

»

41{Jpless one is satisfied with inductive (probable) decisions, such as verifying the

theorem up to very great numbers, or more indirect inductive procedures (see pp. 265,

272).
42[ e., universal propositions about integers which can be decided in each individual

instance.
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no doubt is the greatest advance in the foundations of set theory since
its axiomatization, has been used to settle several other important inde-:

pendence questions. In particular, it seems to follow that the axioms of

infinity mentioned in footnote 20; to the extent to which they have so far -
been precisely formulated, are not sufficient to answer the question of the«
truth or falsehood of Cantor’s continuum hypothesis.]

On an extension of finitary mathematics wuicu

has not yet been used®
(1972)

[The introductory note to 1972, as well as to related items, is found
page 217, immediately preceding 1958.]

Abstract

P. Bernays has pointed out that, even in order to prove omly the consistency
classical number theory, it is necessary to extend Hilbert’s finitary standpoint.
suggested admitting certain abstract concepts in addition to the combinatorial conce
referring to symbols. The abstract concepts that so far have been used for this purp
are those of the constructive theory of ordinals and those of intuitionistic logic.
is shown that a certain concept of computable function of finite simple type over
natural numbers can be used instead, where no other procedures of constructing s
functions are necessary except primitive recursion by a number variable and definit
of a function by an equality with a term containing only variables and/or previor
introduced functions beginning with the function +1.

P. Bernays has pointed out’ on several occasions that, in view of the f
that the consistency of a formal system cannot be proved by any ded
tion procedures available in the system itself, it is necessary to go bey«
the framework of finitary mathematics in Hilbert’s sense in order to pr
the consistency of classical mathematics or even of classical number t

1See: Bernays 1941a, pp. 144, 147, 150, 152; Hilbert and Bernays 1939, pp. 347~
357-360; Bernays 1954, p. 9; cf. also Bernays 1935, pp. 62, 69.

®The present paper is not a literal translation of the German original publi
in Dialectica (1958). In revising the translation by Leo F. Boron, I have rephn:
many passages. But the meaning has nowhere been substantially changed. Some m
inaccuracies have been corrected and a number of notes have been added, to which
letters (a)-(n) refer. I gvish to express my best thanks to Professor Dana Scott
supervising the typing of this and the subsequent paper [1972a] while I was ill, an
Professor Paul Bernays for reading the proof sheets and calling my attention to s
oversights in the manuscript.





