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What is Cantor’s continuum problem?

(‘i@%b NOT’CE prove that there exist infinitely many different infinite cardinal numbers or
(1 '94 7) material may b “powers”, and that, in particular, the number of subsets of a set is always

protected by copyrigh greater than the number of its elements; furthermore, it becomes possible

law (Title 17 U.S. Code. - to extend (again without any arbitrariness) the arithmetical operations to

1. The concept of cardinal number

Cantor’s continuum problem is simply the question: How many points
are there on a straight line in Euclidean space? In other terms, the question
is: How many different sets of integers do there exist?

This question, of course, could arise only after the concept of “number”
had been extended to infinite sets; hence it might be doubted if this exten-
sion can be effected in a uniquely determined manner and if, therefore, the
statement of the problem in the simple terms used above is justified. Closer
examination, however, shows that Cantor’s definition of infinite numbers
really has this character of uniqueness, and that in a very striking manner.
For whatever “number” as applied to infinite sets may mean, we certainly
want it to have the property that the number of objects belonging to some
class does not change if, leaving the objects the same, one changes in any
way whatsoever their properties or mutual relations (e.g., their colors or
their distribution in space). From this, however, it follows at once that
two sets (at least two sets of changeable objects of the space-time world)
will have the same cardinal number if their elements can be brought into
a one-to-one correspondence, which is Cantor’s definition of equality be-
tween numbers. For if there exists such a correspondence for two sets A
and B it is possible (at least theoretically) to change the properties and
relations of each element of A into those of the corresponding element of
B, whereby A is transformed into a set completely indistinguishable from
B, hence of the same cardinal number. For example, assuming a square
and a line segment both completely filled with mass points (so that at each
point of them exactly one mass point is situated), it follows, owing to the
demonstrable fact that there exists a one-to-one correspondence between
the points of a square and of a line segment, and, therefore, also between
the corresponding mass points, that the mass points of the square can be
so rearranged as exactly to fill out the line segment, and vice versa. Such
considerations, it is true, apply directly only to physical objects, but a
definition of the concept of “number” which would depend on the kind of
objects that are numbered could hardly be considered as satisfactory.

So there is hardly any choice left but to accept Cantor’s definition of
equality between numbers, which can easily be extended to a definition
of “greater” and “less” for infinite numbers by stipulating that the cardi-
nal number M of a set A is to be called less than the cardinal number
N of a set B if M is different from N but equal to the cardinal number
of some subset of B. On the basis of these definitions it becomes possible to

infinite numbers (including sums and products with any infinite | number of
terms or factors) and to prove practically all ordinary rules of computation.

But, even after that, the problem to determine the cardinal number of
an individual set, such as the linear continuum, would not be well-defined
if there did not exist some “natural” representation of the infinite cardinal
numbers, comparable to the decimal or some other systematic denotation
of the integers. This systematic representation, however, does exist, ovkring
to the theorem that for each cardinal number and each set of cardinal
numbers’ there exists exactly one cardinal number immediately succeeding
in magnitude and that the cardinal number of every set occurs in the series
thus obtained.? This theorem makes it possible to denote the cardinal
number immediately succeeding the set of finite- numbers by ®q (which is
the power of the “denumerably infinite” sets), the next one by N, étc.; the
one immediately succeeding all X; (where 4 is an integer), by R,,, the next
one by R, etc., and the theory of ordinal numbers furnishes the means
to extend this series farther and farther.

2. The continuum problem, the continuum hypothesis
and the partial results concerning its truth
obtained so far

So the analysis of the phrase “how many” leads unambiguously to quite
a definite meaning for the question stated in the seconddine of this paper,
namely, to. find out which one of the N’s is the number of points on a
straight line or (which is the same) on any other continuum in Euclidean
space. Cantor, after having proved that this number is certainly greater
than Rg, conjectured that it is ¥y, or (which is an equivalent proposition)
that every infinite subset of the continuum has either the power of the set of
integers or of the whole contimuum. This is Cantor’s continuum hypothesis.

1As to the question why there does not exist a set of all cardinal numbers, see
footnote 14.

2In order to prove this theorem the axiom of choice (see Fraenkel 1928, p. 288 ff.)
is necessary, but it may be said that this axiom is, in the present state of knowledge,
exactly as well-founded as the system of the other axioms. It has been proved consistent,
provided the other axioms are so (see Godel 1940). It is exactly as evident as the other
axioms for sets in the sense of arbitrary multitudes and, as for sets in the sense of ex-
tensions of definable properties; it also is demonstrable for those concepts of definability
for which, in the present state of knowledge, it(is possible to prove the other axioms,
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But, although Cantor’s set theory has now had a development of more
than sixty years and the problem is evidently of great importance for it,
nothing has been proved so far relative to the question what the power of
the continuum is or whether its subsets satisfy the condition just stated,
except (1) that the power of the continuum is not a cardinal number of a
certain very special kind, namely, not a limit of denumerably many smaller
cardinal numbers,® and (2) that the proposition just mentioned about the
subsets of the continuum is | true for a certain infinitesimal fraction of these
subsets, the analytical® sets.> Not even an upper bound, however high, can
be assigned for the power of the continuum. Nor is there any more known
about the quality than about the quantity of the cardinal number of the
continuum. It is undecided whether this number is regular or singular,
accessible or inaccessible, and (except for Konig’s negative result) what its
character of cofinality* is. The only thing one knows, in addition to the
results just mentioned, is a great number of consequences of, and some
propositions equivalent to, Cantor’s conjecture.®

This pronounced failure becomes still more striking if the problem is
considered in its connection with general questions of cardinal arithmetic.
It is easily proved that the power of the continuum is equal to 2% . So the
continuum problem turns out to be a question from the “multiplication ta-
ble” of cardinal numbers, namely, the problem to evaluate a certain infinite
product (in fact the simplest non-trivial one that can be formed). There is,
however, not one infinite product (of factors > 1) for which only as much
as an upper bound for its value can be assigned. All one knows about the
evaluation of infinite products are two lower bounds due to Cantor and
Konig (the latter of which implies a generalization of the aforementioned
negative theorem on the power of the continuum), and some theorems con-
cerning the reduction of products with different factors to exponentiations
and of exponentiations to exponentiations with smaller bases or exponents.
These theorems reduce’ the whole problem of computing infinite products
to the evaluation of fo‘“‘*) and the performance of certain fundamental
operations on ordinal numbers, such as determining the limit of a series

cf(Ra)

of them. N4 ; and therewith all products and powers, can easily be

3See Hausdorff 1914, p. 68. The discoverer of this theorem, J. Konig, asserted more
than he had actually proved (see his 1905). )

4See the list of definitions at the end of this paper.

5See Hausdorff 1935, p. 32. Even for complements of analytical sets the question
is undecided at present, and it can be proved only that they have (if they are infinite)
either the power Rg or Ry or that of the continuum (see Kuratowsk: 1933, p. 246).

8See Sierpitiski 1934.
"This reduction can be effected owing to the results and methods of Tarski 1925.
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computed® if the “generalized continuum hypothesis” is assumed, i.e., if
it is assumed that 2%« = N, for every a, or, in other terms, that the
number of subsets of a set of power R, is Ry+1. But, without making any
undemonstrated assumption, it is not even known whether or not m < n
implies 2™ < 2™ (although it is trivial that it implies 2™ < 2"}, nor even
whether 2% < 2%,

3. Restatement of the problem on the basis
of an analysis of the foundations of set theory ,
and results obtained along these lines

This scarcity of results, even as to the most fundamental questions in

this field, may be due to some extent to purely mathematical difficulties;
it seemns, however (see Section 4 below), that there are also deeper reasons
behind it and that a complete solution of | these problems can be obtained
only by a more profound analysis (than mathematics is accustomed to give)
of the meanings of the terms occurring in them (such as “set”, “one-to-one
correspondence”, etc.) and of the axioms underlying their use. Several
such analyses have been proposed already. Let us see then what they give
for our problem.

First of all there is Brouwer’s intuitionism, which is utterly destructive
in its results. The whole theory of the N’s greater than X, is rejected as
meaningless.® Cantor’s conjecture itself receives several different mean-
ings, all of which, though very interesting in themselves, are quite different
from the original problem, and which lead partly to affirmative, partly to
negative answers;!® not everything in this field, however, has been clari-
fied sufficiently. The “half-intuitionistic” standpoint along the lines of H.
Poincaré and H. Weyl!! would hardly preserve substantially more of set
theory. T

This negative attitude towards Cantor’s set theory, however, is by no
means a necessary outcome of a closer examination of its foundations, but
only the result of certain philosophical conceptions of the nature of mathe-
matics, which admit mathemasical objects only to the extent in which they

8For regular numbers R, one obtains immediately:
RGO = Wi = 2% = Roy.
9See Brouwer 1909.
10See Brouwer 1907, 1, 9; 111, 2.
11Gce Weyl 1932. If the procedure of construction of sets described there (p. 20)
is iterated a sufficiently large (transfinite) number of times, one gets exactly the real
numbers of the model for set theory spoken of below in Section 4, in which the continuum
hypothesis is true. But this iteration would /ha.rdly be possible within the limits of the
half-intuitionistic standpoint. =
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are (or are believed to be) interpretable as acts and constructions of our
own mind, or at least completely penetrable by our intuition. For some-
one who does not share these views there exists a satisfactory foundation
of Cantor’s set theory in its whole original extent, namely, axiomatics of
set theory, under which the logical system of Principia mathematica (in a
suitable interpretation) may be subsumed.

It might at first seem that the set-theoretical paradoxes would stand in
the way of such an undertaking, but closer examination shows that they
cause no trouble at all. They are a very serious problem, but not for
Cantor’s set theory. As far as sets occur and are necessary in mathematics

(at least in the mathematics of today, including all of Cantor’s set theory). .

they are sets of integers, or of rational numbers (i.e., of pairs of integers).
or of real numbers (i.e., of sets of rational numbers), or of functions of real
numbers (i.e., of sets of pairs of real numbers), etc.; when theorems about
all sets (or the existence of sets) in general are asserted, they can always
be interpreted without any difficulty to mean that they hold for sets of
integers as well as for sets of real numbers, etc. (respectively, that there
exist either sets of integers, or sets of real numbers, or ... etc., which have
the asserted property). This concept of set, however, according to which
a set is anything obtainable from the integers (or some other well-defined
| objects) by iterated application!? of the operation “set of”.'* and not
something obtained by dividing the totality of all existing things into two
categories, has never led to any antinomy whatsoever; that is, the perfectly
“naive” and uncritical working with this concept of set has so far proved
completely self-consistent.1*

But, furthermore, the axioms underlying the unrestricted use of this
concept of set, or, at least, a portion of them which suffices for all mathe-
matical proofs ever produced up to now, have been so precisely formulated
in axiomatic set theory'® that the question whether some given proposition
follows from them can be transformed, by means of logistic symbolism. into

12.This phrase isv to be understood so as to include also transfinite iteration. the
totality of sets obtained by finite iteration forming again a set and a basis for a further
application of the operation “set of”.

13The operation “set of z's” cannot be defined satisfactorily (at least in the present
state of knowledge), but only be paraphrased by other expressions involving again the
concept of set, such as: “multitude of z's”, “combination of any number of z's”. “part
of the totality of £’s”; but as opposed to the concept of set in general (if considered as
primitive) we have a clear notion of this operation.

141t follows at once from this explanation of the term “set” that a set of all sets
or other sets of a similar extension cannot exist, since every set obtained in this way
immediately gives rise to further application of the operation “set of” and. therefore. to
the existence of larger sets.

15Gee, e.g., Bernays 1937, 1941, 1942, 1942a, 1943, von Newmann 1925: cf. also von
Neumann 1928a and 1929, Gédel 1940. '
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a purely combinatorial problem concerning the manipulation of symbols
which even the most radical intuitionist must acknowledge as meaningful.
So Cantor’s continuum problem, no matter what philosophical standpoint
one takes, undeniably retains at least this meaning: to ascertain whether
an answer, and if so what answer, can be derived from the axioms of set
theory as formulated in the systems quoted.

Of course, if it is interpreted in this way, there are (assuming the con-
sistency of the axioms) a priori three possibilities for Cantor’s conjecture:
It may be either demonstrable or disprovable or undecidable.® The third
alternative (which is only a precise formulation of the conjecture stated
above that the difficulties of the problem are perhaps not purely mathe-
matical) is the most likely, and to seek a proof for it is at present one of
the most promising ways of attacking the problem. One result along these
lines has been obtained already, namely, that Cantor’s conjecture is not
disprovable from the axioms of set theory, provided that these axioms are
consistent (see Section 4). )

It is to be noted, however, that, even if one should succeed in proving its
undemonstrability as well, this would (in contradistinction, for example,
to the proof for the transcendency of 7) by no means settle the question
definitively. | Only someone who (like the intuitionist) denies that the
concepts and axioms of classical set theory have any meaning (or any well-

defined meaning) could be satisfied with such a solution, not someone who

believes them to describe some well-determined reality. For in this reality
Cantor’s conjecture must be either true or false, and its undecidability
from the axioms as known today can only mean that these axioms do not
contain a complete description of this reality; and such a belief is by no
means chimerical, since it is possible to point out ways in which a decision
of the question, even if it is undecidable from the axioms in their present
form, might nevertheless be obtained.

For first of all the axioms of set theory by no means form a system closed
in itself, but, quite on the contrary, the very.concept of set'” on which they
are based suggests their extension by new axioms which assert the existence
of still further iterations of the operation “set of”. These axioms can also
be formulated as propositions asserting the existence of very great cardinal
numbers or (which is the same) of sets having these cardinal numbers.

1611 case of the inconsistency of the axioms the last one of the four a priori pos-
sible alternatives for Cantor’s conjecture would occur, namely, it would then be both
demonstrable and disprovable by the axioms of set theory.

17Gimilarly also the concept “property of set” (the second of the primitive terms
of set theory) can constantly be enlarged and, furthermore, concepts of “property of
property of set” etc. be introduced whereby new axioms are obtained, which, however,
as to their consequences for propositions referring to limited domains of sets (such as
the continuum hypothesis) are conta.i?ed in the axioms depending on the concept of set.

.
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The simplest of these strong “axioms of infinity” assert the existence of
inaccessible numbers (and of numbers inaccessible in the stronger sense)
> No. The latter axiom, roughly speaking, means nothing else but that the
totality of sets obtainable by exclusive use of the processes of formation
of sets expressed in the other axioms forms again a set (and, therefore, a
new basis for a further application of these processes).’® Other axioms of
infinity have been formulated by P. Mahlo.!'® Very little is known about
this section of set theory; but at any rate these axioms show clearly, not
only that the axiomatic system of set theory as known today is incomplete,
but also that it can be supplemented without arbitrariness by new axioms
which are only the natural continuation of the series of those set up so far.

That these axioms have consequences also far outside the domain of very
great transfinite numbers, which are their immediate object, can be proved;
each of them (as far as they are known) can, under the assumption of consis-
tency, be shown to increase the number of decidable propositions even in the
field of Diophantine equations. As for the continuum problem, there is little
hope of solving it by means of those axioms of infinity which can be set up
on the basis of principles known today (the above-mentioned proof for the
undisprovability of the continuum hypothesis, e.g., goes through for all
of them without any change). But probably there exist others based on
hitherto unknown principles; also there may exist, besides the ordinary
axioms, the axioms of infinity and | the axioms mentioned in footnote 17,
other (hitherto unknown) axioms of set theory which a more profound un-
derstanding of the concepts underlying logic and mathematics would enable
us to recognize as implied by these concepts.

Furthermore, however, even disregarding the intrinsic necessity of some
new axiom, and even in case it had no intrinsic necessity at all, a decision
about its truth is possible also in another way, namely, inductively by study-
ing its “success”, that is, its fruitfulness in consequences and in particular
in “verifiable” consequences, i.e., consequences demonstrable without the
new axiom, whose proofs by means of the new axiom, however, are consid-
erably simpler and easier to discover, and make it possible to condense into
one proof many different proofs. The axioms for the system of real num-
bers, rejected by the intuitionists, have in this sense been verified to some
extent owing to the fact that analytical number theory frequently allows
us to prove number-theoretical theorems which can subsequently be ver-
ified by elementary methods. A much higher degree of verification than
that, however, is conceivable. There might exist axioms so abundant in

18See Zermelo 1930.

I‘QSee his 1 911, pp. 190-200, 1913, pp. 269-276. From Mahlo’s presentation of the
subject, however, it does not appear that the numbers he defines actually exist.
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their verifiable consequences, shedding so much light upon a whole dis-
cipline, and furnishing such powerful methods for solving given problems
(and even solving them, as far as that is possible, in a constructivistic way)
that quite irrespective of their intrinsic necessity they would have to be
assumed at least in the same sense as any well-established physical theory.

4. Some observations about the question:
In what sense and in which direction may a solution
of the continuum problem be expected?

But are such considerations appropriate for the continuum problem? Are
there really any strong indications for its unsolubility by the known axioms?
I think there are at least two.

The first one is furnished by the fact that there are two quite differently
defined classes of objects which both satisfy all axioms of set theory written
down so far. One class consists of the sets definable in a certain manner by
properties of their elements,2? the other of the sets in the sense of arbitrary
multitudes irrespective of if, or how, they can be defined. Now, before it
is settled what objects are to be numbered, and on the basis of what one-
to-one correspondences, one could hardly expect to be able to determine
their number (except perhaps in case of some fortunate coincidence). If,
however, someone believes that it is meaningless to speak of sets except in
the sense of extensions of definable properties, or, at least, that no other
sets exist, then, too, he can hardly expect more than a small fraction of the
problems of set theory to be solvable without making use of this, in his opin-
ion essential, characteristic of sets, namely, that they are | all derived from
(or in a sense even identical with) definable properties. This characteristic
of sets, however, is neither formulated explicitly nor contained implicitly
in the accepted axioms of set theory. So from either point of view, if in
addition one has regard to what was said above in Section 2, it is plau-
sible that the continuum problem will not be solvable by the axioms set
up so far, but, on the other hand, may be solvable by means of a new axiom

20Namely, definable “in terms of ordinal numbers” (i.e., roughly speaking, under
the assumption that for each ordinal number a symbol denoting it is given) by means
of transfinite recursions, the primitive terms of logic, and the e-relation, admitting,
however, as elements of sets and of ranges of quantifiers only previously defined sets.
See my papers 1939a and 1940, where an exactly equivalent, although in its definition
slightly different, concept of definability (under the name of “constructibility”) is used.
The paradox of Richard, of course, does not apply to this kind of definability, since the
totality of ordinals is certainly not denumerable.

C
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which would state or at least imply something about the definability of
sets.2!

The latter half of this conjecture has already been verified; namely, the
concept of definability just mentioned (which is itself definable in terms of
the primitive notions of set theory) makes it possible to derive the general-
ized continuum hypothesis from the axiom that every set is definable in this
sense.?? Since this axiom (let us call it “A”) turns out to be demonstrably
consistent with the other axioms, under the assumption of the consistency
of these axioms, this result (irrespective of any philosophical opinion) shows
the consistency of the continuum hypothesis with the axioms of set theory,
provided that these axioms themselves are consistent.?3 This proof in its
structure is analogous to the consistency proof for non-Euclidean geome-
try by means of a model within Euclidean geometry, insofar as it follows
from the axioms of set theory that the sets definable in the above sense
form a model for set theory in which furthermore the proposition A and,
therefore, the generalized continuum hypothesis is true. But the definition
of “definability” can also be so formulated that it becomes a definition of
a concept of “set” and a relation of “element of” (satisfying the axioms of
set theory) in terms of entirely different concepts, namely, the concept of
“ordinal numbers”, in the sense of elements ordered by some relation of
“greater” and “less”, this ordering relation itself, and the notion of “recur-
sively defined function of ordinals”, which can be taken as primitive and be
described axiomatically by way of an extension of Peano’s axioms.2* (Note
that this does not apply to my original formulation presented in the papers
quoted above, because there the general concept of “set” with its element
relation occurs in the definition of “definable set”, although the definable
sets remain the same if, afterwards, in the definition of “definability” the
term “set” is replaced by “definable set”.)
| A second argument in favor of the unsolubility of the continuum problem
on the basis of the ordinary axioms can be based on certain facts (not known
or not existing at Cantor’s time) which seem to indicate that Cantor’s

21D. Hilbert’s attempt at a solution of the continuum problem (see his 1926), which,
however, has never been carried through, also was based on a consideration of all possible
definitions of real numbers.

220n the other hand, from an axiom in some sense directly opposn:e to this one the
negation of Cantor’s conjecture could perhaps be derived.

233ee my paper 1940 and note 1939a. For a carrying through of the proof in all
details, my paper 1940 is to be consulted.

24For such an extension see Tarski 1924, where, however, the general concept of “set
of ordinal numbers” is used in the axioms; this could be avoided, without any loss in
demonstrable theorems, by confining oneself from the beginning to recursively definable
sets of ordinals.
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conjecture will turn out to be wrong;2® for a negative decision the question
is (as just explained) demonstrably impossible on the basis of the axioms
as known today.

There exists a considerable number of facts of this kind which. of course,
at the same time make it likely that not all sets are definable in the above
sense.?® One such fact, for example, is the existence of certain properties of
point sets (asserting an extreme rareness of the sets concerned) for which
one has succeeded in proving the existence of undenumerable sets having
these properties, but no way is apparent by means of which one could -
expect to prove the existence of examples of the power of the continuum.
Properties of this type (of subsets of a straight line) are: (1) being of
the first category on every perfect set,?” (2) being carried into a zero set
by every continuous one-to-one mapping of the line on itself.?® Another
property of a similar nature is that of being coverable by infinitely many
intervals of any given lengths. But in this latter case one has so far not
even succeeded in proving the existence of undenumerable examples. From
the continuum hypothesis, however, it follows that there exist in all three -
cases not only examples of the power of the continuum,?® but even such
as are carried into themselves (up to denumerably many points) by every
translation of the straight line.3°

And this is not the only paradoxical consequence of the continuum
hypothesis. Others, for example, are that there exist: (1) subsets of a
straight line of the power of the continuum which are covered (up to denu-
merably many points) by every dense set of intervals, or (in other terms)
which contain no undenumerable subset nowhere dense on the
straight line,3! (2) subsets of a straight line of the power of the contin-
uum which contain no undenumerable zero set,32 (3) subsets of Hilbert

25Views tending in this direction have been expressed also by N. Luzin in his 1935,
p.- 129 fi. See also Sierpiriski 1935.

26That all sets are “definable in terms of ordinals” if all procedures of definition, i.e.,
also quantification and the operation  with respect to all sets, irrespective of whether
they have or can be defined, are admitted could be expected with more reason, but still
it would not at all be justified to assume this as an axiom. It is worth noting that the
proof that the continuum hypothesis holds for the definable sets, or follows from the
assumption that all sets are definable, does not go through for this kind of definability,
although the assumption that these two concepts of definability are equivalent is, of
course, demonstrably consistent with the axioms.

27See Sierpiriski 1934a and Kuratowski 1933, p. 269 ff.

28See Luzin and Sierpiriski 1918 and Sierpiriski 1934a.

29For the 3rd case see Sierpitiski 1934, p. 39, Theorem 1.

30Sece Sierpiriski 1935a.

31Gee Luzin 1914, p- 1259.

328ee Sierpiriski 1924, p. 184. (
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space of the power of the continuum which contain no undenumerable sub-
set of finite dimension,3® (4) an infinite sequence A* of decompositions of
any set M of the power of the continuum into continuum | many mutually
exclusive sets A% such that, in whichever way a set Af“ is chosen for each 1,
II(M — A% ) is always denumerable.?* Even if in (1)-(4) “power of the
2

continuum” is replaced by “R,”, these propositions are very implausﬂ/)le;

the proposition obtained from (3) in this way is even equivalent with (3).

One may say that many of the results of point-set theory obtained
without using the continuum hypothesis also are highly unexpected and
implausible.?> But, true as that may be, still the situation is different
there, insofar as in those instances (such as, e.g., Peano’s curves) the ap-
pearance to the contrary can in general be explained by a lack of agreement
between our intuitive geometrical concepts and the set-theoretical ones oc-
curring in the theorems. Also, it is very suspicious that, as against the
numerous plausible propositions which imply the negation of the contin-
uum hypothesis, not one plausible proposition is known which would imply
the continuum hypothesis. Therefore one may on good reason suspect that
the role of the continuum problem in set theory will be this, that it will
finally lead to the discovery of new axioms which will make it possible to
disprove Cantor’s conjecture.

Definitions of some of the technical terms

Definitions 4-12 refer to subsets of a straight line, but can be literally
transferred to subsets of FEuclidean spaces of any number of dimensions;
definitions 13-14 refer to subsets of Euclidean spaces.

1. Icall “character of cofinality” of a cardinal number m (abbreviated by
“cf(m)”) the smallest number n such that m is the sum of n numbers
<m. )

2. A cardinal number m is regular if cf(m) = m, otherwise singular.

3. An infinite cardinal number m is inaccessible if it is regular and has
no immediate predecessor (i.e., if, although it is a limit of numbers
< m, it is not a limit of fewer than m such numbers); it is inaccessible
in the stronger sense if each product (and, therefore, also each sum) of
fewer than m numbers < m is < m. (See Sierpiriski and Tarski 1930,
Tarski 1938. From the generalized continuum hypothesis follows the
equivalence of these two notions. This equivalence, however, is a

33See Hurewicz 1932.

34Gee Braun and Sierpiriski 1932, p. 1, proposition (Q). This proposition and the
one stated under (3) in the text are equivalent with the continuum hypothesis.

35See, e.g., Blumenthal 1940.

10.
| 11.
12.

13.

14.

15.

16.
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much weaker and much more plausible proposition. Ro evidently is
inaccessible in both senses. As for finite numbers, 0 and 2 and no
others are inaccessible in the stronger sense (by the above definition),
which suggests that the same will hold also for the correct extension
of the concept of inaccessibility to finite numbers.)

A set of intervals is dense if every interval has points in common
with some interval of the set. (The endpoints of an interval are not
considered as points of the interval.) :

A zero set is a set which can be covered by infinite sets of intervals
with arbitrarily small lengths-sum.

A neighborhood of a point P is an interval containing P. '

A subset A of B is dense in B if every neighborhood of any point of
B contains points of A. ' o

A point P is in the exterior of A if it has a neighborhood containing
no point of A. -
A subset A of B is nowhere dense on B if those points of B which
are in the exterior of A are dense in B. (Such sets A are exactly the
subsets of the borders of the open sets in B, but the term “border-set”
is unfortunately used in a different sense.)

A subset A of B is of the first category in B if it is the sum of
denumerably many sets nowhere dense in B.

Set A is of the first category on B if the intersection A - B is of the
first category in B. .
A set is perfect if it is closed and has no isolated point (i.e., no point
with a neighborhood containing no other point of the set).

Borel sets are defined as the smallest system of sets satisfying the
postulates:

(1) The closed sets are Borel sets.

(2) The complement of a Borel set is a Borel set.

(3) The sum of denumerably many Borel sets is a Borel set.

A set is analytic if it is'the orthogonal projection of some Bore.l set
of a space of next higher dimension. (Every Borel set therefore is, of
course, analytic.)

Quantifiers are the logistic symbols standing for the phrases: “for all
objects z” and® “there exist objects z”. The totality of objects = to
which they refer is called their range.
The symbol “2” means “the set of those objects z for which ...”.

I



