Philosophy 405: Knowledge, Truth and Mathematics
Spring 2008
M, W: 1-2:15pm

Hamilton College
Russell Marcus
rmarcus1@hamilton.edu

A Proof that $2+2=4$

We presume the language of first-order logic with identity.
Note two properties of identity, which I will use without explicitly mentioning in the proof:

$$
\begin{aligned}
& \mathrm{T}:(\forall \mathrm{x})(\forall \mathrm{y})(\forall \mathrm{z})[(\mathrm{x}=\mathrm{y} \bullet \mathrm{y}=\mathrm{z}) \supset \mathrm{x}=\mathrm{z}] \\
& \text { Id: }(\forall \mathrm{x}) \mathrm{x}=\mathrm{x}
\end{aligned}
$$

We will need a predicate ' N ', for the property of being a number, the addition symbol, + , which stands for a function from numbers to numbers, and a successor function, s (all standard in axiomatizations of number theory), with the following governing axioms. (The functions and their compositions are governed by axioms of any standard set theory, which I presume implicitly.)

$$
\begin{aligned}
& \mathrm{Z}: \mathrm{N}_{0} \\
& \text { S: }(\forall \mathrm{x})(\mathrm{Nx} \supset \mathrm{Nsx}) \\
& \text { R: }(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}) \\
& \text { A: }(\forall \mathrm{x})(\forall \mathrm{y})(\mathrm{x}+\mathrm{sy}=\mathrm{s}(\mathrm{x}+\mathrm{y})) \\
& \text { IE: }(\mathrm{x})(\mathrm{x}+0=\mathrm{x})
\end{aligned}
$$

Note that for convenience, I will write the constant ' 0 ' as it is standardly written, rather than as a lowercase letter, as is typical in first-order logic. I will write the successor symbol as ' S ' when it precedes numerals, such as the other numbers which I introduce as follows:

$$
\begin{aligned}
& 1={ }_{\text {df }} \mathrm{S} 0 \\
& 2={ }_{\mathrm{df}} \mathrm{~S} 1 \\
& 3={ }_{\mathrm{df}} \mathrm{~S} 2 \\
& 4={ }_{\mathrm{df}} \mathrm{~S} 3
\end{aligned}
$$

The proof:

$1.2+2=2+2$		by Id
2.	$=2+\mathrm{S} 1$	
by definition of ' 2 '		
3.	$=\mathrm{S}(2+1)$	
by A		
4.	$=\mathrm{S}(2+\mathrm{S} 0)$	
by definition of ' $3 \prime$		
5.	$=\mathrm{SS}(2+0)$	
by A		
6.	$=\mathrm{SS} 2$	
7.	$=\mathrm{Sy} \mathrm{IE}$	
8.	$=4$	
		by definition of ' $3 \prime$
8.		

