














































































































Leibniz Refining Descartes’s Criterion
of Clear and Distinct Perception, Il

If | have adequate knowledge of p, then | have adequate knowledge of all components of p,
all components of components of p, etc.

» “l don’t know whether humans can provide a perfect example of [adequate knowledge],
although the knowledge of numbers certainly approaches it” (Leibniz, Meditations on
Knowledge, Truth, and Ideas 24).

» In mathematics, we can trace any claim, via its proof, back to the axioms.

» But, even adequate knowledge is not the ultimate foundation, since we have to justify
knowledge of the axioms.

» The mathematician uses definitions to make his work perspicuous.

Symbolic knowledge is adequate knowledge which appeals to signs (definitions) to represent
our knowledge of components.

» The use of definitions prevents our knowledge from being fully intuitive.

Intuitive knowledge is of distinct primitive notions.
» An infinite mind would be able to have intuitive knowledge of all propositions.

For Leibniz, the foundational truths are identities, laws of logic.
» These would be known intuitively, or directly.

» We can consider all the component notions of the most perfect knowledge at the same
time.

The most perfect knowledge, intuitive and adequate knowledge, would be a priori, traced
back to the component parts of its real definition (not just its nominal one, p 26).
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