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P “The infinite does not exist potentially in the sense that it will ever
actually have separate existence; its separateness is only in
knowledge.  For the fact that division never ceases to be possible
gives the result that this actuality exists potentially, but not that it
exists separately” (Aristotle, Metaphysics IX.6, 1048b14-17). 

P Distinction between actual and potential infinity

P The potential infinite is real.
< We can always discover or construct more counting numbers.
< But, we can never get to the end of the sequence.

P The actual infinite is not real.
< Actual infinity would be a complete whole of infinite size.
< Any infinite sequence or construction, like a line, can never be complete.

Aristotle on Infinity
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P The concept of infinite divisibility seems to lead to contradiction.
< Achilles and the tortoise
< The arrow

P Aristotle: 
< The infinite sequence of rationals exists in the mind.
< No infinite sequence could exist in the world

P Thus, the infinite does not exist separately.

P In the middle ages, the actual infinity became aligned with the
concept of God, inaccessible to human cognition.

Zeno’s Paradoxes
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P The Calculus of Newton and Leibniz used infinitesimals.

P Leibniz argues that we can have some knowledge of infinites, as we can have
knowledge of necessary truths, innately.
< Let us take a straight line, and extend it to double its original length.  It is clear that the

second line, being perfectly similar to the first, can be doubled in its turn to yield a third line
which is also similar to the preceding ones; and since the same principle is always
applicable, it is impossible that we should ever be brought to a halt; and so the line can be
lengthened to infinity.  Accordingly, the infinite comes from the thought of likeness, or of
the same principle, and it has the same origin as do universal necessary truths.  That
shows how our ability to carry through the conception of this idea comes from something
within us, and could not come from sense-experience; just as necessary truths could not
by proved by induction or through the senses (Leibniz, New Essays on Human
Understanding 158).

P Still, Leibniz was careful not to say too much about the infinite.
< No infinite number that could measure the amount of space or matter.  
< There is no infinite cardinal number.
< “We do not have the idea of a space which is infinite...and ‘nothing is more evident, than

the absurdity of the actual idea of an infinite number’” (Leibniz, New Essays on Human
Understanding 159).

Pressure on Aristotle
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P Locke claims that we have a negative idea of the infinite, but that we lack any
positive idea.

P Hume rejects the infinite divisibility of space and time.

P For Kant, since mathematical objects must be constructed in the imagination
(albeit a priori), the actual infinite is impossible to cognize.
< “The true transcendental concept of infinitude is this, that the successive synthesis of units

required for the enumeration of a quantum can never be completed” (Kant, Critique
A432/B460).

P Mathematicians, too
< “I protest against the use of infinite magnitude as something completed, which is never

permissible in mathematics. Infinity is merely a way of speaking, the true meaning being a
limit which certain ratios approach indefinitely close, while others are permitted to increase
without restriction”  (Gauss, letter to Schumacher, 1831).

Capitulation to Aristotle
in the Moderns
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P Nearly all mathematicians and philosophers held that to think of
infinity as a completed whole would lead to contradiction.

P In contrast, and sparking a mathematical revolution, Cantor
shows that we can speak coherently, and without contradiction,
about completed infinite sequences.

P Indeed, if we are to think clearly about the real numbers, we
must.

Cantor
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P From Euclid (and before) geometry was seen as the foundation
of arithmetic.

P Descartes inverted that view, taking algebra and arithmetic to
be the foundation of geometry.

P Taking arithmetic to be foundational allows for greater
abstraction.

The Algebraization of Geometry
an inversion of views about

the ultimate nature of mathematics
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P Consider how one might think about the nature of x3.

P For the Greeks, it is the volume of a cube with side length x.

P Now, consider x5.
< On the (Euclidean) geometric view, x5 is a five-dimensional cube.
< On the (Cartesian) analytic view, x5 is just another curve on a standard Cartesian plane.
< It is nothing more than a more rapidly growing curve in two-dimensions.

P Thus, analysis, and the algebraization of geometry, opened up mathematics to a
wider, more general treatment of functions.

P Any function, indeed any equation of two variables, can be graphed.

P The graph of a function is complete.
< It defines a range for any given domain, including irrationals.

P We thus see a shape, or curve, as containing all magnitudes.

Using Graphs for Functions
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P Mathematicians started seeing geometry as the study of curves, more
generally.

P If we could graph every function, and find an algebraic representation of
every curve, the question of whether algebra or geometry is fundamental
would be moot.

P In the early days of analysis, it was assumed that there is a graph for every
algebraic function, but not a function for every curve.
< The Euclidean view continued to dominate.

P Mid-eighteenth century views
< Euler identified functions with their graphs.
< D’Alembert identified functions with their algebraic expressions.

P In the eighteenth and nineteenth centuries, mathematicians began to
discover algebraic functions which both behaved nicely (e.g. could be
integrated) but which were too pathological to graph.

The Limitations of Graphs
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P Bernoulli’s equation for the motion of the vibrating string.
< y = á sin ðx/a  +  â sin 2ðx/a  +  ã sin 3ðx/a  +  ä sin 4ðx/a  +  ...
< As we add terms, the function becomes increasingly fecund, and the graph becomes

increasingly unable to represent it.
< Still, it is a perfectly well-defined algebraic formula.

P Riemann and Weierstrass explored an everywhere-continuous but nowhere-
differentiable function, now known as the Weierstrass function.

Pathological Functions
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P Some algebraic functions are geometrically ineffable.

P “Functions had been conceived in inseparable association with their graphs - the
‘paths’ traced by points moving in accordance with an algebraically expressed law. 
But when that law dictates a ‘motion’ which involves infinitely frequent oscillations,
or infinitely frequent jumps, it is a path which can no longer be geometrically traced
either in the mind’s eye or on paper.  But if the law can be written and by this
means rationally investigated, the graph of the function must be presumed, in
some sense, to exist and to be a totality of points over which our only hold is now
algebraic” (Tiles, The Philosophy of Set Theory 82).

P The graph has lost its utility.

P Functions exist beyond our ability to picture them.

Algebra Wins!
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P We know that there are more points on a line than rational numbers, for example,
since there are incommensurable numbers.

P Now, it looks like there are even more numbers, or more structure to the numbers,
than there are geometric points or regions.

P But, mathematicians lacked the tools to express the discrepancy.

P Cantor’s work on transfinite numbers was an attempt to explore the fine structure
of the numbers, and to see the relations among natural numbers, real numbers,
and points on a line.

P His work allows us to distinguish among different levels of infinity, and to reject
Aristotle’s claim that the only infinite we can understand is potential.

How Deep is the Discrepancy?
between the picture of a function (graph)

and the numbers over which it ranges
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P The hotel is fully booked.

P A new guest arrives.
< Shift every current guest from Room n to Room n+1.
< For any finite number of guests, m, shift all current guests from Room n to Room n+m.

P An infinite bus with an infinite number of guests arrives.
< Shift every current guest from Room n to Room 2n.
< All the even-numbered rooms are filled, but the odd-numbered rooms are vacant.

P An infinite number of infinite busloads of guests arrives.
< Shift all current guests from Room n to Room 2 n.
< Lots of empty rooms

– Place the people on the first bus in room numbers 3n

– the people in the second bus go to rooms 5n

– the people in the third bus go to rooms 7n

– etc.
< There will be lots of empty rooms left over!

P Are there any sets of guests that the infinite hotel could not accommodate?
< What is the fine structure of the numbers?
< Are there different sizes of infinity?

The Infinite Hotel
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P Numbers have at least two different functions: 
< measuring the size of a set
< ordering, or ranking, a series

P When we use numbers to measure size, we use cardinality.

P When we use them to measure rank, we use ordinality.

P It has become useful to consider the numbers in their different uses as
different objects altogether.
< Ordinal numbers (first, second, third...) measure rank.
< Cardinal numbers (1, 2, 3...) measure size.
< We use one-one correspondence to characterize cardinal numbers.

Cardinals and Ordinals
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P With finite numbers, the size of a group is the same as the correspondence
between the objects in the group and some initial segment of the natural numbers.

P Hume’s principle
< “We are possessed of a precise standard by which we can judge of the equality and

proportion of numbers and, according as they correspond or not to that standard, we
determine their relations without any possibility of error.  When two numbers are so
combined as that the one has always a unit answering to every unit of the other, we
pronounce them equal...” (Hume, Treatise §I.III.1, p 8).

P With transfinite numbers, two concepts of size diverge.
< The size of the integers seems to be bigger than the size of the even numbers

The size of a whole is greater than the size of its proper part.
The even numbers are a proper part of the integers.

< The even numbers (E) and the integers (N) can be put into one-one correspondence with
each other.

E: 2, 4, 6, 8...
    ;  ;  ;  ;
I:  1, 2, 3, 4...

Size and One-One Correspondence
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P Two sets have the same sizeh if they can be put in one-one correspondence with
each other.

P Two sets have the same sizew if it is not possible to put either in one-one
correspondence with a proper part of itself.

P So, N and E have the same sizeh but different sizews.

P “N and E will have the same ‘number’ of elements even though there are infinitely
many numbers in N which are not in E, so that in this sense N is ‘bigger than’ E. 
This suggests that the elements of an infinite set are without number not just
because the notion of number, as a measure of size, can get no grip here.  All
infinite sets seem to come out as being of the same ‘size’ if one-one
correspondence is taken as indicating the sameness of size for sets” (Tiles, The
Philosophy of Set Theory 97; emphasis added).

P Despite appearances, not all infinite numbers have the same sizeh.

Two Concepts of Size
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P Cantor relies on sizeh to generate different kinds of infinite, or transfinite,
numbers.

P When we list the members of something, we are putting them into one-one
correspondence with the natural numbers.
< We can list the even numbers.
< We can list the prime numbers.
< We can even list the rational numbers.

Lists and Infinite Sizes
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P Cantor relies on sizeh to generate different kinds of infinite, or transfinite,
numbers.

P When we list the members of something, we are putting them into one-one
correspondence with the natural numbers.
< We can list the even numbers.
< We can list the prime numbers.
< We can even list the rational numbers.
< All of these sets have the sizeh, despite having different sizews.

P If there were some kinds of sets whose members could not be put into a list,
then that set would be strictly larger than the set of natural numbers, both in
sizeh and sizew.

P We could show that there are different sizes of infinity, whatever way we
measure size.

Lists and Infinite Sizes
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P Cantor shows that we can not list the real numbers.
The real numbers may be represented as their decimal expansions.

P Imagine that we have a list of all the real numbers.

P Let’s represent that list abstractly, using a concatenation of variables.
L   a1 a2 a3 a4 a5 a6 a7...
     b1 b2 b3 b4 b5 b6 b7...
     c1 c2 c3 c4 c5 c6 c7...
     d1 d2 d3 d4 d5 d6 d7...
     ...

P Consider N = a1 b2 c3 d4 e5 f6 g7...

P Create N*:
– add one to each digit of N other than nine
– replace all nines in N with zeroes

P N* is certainly not in L.
N* is different from the first number in L in its first digit
different from the second number in L in its second digit
and so on.

P All possible lists of real numbers are necessarily incomplete.

P There are strictly more real numbers than natural numbers, on both a one-once
correspondence notion of size (sizeh) and a whole-is-greater-than-the-sum-of-its-parts notion
of size (sizew).

The Diagonal Argument
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P Some properties of finite numbers do not extend to
infinite numbers.

P For transfinite numbers:
a + 1 = a
2a = a
a C a = a

P For all cardinal numbers a, b, and c, whether finite or
transfinite, the following properties hold:

1. a+b=b+a
2. ab=ba
3. a + (b + c) = (a + b) + c
4. a C (b C c) = (a C b) C c
5. a C (b + c) = ab + ac
6. a(b+c) = ab C ac

7. (ab)c = ac C bc

8. (ab)c = abc

P

Properties of Cardinal Numbers
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P For infinite n, sets with n members are the same size as sets with n+1
members, or with 2n members, or with n2 members.

P With infinite numbers, it is not always clear that what we think of as a
larger set is in fact larger.

P We might conclude that sets with n members are the same size as sets
with 2n members.

P This conclusion would be erroneous.
9. 2a > a
÷(�(A)) > ÷(A).

P This fact was once called Cantor’s Paradox.

P Now it’s called Cantor’s Theorem.

P The proof of the theorem is a set-theoretic version of the diagonalization
argument.

P See the class notes.

The Big One
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P Let’s call the size of the natural numbers à0.

P Every subset of the natural numbers can be uniquely correlated with an infinite
sequence of zeroes and ones.
< If the set includes a one, put a one in the first place of the sequence; if not, put a zero in

the first place.
< If it includes a two, put a one in the second place of the sequence; if not, put a zero in the

first place.
< For all n, if the set includes n, put a one in the nth place of the sequence.
< For all n, if the set does not include n, put a zero in the nth place of the sequence.

P Each infinite sequence of zeroes and ones can be taken as the binary
representation of a real number between zero and one, the binary representation
of their decimal expansions.

P We can easily provide a mapping between the real numbers (points on a line)
between zero and one and all the real numbers (points).

The Natural Numbers
and the Real Numbers
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If you prefer an analytic proof, take f(x) = tan ð(2x-1)/2.

Mapping the Reals to the Points
Between Zero and One
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P We can thus correlate the subsets of the natural numbers with
the real numbers, and thus with the points on a line.

P Then the real numbers, and the real plane, are the size of the
set of subsets of the natural numbers.

P The set of subsets of a set is called its power set.

Real Numbers 
and Subsets of Natural Numbers
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P We can generate larger and larger cardinals by exponentiation.

P We thus define a sequence of alephs: 
< à0, à1, à2, à3, à4...

P Further, set theorists, by various ingenious methods, including the addition of
axioms which do not contradict the standard axioms, generate even larger
cardinals.
< ethereal cardinals, subtle cardinals, almost ineffable cardinals, totally ineffable cardinals,

remarkable cardinals, superstrong cardinals, superhuge cardinals

P All of these cardinal numbers are transfinite, and larger than any of the sequence
of alephs.

Exponentiation and
Transfinite Numbers
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P The movement from geometry to arithmetic led to further abstraction.
< Set theory
< Category theory

P Cantor developed set theory in order to generate his theory of transfinites.

P Frege defined the numbers independently.

P Cantor defined cardinal numbers in terms of ordinal numbers.

P Frege sought independent definitions of the ordinals and cardinals.

P Let’s look at the set-theoretic definitions of ordinal numbers.

Foundations
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P Substitutivity: (x)(y)(z)[y=z e (y0x / z0x)]

P Pairing: (x)(y)(�z)(u)[u0z / (u = x w u = y)]

P Null Set: (�x)(y)-x0y

P Sum Set: (x)(�y)(z)[z0y / (�v)(z0v C v0x)]

P Power Set: (x)(�y)(z)[z0y / (u)(u0z e u0x)]

P Selection: (x)(�y)(z)[z0y / (z0x C öu)], for any formula ö not
containing y as a free variable.

P Infinity: (�x)(i0x C (y)(y0x e Sy0x)

ZF
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P Ordinal numbers, set-theoretically, are just special kinds of sets, ones which are
well ordered.
< an ordering relation on the set
< a first element under that order

P For convenience, we standardly pick one example of a well-ordering to represent
each particular number.

P To move through the ordinals, we look for the successor of a number.
< Ordinals generated in this way are called successor ordinals.

P In transfinite set theory, there are limit elements.
< We collect all the sets we have counted so far into one further set.
< The union operation
< If we combine all the sets that correspond to the finite ordinals into a single set, we get

another ordinal
< This limit ordinal will be larger than all of the ordinals in it.

P So, there are two kinds of ordinals: successor ordinals and limit ordinals.

Successor Ordinals and
Limit Ordinals
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1, 2, 3, ... ù
ù+1, ù+2, ù+3...2ù
2ù+1, 2ù+2, 2ù+3...3ù
4ù, 5ù, 6ù...ù2

ù2, ù3, ù4...ùù

ùù, (ùù)ù, ((ùù)ù)ù,...å0

P Limit ordinals are taken as the completions of an infinite series.

P From Aristotle philosophers and mathematicians denied that there can be any
completion of an infinite series.

P Cantor’s diagonal argument shows that there are different levels of infinity.

P We form ordinals to represent the ranks of these different levels of infinity
precisely by taking certain series to completion.

P The consistency of Cantor’s theory of transfinites transformed the way we think of
infinity.

The Ordinal Numbers
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P Zermelo:
< 0 = i
< 1 = {i}
< 2 = {{i}}
< 3 = {{{i}}}
< ...

P Von Neumann
< 0 = i
< 1 = {i}
< 2 = {i, {i}}
< 3 = {i, {i}, {i, {i}}}
< ...

P Frege has a different way

Natural Numbers in Terms of Ordinals 
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The Continuum Hypothesis
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< Is Fermat’s theorem true?
< Is Goldbach’s conjecture true?
< Is the parallel postulate true?

P Some questions, like Fermat’s conjecture, are clearly answered
affirmatively.

P We expect the same kind of answer for Goldbach’s Conjecture.

P The parallel postulate is more interesting.
< It can fail, but it can also hold.
< The question is ill-formed.
< There are different kinds of spaces, and they are each defined by a

different answer to the parallel postulate.

Difficult Questions
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P Cantor provided a method for generating larger and larger transfinite numbers.

P He shows that the cardinal number of the reals is equal to .

P He also shows that 2^à0 is greater than à0.

P Cantor’s theorem does not show, however, that it is the next greater transfinite
number.

P The continuum hypothesis is that à1 = 2^à0.

P More abstractly, the generalized continuum hypothesis is that àn+1 = 2^àn.

P Cantor believed that the continuum hypothesis was true, but he could not prove it.

The Continuum Hypothesis
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P Certain operations which generate larger cardinal numbers, like exponentiation,
skip numbers in between.
< Only succession actually gives the next number.

P We do not even know that the sizes of transfinite cardinal numbers can be ordered
linearly.

P “It has been assumed that cardinalities, or cardinal numbers, can be arranged in a
single linear order.  But just making that assumption does not tell us anything
about the nature of the cardinal number ‘sequence’, about how to establish where
any given cardinality lies in it, or even whether it is correct to talk about there being
a next cardinal number after à0.  Our assumption does not rule out the possibility
that infinite cardinalities might, like the rational numbers, be densely ordered.  If
that were the case, there would always be another cardinal number between any
two given cardinalities and given any cardinal number there would be no ‘next
‘one” (Tiles, The Philosophy of Set Theory 103).

Against CH
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P In 1940, Kurt Gödel showed that the continuum hypothesis is consistent with the
standard axioms of set theory.

P In 1963, Paul Cohen showed that its negation is consistent with set theory.

P Thus, the continuum hypothesis is independent of the standard axioms.

P We can consistently consider the continuum to be of all different sizes
< à1, à2, à3, etc.

P Further, none of the large cardinal axioms proposed settle the question.

The Independence of CH
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P We could settle the question of the size of the continuum by adopting stronger
axioms for set theory.

P Some mathematicians believe that the continuum hypothesis, even the
generalized version, is so intuitively true that we should just adopt it, or an
equivalent, as part of set theory.

P Gödel

P Alternatively, we could take the question to be ill-formed, like the question of
whether the parallel postulate is true.

P Perhaps there are different set theories, with different sizes of the continuum.

A Solution?
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