Some Sets of Mathematical Axioms

Propositional Logic, following Mendelson, Introduction to Mathematical Logic
The symbols are $\sim, \supset,($,$) , and the statement letters \mathrm{A}_{\mathrm{i}}$, for all positive integers i.
All statement letters are wffs.
If α and β are wffs, so are $\sim \alpha$ and $(\alpha \supset \beta)$
If α, β, and γ are wffs, then the following are axioms:

$$
\begin{aligned}
& \text { A1: }(\alpha \supset(\beta \supset \alpha)) \\
& \text { A2: }((\alpha \supset(\beta \supset \gamma)) \supset((\alpha \supset \beta) \supset(\alpha \supset \gamma))) \\
& \text { A3: }((\sim \beta \supset \sim \alpha) \supset((\sim \beta \supset \alpha) \supset \beta))
\end{aligned}
$$

β is a direct consequence of α and $(\alpha \supset \beta)$

Zermelo-Fraenkel Set Theory, again following Mendelson, but with adjustments
ZF may be written in the language of first-order logic, with one special predicate letter, ϵ.
Substitutivity: $\quad(x)(y)(z)[y=z \supset(y \in x \equiv z \in x)]$
Pairing: $\quad(x)(y)(\exists z)(u)[u \in z \equiv(u=x \vee u=y)]$
Null Set: $\quad(\exists x)(y) \sim x \in y$
Note: the null set axiom ensures the existence of an empty set, so we can introduce a
constant, \varnothing, such that (x) $\sim x \in \varnothing$.

Sum Set:	$(\mathrm{x})(\exists \mathrm{y})(\mathrm{z})[\mathrm{z} \in \mathrm{y} \equiv(\exists \mathrm{v})(\mathrm{z} \in \mathrm{v} \bullet \mathrm{v} \in \mathrm{x})]$
Power Set:	$(\mathrm{x})(\exists \mathrm{y})(\mathrm{z})[\mathrm{z} \in \mathrm{y} \equiv(\mathrm{u})(\mathrm{u} \in \mathrm{z} \supset \mathrm{u} \in \mathrm{x})]$
Selection:	$(\mathrm{x})(\exists \mathrm{y})(\mathrm{z})[\mathrm{z} \in \mathrm{y} \equiv(\mathrm{z} \in \mathrm{x} \bullet \mathscr{F} \mathrm{u})]$, for any formula \mathscr{F} not containing y as a free variable.
Infinity:	$(\exists \mathrm{x})(\varnothing \in \mathrm{x} \bullet(\mathrm{y})(\mathrm{y} \in \mathrm{x} \supset S \mathrm{~S} \in \mathrm{x})$
	\quad Note: 'Sy' stands for $\mathrm{y} \cup\{\mathrm{y}\}$, the definitions for the components of which are standard.

Peano Arithmetic, again, following Mendelson with adjustments
P1: 0 is a number
$P 2$: The successor (x ') of every number (x) is a number
P3: 0 is not the successor of any number
P4: If $x^{\prime}=y^{\prime}$ then $x=y$
P5: If P is a property that may (or may not) hold for any number, and if
i. 0 has P ; and
ii. for any x, if x has P then x ' has P;
then all numbers have P.
Note: P5 is also called mathematical induction, and is actually a schema of an infinite number of axioms.

Birkhoff's Postulates for Geometry, following James Smart, Modern Geometries
Postulate I: Postulate of Line Measure. The points A, B,... of any line can be put into a $1: 1$ correspondence with the real numbers x so that $\left|x_{B}-x_{A}\right|=d(A, B)$ for all points A and B.
Postulate II: Point-Line Postulate. One and only one straight line 1 contains two given distinct points P and Q .
Postulate III: Postulate of Angle Measure. The half-lines $1, m \ldots$ through any point O can be put into $1: 1$
correspondence with the real numbers $a(\bmod 2 \pi)$ so that if $A \neq 0$ and $B \neq 0$ are points on 1 and m, respectively, the difference $a_{m}-a_{1}(\bmod 2 \pi)$ is angle $\triangle A O B$. Further, if the point B on m varies continuously in a line r not containing the vertex O , the number a_{m} varies continuously also.
Postulate IV: Postulate of Similarity. If in two triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, and for some constant $\mathrm{k}>0, \mathrm{~d}^{\prime}\left(\mathrm{A}^{\prime}, \mathrm{B}^{\prime}\right)=$ $\operatorname{kd}(\mathrm{A}, \mathrm{B}), \mathrm{d}\left(\mathrm{A}^{\prime}, \mathrm{C}^{\prime}\right)=\mathrm{kd}(\mathrm{A}, \mathrm{C})$ and $\measuredangle \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{C}^{\prime}= \pm \angle \mathrm{BAC}$, then $\mathrm{d}\left(\mathrm{B}^{\prime}, \mathrm{C}^{\prime}\right)=\mathrm{kd}(\mathrm{B}, \mathrm{C}), \measuredangle \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{A}^{\prime}= \pm \angle \mathrm{CBA}$, and $\measuredangle A^{\prime} C^{\prime} B^{\prime}= \pm \measuredangle \mathrm{ACB}$.

