Philosophy 240: Symbolic Logic

Russell Marcus Hamilton College Fall 2015

Class #41 - Second-Order Quantification

Second-Order Inferences

- Consider a red apple and a red fire truck.
 - $(\exists x)(\mathsf{Rx} \bullet \mathsf{Ax})$ $(\exists x)(\mathsf{Rx} \bullet \mathsf{Fx})$
- We might want to infer that they have something in common, that they share a property.
 - 1. $(\exists x)(Rx \bullet Ax)$ 2. $(\exists x)(Rx \bullet Fx)$ 3. Ra Aa1, El4. Rb Ab3, El5. Ra3, Simp6. Rb4, Simp7. Ra Rb5,6, Conj8. $(\exists X)(Xa \bullet Xb)$ 7, by ex
 - 8. $(\exists X)(Xa \bullet Xb)$ 7, by existential generalization over predicates

Predicate Variables

- In the prior slide, I treated the predicate 'R' as subject to quantification, like a singular term.
- A language which allows quantification over predicate places is called a secondorder language.
- A system of logic which uses a second-order language is called second-order logic.
 - ► We'll call our second-order logic **S**.
- Second-order logic is controversial.
 - Let's look at it first.
 - Then we can talk about the controversy.

Vocabulary of S

- Capital letters
 - A...U, used as predicates
 - ► V, W, X, Y, and Z, used as predicate variables
- Lower case letters
 - ▶ a, b, c, d, e, i, j, k...u are used as constants.
 - ► f, g, and h are used as functors.
 - v, w, x, y, z are used as singular variables.
- Five connectives: ~, •, \lor , $\supset \equiv$
- Quantifiers: \exists , \forall
- Punctuation: (), [], {}

Formation Rules for Wffs of S

1. An n-place predicate or predicate variable followed by n terms (constants, variables, or functor terms) is a wff.

2. For any singular variable β , if α is a wff that does not contain either $(\exists \beta)$ ' or $(\forall \beta)$ ', then $(\exists \beta)\alpha$ ' and $(\forall \beta)\alpha$ ' are wffs.

3. For any predicate variable β , if α is a wff that does not contain either '($\exists \beta$)' or '($\forall \beta$)', then '($\exists \beta$) α ' and '($\forall \beta$) α ' are wffs.

4. If α is a wff, so is $\sim \! \alpha.$

5. If α and β are wffs, then so are:

- (α · β)
- (α ∨ β)
- $(\alpha \supset \beta)$
- $(\alpha \equiv \beta)$

6. These are the only ways to make wffs.

Uses of Predicate Variables

- No two distinct things have all properties in common.
 - ► $(\forall x)(\forall y)[x \neq y \supset (\exists X)(Xx \bullet \sim Xy)]$
- Identical objects share all properties (Leibniz's law).
 - $(\forall x)(\forall y)[x=y \supset (\forall Y)(Yx \equiv Yy)]$
- The identity of indiscernibles
 - ► $(\forall x)(\forall y)[(\forall Z)(Zx = Zy) \supset x=y]$
- The Law of the Excluded Middle
 - ► (∀X)(X ∨ ~X)
- Analogies: Cat is to meow as dog is to bark.
 - ► (∃X)(Xcm Xdb)
- First-order mathematical induction schema can be written as an axiom.
 - ► $(\forall X)$ {{Na Xa $(\forall x)[(Nx Xx) \supset Xf(x)]$ } $\supset (\forall x)(Nx \supset Xx)$ }
 - ► a: zero
 - Nx: x is a number

More Translations

- 1. Everything has some relation to itself.
- ► (∀x)(∃V)Vxx
- 2. All people have some property in common.
- ► $(\forall x)(\forall y)[(Px \bullet Py) \supset (\exists Y)(Yx \bullet Yy)]$
- 3. No two people have every property in common.
- ► $(\forall x)(\forall y)[(Px \bullet Py) \supset (\exists Z)(Zx \bullet \sim Zy)]$

Characterizing Relations

- We can regiment basic characteristics of relations without secondorder logic.
- Here are three characteristics of relations, in first-order logic:
 - ► Reflexivity: (∀x)Rxx
 - Symmetry: $(\forall x)(\forall y)(Rxy = Ryx)$
 - Transitivity: $(\forall x)(\forall y)(\forall z)[(Rxy \bullet Ryz) \supset Rxz]$
 - Asymmetry: $(\forall x)(\forall y)(Rxy \equiv ~Ryx)$
 - Antisymmetry: $(\forall x)(\forall y)[(Rxy \bullet Ryx) \supset x=y]$
 - Asymmetry entails antisymmetry
 - < is asymmetric</p>
 - \leq is antisymmetric

Characterizing Relations in Second- Order Logic

- Second-order logic allows us to do more.
- Some relations are transitive.
 - $(\exists X)(\forall x)(\forall y)(\forall z)[(Xxy \bullet Xyz) \supset Xxz]$
- Some relations are symmetric, while some are asymmetric.
 - ► $(\exists X)(\forall x)(\forall y)(Xxy \equiv Xyx) \bullet (\exists X)(\forall x)(\forall y)(Xxy \equiv ~Xyx)$

Replacing the Identity Predicate

$x=y \text{ iff } (\forall X)(Xx = Xy)$

- Symmetry and reflexivity follow from the symmetry and reflexivity of the biconditional.
- ► IDi follows from BMP.

Identity for Properties

- We would like to say something about property identity.
 - For example: There are at least two distinct properties.
 - (∃X)(∃Y)X≠Y
- But identity is a relation between singular terms, not predicates.
- And there are no objects attached to the predicates above.
- We can add a quantifier to take care of the singular terms:

►
$$(\exists X)(\exists Y)(\exists x)~(Xx\equiv Yx)$$

- This only indicates that there are distinct monadic properties.
- What about dyadic properties?
 - $(\exists X)(\exists Y)(\exists x)(\exists y)~(Xxy\equiv Yxy)$
- In order to generalize such claims, higher-order logics are required.

Higher-Order Logics

- All logics after first-order logic are called higher-order logic
- To create third-order logic, we introduce attributes of attributes.
- All useful properties are desirable.
 - $(\forall X)(UX \supset DX)$
 - ► Not a wff in **S**; it lacks singular terms
- A man who possesses all virtues is a virtuous man, but there are virtuous men who do not possess all virtues:
 - ► $(\forall x) \{ [Mx \bullet (\forall X) (VX \supset Xx)] \supset Vx \} \bullet (\exists x) [Mx \bullet Vx \bullet (\exists X) (VX \bullet ~Xx)] \}$
 - More missing singular terms.
 - Also, the third-order variables are applied both to predicates and terms, which is a category error.
- Cleaning it up would make it messier.
 - Yes, I said that.

Marcus, Symbolic Logic, Slide 12