Philosophy 240 Symbolic Logic

Russell Marcus Hamilton College Fall 2015

Class #24: Infinity

Marcus, Symbolic Logic, Slide 1

Business

HW due today?

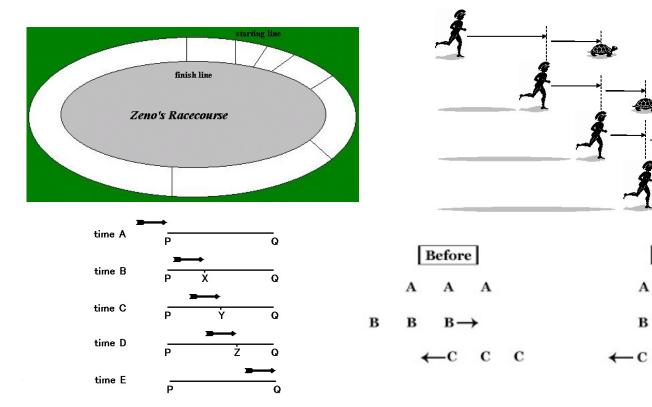
Nineteenth Century Developments in Mathematics

worries about logical entailments

- Non-Euclidean geometries
- The calculus of infinitesimals
- Cantor's proof that there are different sizes of infinity
- Frege developed logic to show that the proofs in such cases were legitimate.
- So the development of formal logic and questions about infinite are historically linked.
- But questions about infinity go back a long way before the nineteenth century.

Zeno's Paradoxes

- Achilles and the Racetrack
- Achilles and the Tortoise
- The Arrow
- Moving Blocks



Marcus, Symbolic Logic, Slide 4

After

А

в

С

А

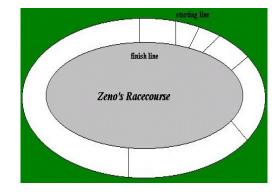
С

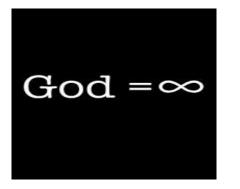
 $B \rightarrow$

Aristotle

Potential Infinite and Actual Infinity

- We could divide the racetrack into infinitely many parts.
- But we don't.
- There is no actual infinity in the world.
- So, Zeno's paradoxes are no problem.
- Medievals and Moderns identified infinity with God.

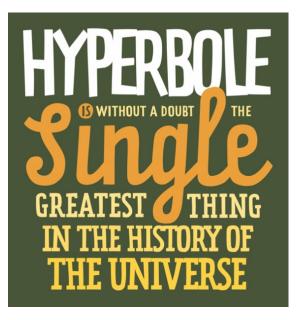




Cantor

Infinity is more complicated than we thought

- Mid Nineteenth Century
- Diagonal Argument
- The most important intellectual achievement of the nineteenth century!



The Infinite Hotel

- One guest
- Any finite number of guests
- An infinite busload of guests
- Infinitely many infinite busloads of guests
- Are there guests that can't be accommodated?

Two Concepts of Size

Cardinal Numbers

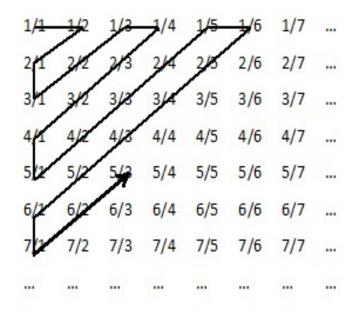
- Size_H: One-One Correspondence
- Size_w: Whole is Greater than its Parts
- For finite sets, size_H and size_W are the same.
- For infinite sets, they diverge.
 - The natural numbers and the even natural numbers have the same size_H but different size_Ws.
 - An infinite set can be put into one-one correspondence with a proper subset of itself.

Lists of Numbers

- Natural Numbers
- Integers (positive and negative)
- Rationals

Lists of Numbers

- Natural Numbers
- Integers (positive and negative)
- Rationals



This is not the diagonal argument!

The Diagonal Argument

Are there sets of numbers we could not list?

- Cantor: Yes!
 - The real numbers
- Consider the real numbers in their decimal expansions.
 - The same argument can work in different bases, or with sets, or any way the numbers can be presented.
- Let's suppose (for indirect proof) that there is such a list:
 - $a_1 a_2 a_3 a_4 a_5 a_6 a_7 \dots$
 - $b_1 b_2 b_3 b_4 b_5 b_6 b_7 ...$
 - $C_1 C_2 C_3 C_4 C_5 C_6 C_7...$
 - $d_1 d_2 d_3 d_4 d_5 d_6 d_7...$
 - ▶ ...
- Consider the number N
 - $a_1 b_2 c_3 d_4 e_5 f_6 g_7...$
 - Could be on the list
- Construct a new number N*
 - $a_1^* b_2^* c_3^* d_4^* e_5^* f_6^* g_7^* \dots$
 - Use the diagonal
 - Not on the list

Cardinal Arithmetic 1

Properties of all cardinals

1. a+b=b+a2. ab=ba3. a + (b + c) = (a + b) + c4. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ 5. $a \cdot (b + c) = ab + ac$ 6. $a^{(b+c)} = a^{b} \cdot a^{c}$ 7. $(ab)^{c} = a^{c} \cdot b^{c}$ 8. $(a^{b})^{c} = a^{bc}$

Cardinal Arithmetic 2

Where finites and transfinites diverge

- For transfinites:
 - ▶ a + 1 = a
 - ► 2a = a
 - ▶ a a = a
- Recall the infinite hotel
 - Adding one guest
 - (or any finite number or guests)
 - Adding an infinite bus
 - Adding an infinite number of infinite buses

Cardinal Arithmetic 3

Power sets and Exponentiation

- 2^a > a
 - for both finite and infinite numbers
- Cantor's Theorem

Infinite Counting

- Call the size of the natural numbers κ₀
- Then:
 - ► א₀, א₁, א₂, א₃, א₄...
- What is the size of 2[×]₀?
 - 2³ does not give you the next natural number after 2².
 - Continuum Hypothesis
 - What is the structure of the transfinite numbers?
- That's (at least in part) what motivates Frege to develop modern logic.