Hamilton College

Russell Marcus
I. Invalidity in M. Demonstrate the invalidity of each of the following arguments. Provide a counterexample.

1. 2. $(\exists \mathrm{x})(\mathrm{Ax} \cdot \sim \mathrm{Bx})$
1. $(\forall \mathrm{x})(\mathrm{Bx} \supset \mathrm{Cx}) \quad /(\exists \mathrm{x})(\mathrm{Ax} \cdot \mathrm{Cx})$
2. 3. $(\forall \mathrm{x})(\mathrm{Fx} \supset \mathrm{Gx})$
1. $(\exists \mathrm{x}) \mathrm{Fx}$

$$
/(\forall \mathrm{x})(\sim \mathrm{Gx} \supset \sim \mathrm{Ex})
$$

3. $1 .(\forall \mathrm{x})[(\mathrm{Px} \cdot \mathrm{Qx}) \supset \mathrm{Rx}]$
4. $(\exists \mathrm{x})(\mathrm{Qx} \cdot \sim \mathrm{Rx})$
5. $(\exists \mathrm{x})(\mathrm{Px} \cdot \sim \mathrm{Rx}) \quad /(\exists \mathrm{x})(\sim \mathrm{Px} \cdot \sim \mathrm{Qx})$
6. 7. $(\forall \mathrm{x})(\mathrm{Px} \supset \mathrm{Qx}) \supset(\exists \mathrm{x})(\mathrm{Px} \bullet \mathrm{Rx})$
1. $(\exists \mathrm{x})(\mathrm{Px} \cdot \mathrm{Qx}) \quad /(\exists \mathrm{x}) \mathrm{Rx}$
2. 3. $(\forall x)[(A x \vee B x) \supset C x]$
1. $(\exists \mathrm{x})(\mathrm{Bx} \bullet \sim \mathrm{Ax})$
2. $(\exists \mathrm{x})(\mathrm{Ax} \cdot \sim \mathrm{Bx}) \quad /(\forall \mathrm{x}) \mathrm{Cx}$
II. Translation in \mathbf{F}. Use the following legend to translate the sentences below into \mathbf{F}.

n: Nietzsche	Bxy: x is a brother of y
p: Plato	Mxy: x mocks y
	Pxy: x produces y
Ax: x is an altruist	Rxy: x is richer than y
Bx: x is boneheaded	Wxy: x is wiser than y
Px: x is a philosopher	
Tx: x is thoughtful	

1. All altruists are philosophers.
2. All thoughtful altruists are philosophers.
3. All thoughtful altruists are wiser than Nietzsche
4. All thoughtful altruists are wiser than some philosopher.
5. All thoughtful altruists are wiser than some boneheaded philosopher.
6. No boneheaded altruists are richer than some thoughtful philosopher.
7. Some thoughtful philosophers are not richer than all boneheaded philosophers.
8. Nietzsche mocks all altruists.
9. Nietzsche mocks everything that Plato produces.
10. Nietzsche mocks everything wiser than him.
11. Nietzsche mocks a thing if it does not mock itself.
12. If one thing is wiser than a second, then the second is not wiser than the first.
13. If all altruist philosophers are richer than some thoughtful philosopher, then something thoughtful is wiser than all altruists.
III. Derivations in \mathbf{F}.
14. 15. $(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{Axy} \supset(\forall \mathrm{x})(\exists \mathrm{y}) \mathrm{Bxy}$
1. $(\exists \mathrm{x})(\forall \mathrm{y}) \sim \mathrm{Bxy} \quad /(\exists \mathrm{x})(\forall \mathrm{y}) \sim \mathrm{Axy}$
2. 3. $(\forall \mathrm{x})(\mathrm{Ax} \supset \mathrm{Bx})$
$/(\forall x)[(\exists \mathrm{y})(\mathrm{Ay} \cdot \mathrm{Cxy}) \supset(\exists \mathrm{z})(\mathrm{Bz} \cdot \mathrm{Cxz})]$
1. 2. $\sim(\exists \mathrm{x})(\mathrm{Axa} \cdot \sim \mathrm{Bxb})$
1. $\sim(\exists \mathrm{x})(\mathrm{Dxd} \cdot \mathrm{Dbx})$
2. $(\forall \mathrm{x})(\mathrm{Bex} \supset \mathrm{Dxg})$
/ ~(Aea \cdot Dgd)
3. 4. $(\forall \mathrm{x})\{(\mathrm{Px} \bullet \mathrm{Qx}) \supset(\exists \mathrm{y})[(\mathrm{Py} \bullet \mathrm{Qy}) \cdot \sim \mathrm{Rxy}]$
1. $(\forall \mathrm{x})[\mathrm{Px} \equiv(\mathrm{Qx} \cdot \mathrm{Tx})]$
2. $(\forall \mathrm{x})[\mathrm{Px} \supset(\forall \mathrm{y})(\mathrm{Sy} \supset \mathrm{Ryx})]$
$/(\forall x)(P x \supset \sim S x)$
3. 4. $(\forall x)(\forall y)(A x y \equiv A y x)$
1. $(\forall x)(\forall y)(\forall z)[(A x y \bullet A y z) \supset A x z]$
2. $(\exists \mathrm{x})(\exists \mathrm{y})$ Axy
$/(\exists \mathrm{x}) \mathrm{Axx}$
3. 4. $(\forall \mathrm{x})[(\exists \mathrm{y}) \mathrm{Fxy} \supset(\forall \mathrm{z})(\mathrm{Gz} \supset \mathrm{Fxz})]$
1. Fab
2. Gc
3. $1 .(\forall \mathrm{x})(\forall \mathrm{y})[\mathrm{Nxy} \equiv(\mathrm{Px} \bullet \mathrm{Py})]$
4. $(\forall \mathrm{x})(\mathrm{Ox} \supset \mathrm{Px})$
5. $(\exists \mathrm{x})(\exists \mathrm{y})[(\mathrm{Ox} \bullet \mathrm{Oy}) \cdot \mathrm{Myx}] \quad /(\exists \mathrm{x})(\exists \mathrm{y})(\mathrm{Myx} \cdot \mathrm{Nxy})$
6. 7. $(\forall \mathrm{x})\{\mathrm{Px} \supset(\exists \mathrm{y})[\mathrm{Qy} \bullet(\mathrm{Rxy} \cdot \mathrm{Ryx})]\}$
1. $(\exists \mathrm{x})\{\mathrm{Px} \bullet(\forall \mathrm{y})[\mathrm{Sy} \supset(\sim \mathrm{Rxy} \vee \sim \mathrm{Ryx})]\} \quad /(\exists \mathrm{x})(\mathrm{Qx} \bullet \sim \mathrm{Sx})$
