Practice Problems for Test #5

I. Invalidity in **M**. Demonstrate the invalidity of each of the following arguments. Provide a counterexample.

- 1. $(\exists x)(Ax \cdot \sim Bx)$
 - 2. $(\forall x)(Bx \supset Cx)$

 $/(\exists x)(Ax \cdot Cx)$

- 2. 1. $(\forall x)(Fx \supset Gx)$
 - 2. (∃x)Fx

$$/(\forall x)(\sim Gx \supset \sim Ex)$$

- 3. $1. (\forall x)[(Px \cdot Qx) \supset Rx]$
 - 2. $(\exists x)(Qx \cdot \sim Rx)$
 - 3. $(\exists x)(Px \cdot \sim Rx)$
- $/(\exists x)(\sim Px \cdot \sim Qx)$
- 4. $1. (\forall x)(Px \supset Qx) \supset (\exists x)(Px \bullet Rx)$
 - 2. $(\exists x)(Px \bullet Qx)$
- $/(\exists x)Rx$
- 5. $1. (\forall x)[(Ax \lor Bx) \supset Cx]$
 - 2. $(\exists x)(Bx \bullet \sim Ax)$
 - 3. $(\exists x)(Ax \bullet \sim Bx)$
- $/(\forall x)Cx$

II. Translation in **F**. Use the following legend to translate the sentences below into **F**.

n: Nietzsche Bxy: x is a brother of y

p: Plato Mxy: x mocks y

Pxy: x produces y
Ax: x is an altruist Rxy: x is richer than

Ax: x is an altruist Rxy: x is richer than y Bx: x is boneheaded Wxy: x is wiser than y

Px: x is a philosopher Tx: x is thoughtful

- 1. All altruists are philosophers.
- 2. All thoughtful altruists are philosophers.
- 3. All thoughtful altruists are wiser than Nietzsche
- 4. All thoughtful altruists are wiser than some philosopher.
- 5. All thoughtful altruists are wiser than some boneheaded philosopher.
- 6. No boneheaded altruists are richer than some thoughtful philosopher.
- 7. Some thoughtful philosophers are not richer than all boneheaded philosophers.
- 8. Nietzsche mocks all altruists.
- 9. Nietzsche mocks everything that Plato produces.
- 10. Nietzsche mocks everything wiser than him.
- 11. Nietzsche mocks a thing if it does not mock itself.
- 12. If one thing is wiser than a second, then the second is not wiser than the first.
- 13. If all altruist philosophers are richer than some thoughtful philosopher, then something thoughtful is wiser than all altruists.

III. Derivations in **F**.

1.
$$(\forall x)(\exists y)Axy \supset (\forall x)(\exists y)Bxy$$

2.
$$(\exists x)(\forall y) \sim Bxy$$

$$/(\exists x)(\forall y) \sim Axy$$

2.
$$1. (\forall x)(Ax \supset Bx)$$

$$/(\forall x)[(\exists y)(Ay \cdot Cxy) \supset (\exists z)(Bz \cdot Cxz)]$$

3. 1.
$$\sim (\exists x)(Axa \cdot \sim Bxb)$$

2.
$$\sim (\exists x)(Dxd \cdot Dbx)$$

3.
$$(\forall x)(\text{Bex} \supset \text{Dxg})$$

4. 1.
$$(\forall x)\{(Px \bullet Qx) \supset (\exists y)[(Py \bullet Qy) \bullet \sim Rxy]$$

$$2. (\forall x) [Px \equiv (Qx \bullet Tx)]$$

3.
$$(\forall x)[Px \supset (\forall y)(Sy \supset Ryx)]$$

$$/(\forall x)(Px \supset \sim Sx)$$

5. 1.
$$(\forall x)(\forall y)(Axy \equiv Ayx)$$

2.
$$(\forall x)(\forall y)(\forall z)[(Axy \cdot Ayz) \supset Axz]$$

3.
$$(\exists x)(\exists y)Axy$$

 $/(\exists x)Axx$

6. 1.
$$(\forall x)[(\exists y)Fxy \supset (\forall z)(Gz \supset Fxz)]$$

/ Fac

7.
$$1. (\forall x)(\forall y)[Nxy \equiv (Px \bullet Py)]$$

2.
$$(\forall x)(Ox \supset Px)$$

3.
$$(\exists x)(\exists y)[(Ox \bullet Oy) \bullet Myx]$$

 $/(\exists x)(\exists y)(Myx \cdot Nxy)$

8. 1.
$$(\forall x) \{Px \supset (\exists y)[Qy \bullet (Rxy \bullet Ryx)]\}$$

2.
$$(\exists x) \{ Px \bullet (\forall y) [Sy \supset (\neg Rxy \lor \neg Ryx)] \}$$

 $/(\exists x)(Qx \bullet \sim Sx)$