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P We can generate each of the four possibilities with our connectives:
< á v ~á
< á
< ~á
< á C ~á

Four Possible Unary Functions
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P Our language will be expressively complete if we can
generate each of the sixteen possibilities.

P A neat challenge!

Sixteen Binary Operators
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P Call a connective superfluous if it can be defined in terms of
other connectives.

P Proof 1: We can show that ‘á / â’ and ‘(á e â) C (â e á)’ are
logically equivalent.

Theorem 1: The Biconditional is
Superfluous
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P Proof 1: We can show that ‘á / â’ and ‘(á e â) C (â e á)’ are logically equivalent.

Theorem 1: The Biconditional is
Superfluous
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Theorem 2: The Conditional is
Superfluous

Proof 2: By method of truth tables
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P LE1: Two statements are logically equivalent iff they have the same
values in every row of the truth table.

P LE2: Two statements are logically equivalent iff each is derivable from the
other.
< We will start derivations next Wednesday.

P We hope that LE1 and LE2 yield the same results.

P To prove that LE1 and LE2 yield the same results, we have to justify our
system of deduction.

P That work is left for another occasion.

Two Notions of Logical Equivalence
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P Any sentence which can be written as a biconditional
can be written in terms of negation, conjunction, and
disjunction.

P Consider: ‘Dogs bite if and only if they are startled’.
< B / S
< (B e S) C (S e B)
< (-B w S) C (-S w B)

Combining Theorems 1 and 2
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Q1. How can we be sure that all sentences can be written with just the
five connectives?

Q2a. Can we get rid of more connectives?  

Q2b. If so, what is the fewest number of connectives that we need?

Some Questions
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P A set of connectives is called adequate iff corresponding to every
possible truth table there is at least one sentence using only those
connectives.
< A language is expressively complete iff its connectives are adequate

P By “every possible truth table,” I mean every combination of 1s and 0s
in the column under the main connective.

Adequacy
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P There are only four possible truth tables:
< 11
< 10
< 01
< 00

Theorem 3: Negation and Conjunction
are Adequate,

if we use only one propositional variable.

Proof by sheer force
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P There are only four possible truth tables:
< 11
< 10
< 01
< 00

Theorem 3: Negation and Conjunction
are Adequate,

if we use only one propositional variable.

Proof by sheer force
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P We want to demonstrate the general theorem that the five
connectives are adequate for any number of propositional variables.

P By Theorems 1 and 2, we know that the five connectives are
adequate if, and only if, the three (negation, conjunction, and
disjunction) are adequate.

< Theorem 1: The Biconditional is Superfluous

< Theorem 2: The Conditional is Superfluous

Our Goal: A General Adequacy Result
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P In order to prove our general adequacy results, we need the notion of DNF.

P A sentence is in DNF iff if is a series of disjunctions, each disjunct of which is a
conjunction of simple letters or negations of simple letters.

P Sentences in DNF may not be wffs, since we will allow series of disjuncts (and
series of conjuncts among the disjuncts)

P A single letter or its negation can be considered a degenerate conjunction or
disjunction.

P All statements in DNF use only negations, conjunctions, and disjunctions.

Disjunctive Normal Form (DNF)
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P DNF
-P w -Q w (-P C -Q)
(P C Q) w (-P C Q) w (-P C Q C -R)
P C -Q C S
-P w Q w T 
P

P NDNF
-(P C Q)
P e Q
(P C -Q) w (-P / Q)
(P w Q) C (-P w -Q)
P w -Q w -(P w Q)

DNF
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1. (P C -Q) w (P C Q)

2. (P C Q C R) w (-P C -Q C -R)

3. -P w Q w R

4. (P w Q) C (P w -R)

5. (P C Q) w (P C -Q) w (-P C Q) w (-P C -R)

6. (-P C Q) C (P C R) w (Q C -R)

7. (P C -Q C R) w (Q C -R) w -Q

8. -(P C Q) w (P C R)

9. P C Q

10. -P

Exercise

Which of the following sentences are in DNF?
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1. (P C -Q) w (P C Q)

2. (P C Q C R) w (-P C -Q C -R)

3. -P w Q w R

4. (P w Q) C (P w -R)

5. (P C Q) w (P C -Q) w (-P C Q) w (-P C -R)

6. (-P C Q) C (P C R) w (Q C -R)

7. (P C -Q C R) w (Q C -R) w -Q

8. -(P C Q) w (P C R)

9. P C Q

10. -P

Exercise

Which of the following sentences are in DNF?
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P For any size truth table, with any number of connectives, there are
three possibilities for the column under the main connective.

P Case 1: Every row is false.

P Case 2: There is one row which is true, and every other row is false.

P Case 3: There is more than one row which is true.

Theorem 4: The Set of Negation,
Conjunction, and Disjunction {-, C, w}

is Adequate.  (1/4)

Proof: By cases.  
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P Construct a sentence with one variable in the sentence conjoined
with its negation and each of the remaining variables.

P So, if you have variables P, Q, R, S, and T, you would write: 
< (P C -P) C (Q C S C T)

P If you have more variables, add more conjuncts.

P The resulting formula, in DNF, is false in every row, and uses only
conjunction and negation.

Theorem 4: The Set of Negation,
Conjunction, and Disjunction {-, C, w}

is Adequate.  (2/4)
Case 1: Every row is false.
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P Consider the row in which the statement is true.

P Write a conjunction of the following statements:
< For each variable, if it is true in that row, write that variable.
< For each variable, if it is false in that row, write the negation of that variable.

P The resulting formula is in DNF and is true only in the prescribed row.

P Example: 
< Consider a formula with two variables: P=1100; Q=1010; 
< Main connective=0010
< Use: -P C Q
< Multiple formulas will yield the same truth table: -(P w -Q)

– We need only one.

Theorem 4: The Set of Negation,
Conjunction, and Disjunction {-, C, w}

is Adequate.  (3/4)
Case 2: There is one row which is true, and

every other row is false.
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P For each row in which the statement is true, perform the method
from Case 2.

P Then, form the disjunction of all the resulting formulas.

P Example: 
< Consider a formula with three variables.
< P=11110000; Q=11001100; R=10101010
< Main connective=10010000
< Use: (P C Q C R) w (P C -Q C -R)

P QED

Theorem 4: The Set of Negation,
Conjunction, and Disjunction {-, C, w}

is Adequate.  (4/4)
Case 3: There is more than one row which is true.
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P By Theorem 4, we can write a formula for any truth table using
as connectives only those in the set {w, C, -}.

P ‘á C â’ is equivalent to ‘-(-á w -â)’.

P So, we can replace any occurrence of ‘C’ in any formula,
according to the above equivalence.

P QED

P For example, consider the sample formula from Case 3 of the
proof of Theorem 4:
< (P C Q C R) w (P C -Q C -R)
< [P C (Q C R)] w [P C (-Q C -R)]
< [P C -(-Q w -R)] w [P C -(--Q w --R)]
< -[-P w --(-Q w -R)] w -[-P w --(--Q w --R)]
< -[-P w (-Q w -R)] w -[-P w (Q w R)]

Theorem 5: The Set {w, -} is Adequate.
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P Theorem 6: The set {C, -} is adequate.

P Theorem 7: The set {-, e} is adequate.

P We’ll use them a bit, now, even though we
haven’t proved them.

Two Theorems
for You to Prove

Given Theorem 4: The Set of Negation, Conjunction,
and Disjunction {-, C, w} is Adequate.
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P To show that a set of connectives is inadequate, we can show that
there is some truth table that can not be constructed using those
connectives.

P Recall that both ‘á e â’ and ‘á w â’ are true when á and â are both true.

P Thus, using these connectives we can never construct a truth table
with a false first row.

P QED

Theorem 8: The Set {e, w}
is Inadequate
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P The only possible truth tables with one variable and - are 10 and 01.

P Thus, we can not generate 11 or 00.

P QED

Theorem 10: The Set {-}
is Inadequate. 
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The Sheffer Stroke

alternative denial, or not-both
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P ‘-á’ is logically equivalent to ‘á | á’.

P ‘á C â’ is logically equivalent to ‘(á | â) | (á | â)’.

P By Theorem 6, {-, C} is adequate.

P QED

Theorem 11: The Set {|} is Adequate.
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The Peirce Arrow

joint denial, or neither-nor

Marcus, Symbolic Logic: Adequacy, Slide 28



P ‘-á’ is equivalent to ‘á 9 á’.

P ‘á w â’ is equivalent to ‘(á 9 â) 9 (á 9 â)’.

P Theorem 5: The set {w, -} is adequate.

P QED

Theorem 12: The Set {9} is Adequate.
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P Imagine we had another adequate connective, #.

P We know the first rows must be false, by the reasoning in
Proof 8.

P Similar reasoning fills in the last row.

P Thus, ‘-á’ is equivalent to ‘á # á’.

P Now, we need to fill in the other rows.
< If the remaining two rows are 11, then we have ‘|’.
< If the remaining two rows are 00, then we have ‘9’.
< So, the only other possibilities are 10 and 01.
< 01 yields 0011, which is just ‘-á’.
< 10 yields 0101, which is just ‘-â’.
< By Theorem 10, {-} is inadequate.

P QED

Theorem 13: 9 and | are the Only
Connectives Adequate by

Themselves.
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