Philosophy 240 Symbolic Logic

Russell Marcus
Hamilton College
Fall 2011

Class 32 - Translation Using Relational Predicates

Errors on Existential Instantiation

Existential Instantiation (EI)
$(\exists \alpha) \mathscr{F} \alpha$ for any variable α, any formula \mathscr{T} containing α, and $\mathscr{F} \beta$ any new constant β
A new constant is one that appears nowhere earlier in the proof, including in the desired conclusion.
El before you UI!

Limits of Monadic Predicates

Consider:

1. Andrew is taller than Bob.
2. Bob is taller than Charles.
3. For any x, y and z, if x is taller than y and y is taller than z , then x is taller than z .
So, Andrew is taller than Charles.
4. Ta
5. Yb
6. ???

Relational (Polyadic) Predicates

- Dyadic:
- Txy: x is taller than y
- Kxy: x knows y
- Bxy: x believes y
- Dxy: x does y
- Triadic:
- Gxyz: x gives y to z
- Kxyz: x kisses y in z
- Bxyz: x is between y and z
- We can construct four-place and higher-place predicates, too.

Choosing Your Predicates

- Andrés loves Beatriz
- La
- Lab
- Camila gave David the earring.
- Gc
- Gcde
- There is something blue over there now.
- $(\exists x) B x a b c t$
- By using a relational predicate, we reveal more logical structure.
- The more logical structure we reveal, the more we can facilitate inferences.

Full First-Order Logic

- We are now using F, for Full First-Order Predicate Logic, rather than M.
- For the purposes of this course, the differences between \mathbf{F} and \mathbf{M} are minor.
- Beyond this course, the differences between \mathbf{M} and \mathbf{F} are significant; we have breached a barrier.
- M admits of a decision procedure: there is a way of deciding, for any given formula, whether it is a theorem or not.
- \mathbf{F} is not decidable.
- There are formulas for which there are no effective methods for deciding whether they are theorems or not.

Syntax for M and F

$\underline{\text { Vocabulary for } \mathbf{M} \text { and } \mathbf{F}}$

Capital letters A...Z used as predicates
Lower case letters (singular terms)
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots \mathrm{u}$ are constants.
$\mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are variables.
Five connectives: ~, •, $\vee, \supset \equiv$
Quantifier Symbols: \exists, \forall
Punctuation: (), [], \{ \}

1. A predicate (capital letter) followed by a singular term (lower-case letter) is a wff.
2. For any variable β, if α is a wff that does not contain either ' $(\exists \beta)$ ' or ' $(\forall \beta)$ ', then ' $(\exists \beta) \alpha$ ' and ${ }^{\prime}(\forall \beta) \alpha$ ' are wffs.
3. If α is a wff, so is $\sim \alpha$.
4. If α and β are wffs, then so are:
$(\alpha \cdot \beta)$
$(\alpha \vee \beta)$
$(\alpha \supset \beta)$
$(\alpha \equiv \beta)$
5. These are the only ways to make wffs.

Formation Rules for Wffs of \mathbf{F}

1. A predicate followed by n singular terms is a

 wff.2. For any variable β, if α is a wff that does not contain either ' $(\exists \beta)$ ' or ' $(\forall \beta)$ ', then ' $(\exists \beta) \alpha$ ' and ' $(\forall \beta) \alpha$ ' are wffs.
3. If α is a wff, so is $\sim \alpha$.
4. If α and β are wffs, then so are:
$(\alpha \cdot \beta)$
$(\alpha \vee \beta)$
$(\alpha \supset \beta)$
$(\alpha \equiv \beta)$
5. These are the only ways to make wffs.

Semantics for F

- Recall that there were four steps for providing a standard formal semantics for \mathbf{M}
- Step 1. Specify a set to serve as a domain of interpretation.
- Step 2. Assign a member of the domain to each constant.
- Step 3. Assign some set of objects in the domain to each predicate.
- Step 4. Use the customary truth tables for the interpretation of the connectives.
- The introduction of relational predicates requires adjustment to Step 3.
- We assign sets of ordered n-tuples to each relational predicate.

N -Tuples

- An n-tuple is an n-place relation.
- an ordered sequence of objects
- a set with structure
- $\{1,2\}=\{2,1\}$
- <1, 2, $5>\neq<2,1,5>\neq<5,2,1>$
- An n-place predicate is assigned sets of ordered n-tuples
- doubles, triples, quadruples...
- Domain $=\{1,2,3\}$
- Nx: $\{1,2,3\}$
- Ex: $\{2\}$
- Ox: $\{1,3\}$
- Gxy: $\{<2,1>,<3,1>,<3,2>\}$
- Lxy: $\{<1,2>,<1,3>,<2,3>\}$

Satisfaction and Truth

- Objects in the domain (still) can satisfy one-place predicates.
- Ordered n-tuples may satisfy relational predicates.
- A wff will be satisfiable if there are objects in the domain of quantification which stand in the relations indicated in the wff.
- A wff will be true for an interpretation if all objects in the domain of quantification stand in the relations indicated in the wff.
- And, still, a wff will be logically true if it is true for every interpretation.

A Sample Theory and Interpretation

2. Wa•~Wb
3. Oab
4. Obc
5. $(\exists x)(P x \cdot O x b)$
6. $(\exists x)(P x \cdot O b x)$
7. $(\forall x)[W x \supset(\exists y)(P y \bullet O y x)]$

- Domain: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Constants
- a: Katheryn Doran
- b: Bob Simon
- c: Russell Marcus
- Predicates
- Px: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Wx: \{Katheryn Doran, Marianne Janack\}
- Oxy: \{<Bob Simon, Rick Werner>, <Bob Simon, Katheryn Doran>, <Bob Simon, Todd Franklin>, <Bob Simon, Marianne Janack>, <Bob Simon, Russell Marcus>, <Rick Werner, Katheryn Doran>, <Rick Werner, Todd Franklin>, <Rick Werner, Marianne Janack>, <Rick Werner, Russell Marcus>, <Katheryn Doran, Todd Franklin>, <Katheryn Doran, Marianne Janack>, <Katheryn Doran, Russell Marcus>, <Todd Franklin, Marianne Janack>, <Todd Franklin, Russell Marcus>, <Marianne Janack, Russell Marcus>, <Bob Simon, Martin Shuster>, <Rick Werner, Martin Shuster>, <Katheryn Doran, Martin Shuster>, <Todd Franklin, Martin Shuster>, <Marianne Janack, Martin Shuster>, <Russell Marcus, Martin Shuster>\}

A Sample Theory and Interpretation

2. $\mathrm{Wa} \cdot \sim \mathrm{Wb}$
3. Oab
4. Obc
5. $(\exists x)(P x \cdot O x b)$
6. $(\exists x)(P x \cdot O b x)$
7. $(\forall x)[W x \supset(\exists y)(\mathrm{Py} \bullet \mathrm{Oyx})]$

- Domain: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Constants
- a: Katheryn Doran
- b: Bob Simon
- c: Russell Marcus
- Predicates
- Px: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Wx: \{Katheryn Doran, Marianne Janack\}
- Oxy: \{<Bob Simon, Rick Werner>, <Bob Simon, Katheryn Doran>, <Bob Simon, Todd Franklin>, <Bob Simon, Marianne Janack>, <Bob Simon, Russell Marcus>, <Rick Werner, Katheryn Doran>, <Rick Werner, Todd Franklin>, <Rick Werner, Marianne Janack>, <Rick Werner, Russell Marcus>, <Katheryn Doran, Todd Franklin>, <Katheryn Doran, Marianne Janack>, <Katheryn Doran, Russell Marcus>, <Todd Franklin, Marianne Janack>, <Todd Franklin, Russell Marcus>, <Marianne Janack, Russell Marcus>, <Bob Simon, Martin Shuster>, <Rick Werner, Martin Shuster>, <Katheryn Doran, Martin Shuster>, <Todd Franklin, Martin Shuster>, <Marianne Janack, Martin Shuster>, <Russell Marcus, Martin Shuster>\}
- 1 and 2 are true.

A Sample Theory and Interpretation

2. $\mathrm{Wa} \cdot \sim \mathrm{Wb}$
3. Oab
4. Obc
5. $(\exists x)(P x \cdot O x b)$
6. $(\exists x)(P x \cdot O b x)$
7. $(\forall x)[W x \supset(\exists y)(\mathrm{Py} \bullet \mathrm{Oyx})]$

- Domain: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Constants
- a: Katheryn Doran
- b: Bob Simon
- c: Russell Marcus
- Predicates
- Px: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Wx: \{Katheryn Doran, Marianne Janack\}
- Oxy: \{<Bob Simon, Rick Werner>, <Bob Simon, Katheryn Doran>, <Bob Simon, Todd Franklin>, <Bob Simon, Marianne Janack>, <Bob Simon, Russell Marcus>, <Rick Werner, Katheryn Doran>, <Rick Werner, Todd Franklin>, <Rick Werner, Marianne Janack>, <Rick Werner, Russell Marcus>, <Katheryn Doran, Todd Franklin>, <Katheryn Doran, Marianne Janack>, <Katheryn Doran, Russell Marcus>, <Todd Franklin, Marianne Janack>, <Todd Franklin, Russell Marcus>, <Marianne Janack, Russell Marcus>, <Bob Simon, Martin Shuster>, <Rick Werner, Martin Shuster>, <Katheryn Doran, Martin Shuster>, <Todd Franklin, Martin Shuster>, <Marianne Janack, Martin Shuster>, <Russell Marcus, Martin Shuster>\}
- 1 and 2 are true.
- 3 is false.

A Sample Theory and Interpretation

2. $\mathrm{Wa} \cdot \sim \mathrm{Wb}$
3. Oab
4. Obc
5. $(\exists x)(P x \cdot O x b)$
6. $(\exists x)(P x \cdot O b x)$
7. $(\forall x)[W x \supset(\exists y)(P y \bullet O y x)]$

- Domain: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Constants
- a: Katheryn Doran
- b: Bob Simon
- c: Russell Marcus
- Predicates
- Px: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Wx: \{Katheryn Doran, Marianne Janack\}
- Oxy: \{<Bob Simon, Rick Werner>, <Bob Simon, Katheryn Doran>, <Bob Simon, Todd Franklin>, <Bob Simon, Marianne Janack>, <Bob Simon, Russell Marcus>, <Rick Werner, Katheryn Doran>, <Rick Werner, Todd Franklin>, <Rick Werner, Marianne Janack>, <Rick Werner, Russell Marcus>, <Katheryn Doran, Todd Franklin>, <Katheryn Doran, Marianne Janack>, <Katheryn Doran, Russell Marcus>, <Todd Franklin, Marianne Janack>, <Todd Franklin, Russell Marcus>, <Marianne Janack, Russell Marcus>, <Bob Simon, Martin Shuster>, <Rick Werner, Martin Shuster>, <Katheryn Doran, Martin Shuster>, <Todd Franklin, Martin Shuster>, <Marianne Janack, Martin Shuster>, <Russell Marcus, Martin Shuster>\}
- 1 and 2 are true.
- 3 is false.
- 4 is true.

A Sample Theory and Interpretation

2. Wa•~Wb
3. Oab
4. Obc
5. $(\exists x)(P x \cdot O x b)$
6. $(\exists x)(P x \cdot O b x)$
7. $(\forall x)[W x \supset(\exists y)(P y \bullet O y x)]$

- Domain: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Constants
- a: Katheryn Doran
- b: Bob Simon
- c: Russell Marcus
- Predicates
- Px: \{Bob Simon, Rick Werner, Katheryn Doran, Todd Franklin, Marianne Janack, Russell Marcus, Martin Shuster\}
- Wx: \{Katheryn Doran, Marianne Janack\}
- Oxy: \{<Bob Simon, Rick Werner>, <Bob Simon, Katheryn Doran>, <Bob Simon, Todd Franklin>, <Bob Simon, Marianne Janack>, <Bob Simon, Russell Marcus>, <Rick Werner, Katheryn Doran>, <Rick Werner, Todd Franklin>, <Rick Werner, Marianne Janack>, <Rick Werner, Russell Marcus>, <Katheryn Doran, Todd Franklin>, <Katheryn Doran, Marianne Janack>, <Katheryn Doran, Russell Marcus>, <Todd Franklin, Marianne Janack>, <Todd Franklin, Russell Marcus>, <Marianne Janack, Russell Marcus>, <Bob Simon, Martin Shuster>, <Rick Werner, Martin Shuster>, <Katheryn Doran, Martin Shuster>, <Todd Franklin, Martin Shuster>, <Marianne Janack, Martin Shuster>, <Russell Marcus, Martin Shuster>\}
- 1 and 2 are true.
- 3 is false while 4 is true.
- 5 is false but 6 and 7 are true.

Some Translations

1. John loves Mary (Lxy: x loves y)

- Ljm

2. Tokyo isn't smaller than New York. (Sxy: x is smaller than y)

- ~Stn

3. Marco was introduced to Paco by Erika. (Ixyz: x introduced y to z)

- Ipme

4. America took California from Mexico. (Txyz: x was taken by y from z)

- Tcam

Our Original Argument

Consider:

1. Bob is taller than Charles.
2. Andrew is taller than Bob.
3. For any x, y and z , if x is taller than y and y is taller than z , then x is taller than z .
So, Andrew is taller than Charles.
4. Tbc
5. Tab
6. ???
/ Tac

Quantifiers and Relational Predicates

$B x y: x$ is bigger than y

- Joe is bigger than some thing.
($\exists \mathrm{x}$) Bjx
- Something is bigger than Joe.
$(\exists x)$ Bxj
- Joe is bigger than everything.
$(\forall \mathrm{x}) \mathrm{Bjx}$
- Everything is bigger than Joe.
$(\forall x) B x j$

Overlapping Quantifiers
 Lxy: x loves y

- Everything loves something. $(\forall x)(\exists y) L x y$
- Something loves everything.
$(\exists x)(\forall y) L x y$
- $(\forall x)(\exists y) L y x$

Everything is loved by something.

- $(\exists \mathrm{x})(\forall \mathrm{y}) \mathrm{Lyx}$

Something is loved by everything.

Our Original Argument

Finally Translated

Consider:

1. Bob is taller than Charles.
2. Andrew is taller than Bob.
3. For any x, y and z , if x is taller than y and y is taller than
z, then x is taller than z .
So, Andrew is taller than Charles.
4. Tbc
5. Tab
6. $(\forall x)(\forall y)(\forall z)[(T x y \cdot T y z) \supset T x z] \quad / T a c$

More Examples

Something teaches Plato. (Txy: x teaches y)

- ($\exists x)$ Txp

Someone teaches Plato. ($\mathrm{Px}: \mathrm{x}$ is a person)

- $(\exists x)(P x \cdot T x p)$

Plato teaches everyone.

- $(\forall x)(P x>T p x)$

Everyone teaches something.

- $(\forall x)[P x \supset(\exists y) T x y]$

Some people teach themselves.

- ($\exists x)(P x \cdot T x x)$

There are teachers.

- $(\exists x)(\exists y)$ Txy

There are students.

- ($\exists \mathrm{x})(\exists \mathrm{y})$ Tyx

Skilled teachers are interesting.

- $(\forall x)[(\exists y) T x y \supset(S x \supset I x)]$

Skilled teachers are better than unskilled teachers.

- $(\forall x)\{[(\exists y) T x y \cdot S x] \supset\{(\forall z)[(\exists w) T z w \cdot \sim S z] \supset B x z\}\}$

Wide and Narrow Scope

- Wide: $\quad(\exists x)(\exists y)[(P x \cdot P y) \cdot L x y]$
- Narrow: $(\exists x)[P x \cdot(\exists y)(P y \cdot L x y)]$
- Give your quantifiers as narrow a scope as possible.
- Not equivalent:
- ($\forall \mathrm{x})[\mathrm{Px} \supset(\exists y)(\mathrm{Py} \cdot \mathrm{Qxy})]$
- ‘all people love someone’
- $(\exists y)(\forall x)[P x \supset(P y \cdot Q x y)]$
- 'there is someone everyone loves'

