Philosophy 240 Symbolic Logic

Russell Marcus Hamilton College Fall 2011

Class 22 - Translation into Predicate Logic I (§3.1)

Propositional Logic and Predicate Logic

- In <u>Propositional Logic</u>, we have the following elements:
 - Capital English letters for simple statements
 - Five connectives
 - Punctuation (brackets)
- In <u>Predicate Logic</u>, we have the following elements:
 - Complex statements
 - singular terms
 - predicates
 - Quantifiers
 - The same five connectives
 - The same punctuation

Singular Terms and Predicates

- We represent objects using lower case letters.
 - 'a, b, c,...u' stand for specific objects, and are called constants.
 - ► 'v, w, x, y, z' are used as variables.
- We represent properties of objects using capital letters, called predicates.
 - Pa: means object a has property P, and can be read "P of a"
 - Pe: Emily is a philosopher
 - He: Emily is happy
 - 1. Alice is clever.

Са

2. Bobby works hard.

Wb

- 3. Chuck plays tennis regularly. Pc
- 4. Dan will see Erika on Tuesday at noon in the gym.

Sd

Two Kinds of Quantifiers

- Existential quantifiers: $(\exists v)$, $(\exists w)$, $(\exists x)$, $(\exists y)$, $(\exists z)$
 - There exists a thing, such that
 - For some thing
 - There is a thing
 - For at least one thing
 - Something
- Universal quantifiers: (∀v), (∀w),(∀x), (∀y), (∀z)
 - ► For all x
 - Everything
- The amibguity of 'anything'
 - In 'If anything is missing, you'll be sorry', we use an existential quantifier.
 - ► In 'Anything goes', we use a universal quantifier.

Translations Using Quantifiers

One predicate

- Something is made in the USA.
 - ► (∃x)Ux
- Everything is made in the USA.
 - ► (∀x)Ux
- Nothing is made in the USA.
 - ► (∀x)~Ux
 - ► or
 - ► ~(∃x)Ux

Translations Using Quantifiers

More than one predicate

- All persons are mortal.
 - $(\forall x)(Px \supset Mx)$
- Some actors are vain.
 - ► (∃x)(Ax · Vx)
- Some gods aren't mortal.
 - ► (∃x)(Gx · ~Mx)
- No frogs are people.
 - $(\forall x)(Fx \supset \ \ Px)or \ (\exists x)(Fx \cdot Px)$

Propositions With More Than Two Predicates

- More than one predicate in the subject:
 - Some wooden desks are uncomfortable.
 (∃x)[(Wx · Dx) · ~Cx]
 - All wooden desks are uncomfortable
 (∀x)[(Wx · Dx) ⊃ ~Cx]
- More than one predicate in the attribute:
 - Many applicants are untrained or inexperienced (∃x)[Ax · (~Tx ∨ ~Ex)]
 - All applicants are untrained or inexperienced (∀x)[Ax ⊃ (~Tx ∨ ~Ex)]

Only

With Two Predicates

- Only men have been presidents.
 - If something has been a president, it must have been a man.
 - All presidents have been men.
- 'Only Ps are Qs' is logically equivalent to 'all Qs are Ps'.
 - All men have been presidents.

 $(\forall x)(Mx \supset Px)$

Only men have been presidents.

 $(\forall x)(Px \supset Mx)$

Only

More than two predicates

- All intelligent students understand Kant.
 - $(\forall x)[(Ix \bullet Sx) \supset Ux]$
- Only intelligent students understand Kant
 - $(\forall x)[Ux \supset (Ix \bullet Sx)]$
 - Probably not
 - ► $(\forall x)[(Ux \bullet Sx) \supset Ix)]$
 - Better
- So: 'Only PQs are R' is ordinarily the same as 'All RQs are P'
- But...
- Only famous men have been presidents.
 - $(\forall x)[(Px \supset (Mx \bullet Fx)]]$
 - $(\forall x)[(\mathsf{Px} \bullet \mathsf{Mx}) \supset \mathsf{Fx}]$
 - Either could be used.
 - The former is more likely.
- Only probability-challenged ticket-holders win the lottery.
 - $(\forall x)[Wx \supset (Px \bullet Tx)]$

More than One Quantifier

- If anything is damaged, then everyone in the house complains.
 - ► $(\exists x)Dx \supset (\forall x)[(Ix \cdot Px) \supset Cx]$
- Either all the gears are broken, or a cylinder is missing.
 - $(\forall x)(Gx \supset Bx) \lor (\exists x)(Cx \cdot Mx)$
- Some philosophers are realists, while other philosophers are fictionalists.
 - $(\exists x)(\mathsf{Px} \bullet \mathsf{Rx}) \bullet (\exists x)(\mathsf{Px} \bullet \mathsf{Fx})$
- It's not the case that all conventionalists are logical empiricists if and only if some holists are conventionalists.
 - ~ $[(\forall x)(Cx \supset Lx) \equiv (\forall x)(Hx \supset Cx)]$