Philosophy 240 Symbolic Logic

Russell Marcus Hamilton College Fall 2010

Class 7: Syntax and Semantics The Chinese Room

Marcus, Symbolic Logic, Fall 2010, Slide 1

Three Theories of Mind

1. Dualism

- Minds are non-physical substances (souls).
- Main problem: interaction
- 2. Behaviorism
- Mental states are behaviors, or dispositions to behave.
- Main problem: mental states with no attached behaviors
- 3. Mind-Brain Identity Theory
- Minds are brains.
- Main problem: chauvinism

Functionalism

The Dominant Theory of Mind

- The mind is the software of the brain.
- Anything that behaves like something with a mind, and that has internal processes that map onto our internal processes, has a mind.
- Functionalists are usually materialists, but need not be.
- Functionalism accommodates behaviorist's missing internal states.

Computer Scientists are Functionalists

Saying Deep Blue doesn't really think about chess is like saying an airplane doesn't really fly because it doesn't flap its wings -Drew McDermott, Computer Science, Yale University.

Zombies A Problem for Functionalism

Marcus, Symbolic Logic, Fall 2010, Slide 5

McCarthy's Thermostat

has three beliefs

- that it is too cold
 that it is too hot
 that it is just right
- 3. that it is just right

Strong Al

- Weak AI thesis: machines built to perform tasks that humans perform can give us some insight into the nature of our thought.
 - mostly uncontroversial
- Strong AI claim: computers (can) actually have minds.
 - Cheap calculators can now perform very complicated tasks, and quickly.
 - Machines are already able to do many tasks that once were inconceivable:
 - Proving mathematical theorems that require more computation than humans can perform.
 - Chess
- Better machines may approach or overtake human skill in other areas.
- All we need in order to have a mind is to simulate the behavior, along with some plausible internal causes of that behavior.
- A Plausible Functionalism

Syntax and Semantics

- Computers and their software work according to purely formal, syntactic manipulation.
- The syntax of a program or system of formal logic concerns its form, or shape.
- The semantics of a system or program concerns the meanings, or interpretations, of its terms.

Object Languages and Meta-Languages

- The object language is the language that we are studying.
- The meta-language is the language we use to study the object language.
- Rules for wffs
 - written in the meta-language
 - about how to construct an object language
- Rules for constructing truth tables
 - written in a meta-language
 - That's why we use op and op, which are not symbols of our object language.
 - Truth tables themselves are written in the meta-language.
- The syntax tells how the formulas are constructed.
- The semantics tells how to interpret the formulas.
- Inference rules will be specified syntactically, too.

Separating Syntax from Semantics

- We can treat our formal languages as completely uninterpreted, or topic-neutral.
- We can play with the symbols, according to the rules we specify, as if they were meaningless toys.
- We can interpret our languages variously, comparing interpretations in order to see the properties of the language itself clearly.
- Frege wanted a syntactic criterion for logical consequence.
 - To ensure that all deductions are secure
 - To ensure that we do not implicitly smuggle into our results unjustifiable interpretations
 - Non-Euclidean geometries
 - Infinitesimals

Frege on Syntax and Semantics

from Begriffsschrift (Concept-Writing)

So that nothing intuitive could intrude [into our concept of logical consequence] unnoticed, everything had to depend on the chain of inference being free of gaps. In striving to fulfil this requirement in the strictest way, I found an obstacle in the inadequacy of language: however cumbersome the expressions that arose, the more complicated the relations became, the less the precision was attained that my purpose demanded...The present *Begriffsschrift*...is intended to serve primarily to test in the most reliable way the validity of a chain of inference and to reveal every presupposition that tends to slip in unnoticed, so that its origin can be investigated.

How Computers Work

- Computers, in their most basic form, contain:
 - a complete list of possible states of the system (state table)
 - lists of possible inputs
 - lists of outputs computable from inputs and state table
 - all lists are specifiable syntactically
- Computer programs are algorithms, like cooking recipes.
 - An algorithm is just a list of instructions, a procedure.
 - Recipes generally just give simple, linear instructions.
 - An algorithm can also do different things depending on the state of the system executing the algorithm.
- Some algorithms contain conditional clauses
 - if the machine is in such-and-such a state, and receives such-and-so input, then it does this-and-that and moves into this other state.
- Computers merely follow algorithms.
- Every step of the algorithm can be specified syntactically, by its inscription.

Appearance and Reality

- When we play a video game, we see cars and people, and hear music.
- We interact with the machine on a semantic level.
- But, the computer is just processing syntax, crunching 0s and 1s.
- If strong AI and functionalism are right, then human behavior must be describable algorithmically as well, and representable in purely syntactic form, using a formal language like the one we use in logic.
- Despite appearances, we are just information processors (according to strong AI).

The Chinese Room

p 671

Marcus, Symbolic Logic, Fall 2010, Slide 14

Searle's Claim

Any syntactic processor, completely describable in terms of formal processing, is *necessarily* not a mind.

Searle's Argument

1. Brains cause minds.

2. Syntax is not sufficient for semantics.

3. Computer programs are entirely defined by their formal, syntactic structure.

4. Minds have semantic contents.

C1: Computer programs are not sufficient for minds (i.e. computers can not think).

C2: The way that brains cause minds can not be by running a computer program.

C3-4: Anything that causes minds, including any artefact that we might make, must have causal powers at least equivalent to those of the brain.