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P We can regiment into F.
1. (x)(Ox e -Ex)
2. Oo
3. (�x)[Sxo C (y)(Syo e y=x) C x=o]
/ -(x)[(Sx C Nx) e Ex]

P But, there is a more efficient, and more fecund, option.

P Take ‘the square of x’ as a function.

A Motivating Argument for Functions
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1. No odd numbers are even.
2. One is odd.
3. One is the square of one.
So, not all square numbers are even. 



P A small extension of F introduces functors to represent functions.

P A functions takes one or more arguments and returns a single output, its range.

P Mathematics
< linear functions
< exponential functions
< periodic functions
< quadratic functions
< trigonometric functions.

P Science
< force is a function of mass and acceleration
< momentum is a function of mass and velocity
< genetic code

P Logic
< semantics for PL

P Natural language
< the father of
< the teacher of

P One-place functions take one argument, two-place functions take two arguments, n-place
functions take n arguments.

Functions

Marcus, Symbolic Logic, Fall 2010, Slide 4



P the father of:  f(x)

P the successor of: g(x)

P the sum of: f(x,y)

P the teacher of: g(x1...xn)

P These are not functions:
< the parents of a
< the classes that a and b share
< the square root of x

Some Functions and Their Logical
Representations

Marcus, Symbolic Logic, Fall 2010, Slide 5



P Capital letters A...Z, used as predicates

P Lower case letters
< a, b, c, d, e, i, j, k...u are used as constants.
< f, g, and h are used as functors.
< v, w, x, y, z are used as variables.

P Five connectives: -, C, w, e /

P Quantifier: �

P Punctuation: (), [], {}

Vocabulary of FF
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P An n-tuple of terms is an ordered series of terms.
< Terms: constants, variables, or functor terms
< ‘single’, ‘double’, ‘triple’, ‘quadruple’, etc. are n-tuples.
< Functions can take any number of arguments.

P Often: <a, b, c>

P We will represent n-tuples merely by listing the terms separated
by commas.

P Some n-tuples
< a,b
< a,a,f(a)
< x,y,b,d,f(x),f(a,b,f(x))
< a

N-Tuples
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P If á is an n-tuple of terms, then the following are all functor terms:
< f(á)
< g(á)
< h(á)

P Note that an n-tuple of terms can include functor terms.

P ‘Functor term’ is defined recursively, which allows for composition of functions.

P For example, one can refer to the grandfather of x, using just the functions for
father, e.g. ‘f(x)’, and mother, e.g. ‘g(x)’:
< f(f(x))
< f(g(x))

P Composition of mathematical functions
< Take ‘h(x)’ to represent the square of x
< ‘h(h(h(x)))’ represents the eighth power of x, i.e. ((x2)2)2.

Functor Terms
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1. An n-place predicate followed by n terms (constants,
variables, or functor terms) is a wff.

2. If á is a wff, so are 
< (�x)á, (�y)á, (�z)á, (�w)á, (�v)á
< (x)á, (y)á, (z)á, (w)á, (v)á

3. If á is a wff, so is -á.

4. If á and â are wffs, then so are:
< (á A â)
< (á w â)
< (á e â)
< (á / â)

5. These are the only ways to make wffs.

The scope and binding rules are the same for FF as they
were for M and F.

Formation Rules for Wffs of FF
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P The semantics for FF are basically the same as for F.

P We insert an interpretation of function symbols.
< Step 1. Specify a set to serve as a domain of interpretation, or domain of quantification.
< Step 2. Assign a member of the domain to each constant.
< Step 3. Assign a function with arguments and ranges in the domain to each function

symbol.
< Step 4. Assign some set of objects in the domain to each one-place predicate; assign sets

of ordered n-tuples to each relational predicate.
< Step 5. Use the customary truth tables for the interpretation of the connectives.

P The function assigned in Step 3 will be a function in the meta-language used to
interpret the function in the object language.

FF: Semantics
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P Translation key:
< Lxy: x loves y
< f(x):the father of x
< g(x):the mother of x

P Olaf loves his mother
< Log(o)

P Olaf loves his grandmothers
< Log(g(o)) C Log(f(o))

P No one is his/her own mother
< (x)-x=g(x)

Translations Into FF
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P Many simple concepts in arithmetic are functions: addition, multiplication, least
common multiple.

P The most fundamental function in mathematics is the successor function.

P All other mathematical functions can be defined in terms of successor and other
basic concepts.

P All of arithmetic can be developed from five basic axioms, called the Peano
axioms.

P Peano’s Axioms for Arithmetic
P1: 0 is a number
P2: The successor (x') of every number (x) is a number
P3: 0 is not the successor of any number
P4: If x'=y' then x=y
P5: If P is a property that may (or may not) hold for any number, and if

i. 0 has P; and
ii. for any x, if x has P then x' has P;
then all numbers have P.

Functions and Mathematics

Marcus, Symbolic Logic, Fall 2010, Slide 12



P1. Na

P2. (x)(Nx e Nf(x))

P3. -(�x)(Nx C f(x)=a)

P4. (x)(y)[(Nx C Ny) e (f(x)=f(y) e x=y)]

P5. {Pa C (x)[(Nx C Px) e Pf(x)]} e (x)(Nx e Px)

Peano’s Axioms, Regimented

Key: a: zero; Nx: x is a number; f(x): the successor of x

Marcus, Symbolic Logic, Fall 2010, Slide 13



< Key:
< o: one
< f(x): the successor of x
< f(x, y): the product of x and y
< Ex: x is even
< Ox: x is odd
< Px: x is prime

1. One is not the successor of any number.
< (x)(Nx e -f(x)=o)

2. If the product of a pair of numbers is odd, then the product of the
successors of those numbers is even.
< (x)(y){(Nx C Ny) e [Of(x, y) e Ef(f(x), f(y))]}

3. There are no prime numbers such that their product is prime.
< -(�x)(�y)[Nx C Px C Ny C Py C Pf(x, y)]

Some Number-Theoretic Statements
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P No new rules

P Functions act like simple terms.

P A functor can be either a constant or a variable.
< It depends on what the arguments of the function are.

P We can UI to a variable, or a function of a variable, or any complex function all of
whose arguments are variables.

P For UG, if the arguments of a function are all variables, then we are free to use UG
over the variables in that function.
< If the arguments contain any constants, then we can not use UG.

P For EI, we must continue always to instantiate to a new term.
< A functor is not a new term if any of its arguments, or any of the arguments of any of its

sub-functors, have already appeared in the derivation.

Derivations Using Functions
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1. (x)(Ox e -Ex)

2. Oo

3. o=f(o)

/ -(x)Ef(x)

The Motivating Argument
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1. No odd numbers are even.
2. One is odd.
3. One is the square of one.
So, not all square numbers are even.



1. (x)[Ax e Bxf(x)]

2. (�x)Af(x)/ (�x)Bf(x)f(f(x))

---

1. -(�x)Cx/ (x)-Cf(x, g(x))

---

1. (x){(Nx C Gxt) e (�y)(�z)[Py C Pz C x=f(y, z)]}

2. Nb C Gbt / (�x)(�y)(�z)[Nx C Py C Pz C x=f(y, z)]

More Derivations

Marcus, Symbolic Logic, Fall 2010, Slide 17


	1: Philosophy 240: Symbolic Logic 
	2: Final Exam 
	3: A Motivating Argument for Functions 
	4: Functions 
	5: Some Functions and Their Logical Representations 
	6: Vocabulary of FF 
	7: N-Tuples 
	8: Functor Terms 
	9: Formation Rules for Wffs of FF 
	10: FF: Semantics 
	11: Translations Into FF 
	12: Functions and Mathematics 
	13: Peano’s Axioms, Regimented 
	14: Some Number-Theoretic Statements 
	15: Derivations Using Functions 
	16: The Motivating Argument 
	17: More Derivations 

