
Philosophy 240:
Symbolic Logic

Russell Marcus
Hamilton College

Fall 2010

Class 41: December 8
Functions

Marcus, Symbolic Logic, Fall 2010, Slide 1

Thursday

December 16

9am-noon

Final Exam

Marcus, Symbolic Logic, Fall 2010, Slide 2

P We can regiment into F.
1. (x)(Ox e -Ex)
2. Oo
3. (�x)[Sxo C (y)(Syo e y=x) C x=o]
/ -(x)[(Sx C Nx) e Ex]

P But, there is a more efficient, and more fecund, option.

P Take ‘the square of x’ as a function.

A Motivating Argument for Functions

Marcus, Symbolic Logic, Fall 2010, Slide 3

1. No odd numbers are even.
2. One is odd.
3. One is the square of one.
So, not all square numbers are even.

P A small extension of F introduces functors to represent functions.

P A functions takes one or more arguments and returns a single output, its range.

P Mathematics
< linear functions
< exponential functions
< periodic functions
< quadratic functions
< trigonometric functions.

P Science
< force is a function of mass and acceleration
< momentum is a function of mass and velocity
< genetic code

P Logic
< semantics for PL

P Natural language
< the father of
< the teacher of

P One-place functions take one argument, two-place functions take two arguments, n-place
functions take n arguments.

Functions

Marcus, Symbolic Logic, Fall 2010, Slide 4

P the father of: f(x)

P the successor of: g(x)

P the sum of: f(x,y)

P the teacher of: g(x1...xn)

P These are not functions:
< the parents of a
< the classes that a and b share
< the square root of x

Some Functions and Their Logical
Representations

Marcus, Symbolic Logic, Fall 2010, Slide 5

P Capital letters A...Z, used as predicates

P Lower case letters
< a, b, c, d, e, i, j, k...u are used as constants.
< f, g, and h are used as functors.
< v, w, x, y, z are used as variables.

P Five connectives: -, C, w, e /

P Quantifier: �

P Punctuation: (), [], {}

Vocabulary of FF

Marcus, Symbolic Logic, Fall 2010, Slide 6

P An n-tuple of terms is an ordered series of terms.
< Terms: constants, variables, or functor terms
< ‘single’, ‘double’, ‘triple’, ‘quadruple’, etc. are n-tuples.
< Functions can take any number of arguments.

P Often: <a, b, c>

P We will represent n-tuples merely by listing the terms separated
by commas.

P Some n-tuples
< a,b
< a,a,f(a)
< x,y,b,d,f(x),f(a,b,f(x))
< a

N-Tuples

Marcus, Symbolic Logic, Fall 2010, Slide 7

P If á is an n-tuple of terms, then the following are all functor terms:
< f(á)
< g(á)
< h(á)

P Note that an n-tuple of terms can include functor terms.

P ‘Functor term’ is defined recursively, which allows for composition of functions.

P For example, one can refer to the grandfather of x, using just the functions for
father, e.g. ‘f(x)’, and mother, e.g. ‘g(x)’:
< f(f(x))
< f(g(x))

P Composition of mathematical functions
< Take ‘h(x)’ to represent the square of x
< ‘h(h(h(x)))’ represents the eighth power of x, i.e. ((x2)2)2.

Functor Terms

Marcus, Symbolic Logic, Fall 2010, Slide 8

1. An n-place predicate followed by n terms (constants,
variables, or functor terms) is a wff.

2. If á is a wff, so are
< (�x)á, (�y)á, (�z)á, (�w)á, (�v)á
< (x)á, (y)á, (z)á, (w)á, (v)á

3. If á is a wff, so is -á.

4. If á and â are wffs, then so are:
< (á A â)
< (á w â)
< (á e â)
< (á / â)

5. These are the only ways to make wffs.

The scope and binding rules are the same for FF as they
were for M and F.

Formation Rules for Wffs of FF

Marcus, Symbolic Logic, Fall 2010, Slide 9

P The semantics for FF are basically the same as for F.

P We insert an interpretation of function symbols.
< Step 1. Specify a set to serve as a domain of interpretation, or domain of quantification.
< Step 2. Assign a member of the domain to each constant.
< Step 3. Assign a function with arguments and ranges in the domain to each function

symbol.
< Step 4. Assign some set of objects in the domain to each one-place predicate; assign sets

of ordered n-tuples to each relational predicate.
< Step 5. Use the customary truth tables for the interpretation of the connectives.

P The function assigned in Step 3 will be a function in the meta-language used to
interpret the function in the object language.

FF: Semantics

Marcus, Symbolic Logic, Fall 2010, Slide 10

P Translation key:
< Lxy: x loves y
< f(x):the father of x
< g(x):the mother of x

P Olaf loves his mother
< Log(o)

P Olaf loves his grandmothers
< Log(g(o)) C Log(f(o))

P No one is his/her own mother
< (x)-x=g(x)

Translations Into FF

Marcus, Symbolic Logic, Fall 2010, Slide 11

P Many simple concepts in arithmetic are functions: addition, multiplication, least
common multiple.

P The most fundamental function in mathematics is the successor function.

P All other mathematical functions can be defined in terms of successor and other
basic concepts.

P All of arithmetic can be developed from five basic axioms, called the Peano
axioms.

P Peano’s Axioms for Arithmetic
P1: 0 is a number
P2: The successor (x') of every number (x) is a number
P3: 0 is not the successor of any number
P4: If x'=y' then x=y
P5: If P is a property that may (or may not) hold for any number, and if

i. 0 has P; and
ii. for any x, if x has P then x' has P;
then all numbers have P.

Functions and Mathematics

Marcus, Symbolic Logic, Fall 2010, Slide 12

P1. Na

P2. (x)(Nx e Nf(x))

P3. -(�x)(Nx C f(x)=a)

P4. (x)(y)[(Nx C Ny) e (f(x)=f(y) e x=y)]

P5. {Pa C (x)[(Nx C Px) e Pf(x)]} e (x)(Nx e Px)

Peano’s Axioms, Regimented

Key: a: zero; Nx: x is a number; f(x): the successor of x

Marcus, Symbolic Logic, Fall 2010, Slide 13

< Key:
< o: one
< f(x): the successor of x
< f(x, y): the product of x and y
< Ex: x is even
< Ox: x is odd
< Px: x is prime

1. One is not the successor of any number.
< (x)(Nx e -f(x)=o)

2. If the product of a pair of numbers is odd, then the product of the
successors of those numbers is even.
< (x)(y){(Nx C Ny) e [Of(x, y) e Ef(f(x), f(y))]}

3. There are no prime numbers such that their product is prime.
< -(�x)(�y)[Nx C Px C Ny C Py C Pf(x, y)]

Some Number-Theoretic Statements

Marcus, Symbolic Logic, Fall 2010, Slide 14

P No new rules

P Functions act like simple terms.

P A functor can be either a constant or a variable.
< It depends on what the arguments of the function are.

P We can UI to a variable, or a function of a variable, or any complex function all of
whose arguments are variables.

P For UG, if the arguments of a function are all variables, then we are free to use UG
over the variables in that function.
< If the arguments contain any constants, then we can not use UG.

P For EI, we must continue always to instantiate to a new term.
< A functor is not a new term if any of its arguments, or any of the arguments of any of its

sub-functors, have already appeared in the derivation.

Derivations Using Functions

Marcus, Symbolic Logic, Fall 2010, Slide 15

1. (x)(Ox e -Ex)

2. Oo

3. o=f(o)

/ -(x)Ef(x)

The Motivating Argument

Marcus, Symbolic Logic, Fall 2010, Slide 16

1. No odd numbers are even.
2. One is odd.
3. One is the square of one.
So, not all square numbers are even.

1. (x)[Ax e Bxf(x)]

2. (�x)Af(x)/ (�x)Bf(x)f(f(x))

1. -(�x)Cx/ (x)-Cf(x, g(x))

1. (x){(Nx C Gxt) e (�y)(�z)[Py C Pz C x=f(y, z)]}

2. Nb C Gbt / (�x)(�y)(�z)[Nx C Py C Pz C x=f(y, z)]

More Derivations

Marcus, Symbolic Logic, Fall 2010, Slide 17

	1: Philosophy 240: Symbolic Logic
	2: Final Exam
	3: A Motivating Argument for Functions
	4: Functions
	5: Some Functions and Their Logical Representations
	6: Vocabulary of FF
	7: N-Tuples
	8: Functor Terms
	9: Formation Rules for Wffs of FF
	10: FF: Semantics
	11: Translations Into FF
	12: Functions and Mathematics
	13: Peano’s Axioms, Regimented
	14: Some Number-Theoretic Statements
	15: Derivations Using Functions
	16: The Motivating Argument
	17: More Derivations

