Class 26 - October 27
More Derivations in Predicate Logic and Changing Quantifiers (§8.2-§8.3)

I. More complex derivations

You may not instantiate a line on which the quantifier is not the main operator.
In this example, line 2 can not be instantiated.

1. (x) (Dx $\cdot \mathrm{Ex})$
2. $(\mathrm{x}) \mathrm{Dx} \supset \mathrm{Fa} \quad /(\exists \mathrm{x}) \mathrm{Fx}$
3. $\mathrm{Dx} \cdot \mathrm{Ex} \quad 1, \mathrm{UI}$
4. Dx 3, Simp
5. (x)Dx 4, UG
6. Fa 2, 5, MP
7. $(\exists x)$ Fx 6, EG

QED
Similarly, we we can not take off either quantifier in line 1 of the following derivation.

1. $(x)(J x \vee K x) \supset(\exists y) L y$
2. (x)($\mathrm{Jx} \vee \mathrm{Lx})$
3. $(\mathrm{x})(\sim \mathrm{Lx} \vee \mathrm{Kx}) \quad /(\exists \mathrm{x}) \mathrm{Lx}$
4. $\mathrm{Jx} \vee \mathrm{Lx} \quad$ 2, UI
5. $\sim \mathrm{Jx} \supset \mathrm{Lx} \quad 4, \mathrm{DN}, \mathrm{Impl}$
6. $\sim \operatorname{Lx} \vee \mathrm{Kx} \quad$ 3, UI
7. $\mathrm{Lx} \supset \mathrm{Kx} \quad$ 6, Impl
8. $\sim \mathrm{Jx} \supset \mathrm{Kx} \quad 5,7, \mathrm{HS}$
9. Jx $\vee \mathrm{Kx} \quad$ 8, Impl, DN
10. (x)(Jx $\vee \mathrm{Kx}) \quad 9$, UG
11. $(\exists x) \mathrm{Lx} \quad 1,10, \mathrm{MP}$

QED
You may instantiate the same quantifier twice.
When that quantifier is universal, there are no restrictions.

1. $(\mathrm{x})(\mathrm{Mx} \supset \mathrm{Nx})$
2. $(\mathrm{x})(\mathrm{Nx} \supset \mathrm{Ox})$
3. $\mathrm{Ma} \cdot \mathrm{Mb} \quad / \mathrm{Na} \cdot \mathrm{Ob}$
4. $\mathrm{Ma} \supset \mathrm{Na} \quad 1, \mathrm{UI}$
5. Ma

3, Simp
6. Na $4,5, \mathrm{MP}$
7. $\mathrm{Mb} \supset \mathrm{Nb} \quad$ 1, UI
8. Mb 3, Com, Simp
9. $\mathrm{Nb} \quad 7,8, \mathrm{MP}$
10. $\mathrm{Nb} \supset \mathrm{Ob} \quad$ 2, UI
11. Ob 10, 9, MP
12. $\mathrm{Na} \cdot \mathrm{Ob} \quad 6,11, \mathrm{Conj}$

QED

When the quantifier is existential, the second instantiation must go to a new constant.

```
    1. (\existsx)(Px •Qx)
    2. (x)(Px \supset Rx) / Ra \bulletQb
    3. Pa \bulletQa 1, EI
    4. }\textrm{Pa}\supset\textrm{Ra}\quad\mathrm{ 2,UI
    5. Pa 3, Simp
    6. Ra 4, 5, MP
    7. Pb • Qb 1, EI
    8. Qb 7, Com, Simp
    9. Ra•Qb 6, 8, Conj
QED
```

II. Exercises A. Derive the conclusions of each of the following arguments.

1. 2. $(\mathrm{x})(\mathrm{Mx} \supset \mathrm{Nx})$
1. $\sim \mathrm{Na} \quad / \sim \mathrm{Ma}$
2. 3. $(\mathrm{x})(\mathrm{Ox} \supset \sim \mathrm{Px})$
1. $(\exists \mathrm{x})(\mathrm{Rx} \cdot \mathrm{Px}) \quad /(\exists \mathrm{x})(\mathrm{Rx} \cdot \sim \mathrm{Ox})$
2. 3. $(\exists \mathrm{x}) \mathrm{Sx} \supset(\mathrm{x}) \mathrm{Tx}$
1. $(\exists \mathrm{x}) \mathrm{Ux} \supset(\exists \mathrm{x}) \mathrm{Wx}$
2. $\mathrm{Sb} \cdot \mathrm{Ub} \quad /(\exists \mathrm{x})(\mathrm{Wx} \cdot \mathrm{Tx})$
3. $1 .(\exists \mathrm{x}) \mathrm{Gx} \supset(\mathrm{y})(\sim \mathrm{Hy} \vee \mathrm{Iy})$
4. Gc
5. ~If $/(\exists \mathrm{x}) \sim \mathrm{Hx}$
6. 7. $(\exists \mathrm{x}) \mathrm{Ax} \supset(\mathrm{x})(\mathrm{Bx} \supset \mathrm{Ex})$
1. $(\exists \mathrm{x}) \mathrm{Dx} \supset(\exists \mathrm{x}) \sim \mathrm{Ex}$
2. $(\exists \mathrm{x})(\mathrm{Ax} \cdot \mathrm{Dx}) \quad /(\exists \mathrm{x}) \sim \mathrm{Bx}$
III. Exercises B. Match each sentence in the left column with its equivalent in the right column.
3. Everything is made of atoms.
A. Not everything is made of atoms.
4. Something is made of atoms.
B. It's wrong to say that nothing is made of atoms.
5. Nothing is made of atoms.
C. It's not the case that something is not made of atoms.
6. At least one thing isn't made of atoms.
D. It's false that something is made of atoms.

Solutions: 1C, 2B, 3D, 4A

IV. Changing quantifiers

Look at the predicate logic regimentations of each set of equivalent pairs.

$(x) A x$	is equivalent to	$\sim(\exists x) \sim A x$
$(\exists x) A x$	is equivalent to	$\sim(x) \sim A x$
$(x) \sim A x$	is equivalent to	$\sim(\exists x) A x$
$(\exists x) \sim A x$	is equivalent to	$\sim(x) A x$

The rule of Changing Quantifiers (CQ): Any place where you have an expression of one of the above forms, you may replace it with a statement of its logically equivalent form.

Like rules of replacement, CQ is based on logical equivalence, rather than validity, and thus may be used on part of a line.

Another way to look at these four rules.
There are three spaces around each quantifier:

1. Directly before the quantifier
2. The quantifier itself
3. Directly following the quantifier

CQ says that to change a quantifier, you change each of the three spaces.
Add or remove a negation directly before the quantifier.
Switch quantifiers: existential to universal or vice versa.
Add or remove a negation directly after the quantifier.

V. Some transformations permitted by CQ

'It's not the case that every P is Q ' is equivalent to 'something is P and not Q '.

$$
\begin{array}{ll}
\sim(\mathrm{x})(\mathrm{Px} \supset \mathrm{Qx}) & \\
(\exists \mathrm{x}) \sim(\mathrm{Px} \supset \mathrm{Qx}) & \mathrm{CQ} \\
(\exists \mathrm{x}) \sim(\sim \mathrm{Px} \vee \mathrm{Qx}) & \text { Impl } \\
(\exists \mathrm{x})(\mathrm{Px} \cdot \sim \mathrm{Qx}) & \mathrm{Dm}, \mathrm{DN}
\end{array}
$$

'It's not the case that something is both P and Q ' is equivalent to 'everything that's P is not Q ,' and to 'everything that's Q is not P '.

$\sim(\exists \mathrm{x})(\mathrm{Px} \cdot \mathrm{Qx})$	
$(\mathrm{x}) \sim(\mathrm{Px} \cdot \mathrm{Qx})$	CQ
$(\mathrm{x})(\sim \mathrm{Px} \vee \sim \mathrm{Qx})$	DM
$(\mathrm{x})(\mathrm{Px} \supset \sim \mathrm{Qx})$	Impl
$(\mathrm{x})(\mathrm{Qx} \supset \sim \mathrm{Px})$	Trans, DN

VI. Sample derivations using CQ

1. 2. ($\exists \mathrm{x}) \mathrm{Lx} \supset(\exists \mathrm{y}) \mathrm{My}$
1. (y) $\sim \mathrm{My} \quad / \sim \mathrm{La}$
2. $\sim(\exists y) \mathrm{My} \quad 2, \mathrm{CQ}$
3. $\sim(\exists \mathrm{x}) \mathrm{Lx} \quad 1,3, \mathrm{MT}$
4. (x) $\sim \mathrm{Lx} \quad 4, \mathrm{CQ}$
5. $\sim \mathrm{La} \quad 5, \mathrm{UI}$

Note: You may not use EI to get this conclusion!
QED
2. 1. $(\mathrm{x})[(\mathrm{Ax} \cdot \mathrm{Bx}) \supset \mathrm{Ex}]$
2. $\sim(\mathrm{x})(\mathrm{Ax} \supset \mathrm{Ex}) \quad / \sim(\mathrm{x}) \mathrm{Bx}$
3. $(\exists \mathrm{x}) \sim(\mathrm{Ax} \supset \mathrm{Ex}) \quad 2, \mathrm{CQ}$
4. $(\exists \mathrm{x}) \sim(\sim \mathrm{Ax} \vee \mathrm{Ex}) \quad$ 3, Impl
5. $(\exists \mathrm{x})(\mathrm{Ax} \cdot \sim \mathrm{Ex}) \quad$ 4, DM, DN
6. $\mathrm{Aa} \cdot \sim \mathrm{Ea} \quad 5, \mathrm{EI}$
7. $(\mathrm{Aa} \cdot \mathrm{Ba}) \supset \mathrm{Ea} \quad$, UI
8. $\sim \mathrm{Ea} \quad$ 6, Com, Simp
9. $\sim(\mathrm{Aa} \cdot \mathrm{Ba}) \quad 7,8, \mathrm{MT}$
10. $\sim \mathrm{Aa} \vee \sim \mathrm{Ba} 9, \mathrm{DM}$
11. Aa 6, Simp
12. $\sim \mathrm{Ba} \quad 10,11, \mathrm{DN}, \mathrm{DS}$
13. $(\exists \mathrm{x}) \sim \mathrm{Ba} \quad 12$, EG
14. $\sim(x) B x \quad 13, C Q$

QED
3. 1. (x) $\sim \mathrm{Dx} \supset(\mathrm{x}) \mathrm{Ex}$
2. $(\exists \mathrm{x}) \sim \mathrm{Ex} \quad /(\exists \mathrm{x}) \mathrm{Dx}$
3. $\sim(\mathrm{x}) \mathrm{Ex} \quad 2, \mathrm{CQ}$
4. $\sim(\mathrm{x}) \sim \mathrm{Dx} \quad 1,3, \mathrm{MT}$
5. $(\exists x) \mathrm{Dx} \quad 4, \mathrm{CQ}$

QED Note: No instantiation!

Exercises B. Derive the conclusions of each of the following arguments.

1. 2. $\sim(\exists \mathrm{x}) \mathrm{Hx}$
1. (x$) \sim \mathrm{Hx} \supset(\mathrm{z}) \mathrm{Iz} \quad / \mathrm{Ia}$
2. 3. $(\exists \mathrm{x})(\mathrm{Hx} \cdot \mathrm{Gx}) \supset(\mathrm{x}) \mathrm{Ix}$
1. $\sim \mathrm{Ia} \quad /(\mathrm{x})(\mathrm{Hx} \supset \sim \mathrm{Gx})$
2. 3. $(\exists \mathrm{x})(\mathrm{Ax} \vee \mathrm{Bx}) \supset(\mathrm{x}) \mathrm{Dx}$
1. $(\exists \mathrm{x}) \sim \mathrm{Dx} \quad / \sim(\exists \mathrm{x}) \mathrm{Ax}$
2.
3. $(\mathrm{x}) \sim \mathrm{Fx} \supset(\mathrm{x}) \sim \mathrm{Gx} \quad /(\exists \mathrm{x}) \mathrm{Gx} \supset(\exists \mathrm{x}) \mathrm{Fx}$

Philosophy 240: Symbolic Logic, Prof. Marcus; Derivations in Predicate Logic II and Changing Quantifiers, page 5
5. 1. $(\exists \mathrm{x}) \sim \mathrm{Ax} \supset(\mathrm{x}) \sim \mathrm{Bx}$
2. $(\exists \mathrm{x}) \sim \mathrm{Ax} \supset(\exists \mathrm{x}) \mathrm{Bx}$
3. $(\mathrm{x})(\mathrm{Ax} \supset \mathrm{Fx}) \quad /(\mathrm{x}) \mathrm{Fx}$

Solutions may vary.

