Philosophy 240 Symbolic Logic

Russell Marcus Hamilton College Fall 2010

Philosophy Friday #4: Three-Valued Logics October 8, 2010

Beyond Bivalence

- A bivalent semantics is one with just two truth values: \top and \bot .
- One non-bivalent semantics uses three truth values.
 - That name is infelicitous.
 - The difference between bivalent and three-valued interpretations comes not in the objectlanguage logic, but in the meta-language semantics.
- Another uses more than three truth values.
 - Semantics with continuum-many truth values are called fuzzy logics.
- We will first examine eight motivations, M1-M8, for three-valued logics.
- Then, we will look at the truth tables for three three-valued logics.
- Lastly, we will briefly consider some of the problems which arise from considering a third truth-value.

M1. Mathematical sentences with unknown truth values

Goldbach's Conjecture: Every even number greater than four can be written as the sum of two odd primes.

- Goldbach's conjecture has neither been proved true nor proved false.
 - It has been verified up to very large values.
 - There are inductive arguments which make mathematicians confident that Goldbach's conjecture is true.
- Until we have a proof, we could take Goldbach's conjecture, and other unproven mathematical claims, to lack a truth value.

M2. Statements about the future

There will be a party tomorrow night on the Dunham Quad.

- Maybe there will be; maybe there will not be.
- Right now, we do not know.
- The problem of future contingents in Aristotle's *De Interpretatione*
- "In things that are not always actual there is the possibility of being and of not being; here both possibilities are open, both being and not being, and consequently, both coming to be and not coming to be" (*De Interpretatione* §9.19a9-13).
- "It is necessary for there to be or not to be a sea-battle tomorrow; but it is not necessary for a sea-battle to take place tomorrow, nor for one not to take place though it is necessary for one to take place or not to take place" (*De Interpretatione* §9.19a30-33).

Aristotle's View

- 1. Either there will be a sea-battle tomorrow or there will not be a sea-battle tomorrow.
- 2. There will be a sea-battle tomorrow.
- 3. There will not be a sea-battle tomorrow.
- Call 1 true, indeed necessarily true.
- Withhold truth values from 2 and 3.
- If 2 and 3 are not true, and we only have two truth values, then they must be false.
- If 2 and 3 are false, we should be willing to assert their negations.
 - 2'. It is not the case that there will be a sea-battle tomorrow.
 - 3'. It is not the case that there will not be a sea-battle tomorrow.
- 2' and 3' represent our acknowledgment of the contingency of the event.
- But, taken together, 2', and 3' form a contradiction.
 ~P ~~P
- If we have a third truth-value, we can assert both 2 and 3 without contradiction.

M3. Failure of presupposition

- Consider the following two claims:
 - 1. The king of America is bald.
 - 2. The king of America is not bald.
- Neither 1 nor 2 are true propositions.
- But, 2 looks like the negation of 1.
- That is, if we regiment 1 as 'P', we should regiment 2 as '~P'.
- In a bivalent logic, since 'P' is not true, we must call it false, since we have only two truth values.
- Assigning the value 'false' to 'P' means that '~P' should be assigned 'true'.
- Uh-oh.

Other Failures of Presupposition

- The woman on the moon is six feet tall.
- The rational square root of three is less than two.
- When did you stop beating your wife?
- One response to the problem of presupposition failure in propositions is to call such propositions neither true nor false.

M4. Nonsense

Quadruplicity drinks procrastination. Colorless green ideas sleep furiously.

- The syntax of a formal language tells us whether a string of symbols of the language is a wff.
- The correlate of syntax, in natural language, is grammaticality.
- But, not all grammatical sentences are sensible.
- We might consider some grammatical but nonsensical sentences to be truthvalueless.

M5. Programming needs

- Computer circuits are just series of switches which can either be open or closed.
- To interpret the state of the circuit, we take a closed switch to be true and an open switch to be false.
- We might want to leave the values of some variables unassigned, during a process.
- For example, we might want to know how a system works without knowing whether a given switch is open or closed.
- Consider an on-line form which must be completed by a user.
 - We might want to allow a user to leave certain entries in the form blank.
 - Or, we might want to make sure that the program does not crash when those entries are left blank.

M6. Semantic paradoxes

E. This sentence is false.

- If E is true, then it is false, which makes it true, which makes it false...
- E seems to lack a definite truth value, even though it is a perfectly well-formed sentence.
- Since assigning ⊤ or ⊥ to E leads to a contradiction, we might assign it a third truth value.

M7. The Paradoxes of the Material Conditional

•
$$\alpha \supset (\beta \supset \alpha)$$

• $\sim \alpha \supset (\alpha \supset \beta)$

M8. Vagueness

Three-Valued logics

- Bivalent semantics is also called classical semantics
- For a third truth value, we could introduce an unknown or indeterminate value.
- Remember, the idea is that we can ascribe I to sentences which lack a clear truth value.
- There are two options for how to deal with unknown or indeterminate truth values in the new semantics.
 - Any indeterminacy among component propositions creates indeterminacy in the whole.
 - Ascribe truth values to as many formulas as possible, despite the indeterminate truth values.
- We proceed to look at three different three-valued semantics.
 - ▶ 1. The rules for each;
 - ▶ 2. How the new rules affect the logical truths (tautologies); and
 - ► 3. How the new rules affect the allowable inferences (valid arguments).

Bochvar semantics (B)

Any indeterminacy infects the whole.

α	~ \alpha	
Т	\perp	
ι	l	
Т	Т	

α	٠	β
Т	H	Т
т	l	l
Т	\dashv	\dashv
l	ι	Т
l	ι	ι
ι	ι	\dashv
1	\perp	Т
1	ι	l
1	⊥	1

α	V	β
F	Т	F
F	ι	ι
F	Τ	\perp
l	l	Т
l	l	l
l	ι	Ţ
\dashv	Т	Т
\perp	ι	l
Ŧ	T	Ţ

α		β
т	Т	Т
т	ι	ι
Т		Ť
ι	ι	т
ι	l	ι
ι	ι	⊥
T	Т	т
L.	ι	ι
Ţ	т	\perp

Two Classical Tautologies

- These classical tautologies, and all others, do not come out false on any line on Bochvar semantics.
- But, they do not come out as true on every line.
- This result is generally undesirable, since most classical tautologies seem pretty solid.
- The paradoxes of material implication are eliminated.

Р	n	(Q	n	P)
т	Т	F	F	Т
т	ι	ι	ι	Т
т	T	Ч	F	Т
ι	ι	Т	ι	ι
ι	ι	ι	ι	ι
ι	l	\dashv	ι	l
Ţ	F	F	\dashv	Ţ
Ţ	l	l	ι	Ţ
1	Т	T	Т	Т

'P /Q \lor P'

Р	//	Q	\vee	Р
Т		Т	Т	Т
Т		\perp	Т	Т
		Т	Т	\perp
1		Ţ		

- Under classical semantics, this argument is valid.
- Under Bochvar semantics, the second row is a counterexample!

Р	//	Q	\vee	Р
т		Т	Т	Т
т		l	ι	Т
т		\perp	Т	Т
ι		Т	ι	l
ι		l	ι	ι
ι		\perp	ι	ι
T		Т	F	\bot
		l	ι	\bot
T		T	\perp	Т

Options

- Bochvar semantics seems to throw the baby out with the bath water.
- We could re-define some terms.
- We could take 'tautology' as a statement which never comes out as false.
- Validity
 - A valid argument is one for which there is no row in which the premises are true and the conclusion is false.
 - An alternative: a valid argument is one for which there is no row in which the premises are true and the conclusion is not true.
- Redefining 'tautology' and 'validity' in this way weakens the concepts, making them less useful.
- Quine: three-valued logics are "deviant."
- They change the subject.
- Is a row in which the premises are true and the conclusion is indeterminate a counterexample?

Alternatives to Bochvar

- Why should we consider the disjunction of a true statement with one of indeterminate truth value to be undetermined?
- Why should we consider the conditional with an antecedent of indeterminate truth value to itself be of indeterminate truth value, if the consequent is true?
- Whatever other value we can assign the variables with unknown truth value, both sentences will turn out to be true.
- Kleene's semantics leaves fewer rows unknown.

Kleene semantics (K3)

V

Т

Т

Т

Т

ι

ι

Т

ι

 \bot

Q

ι

 \perp

Т

ι

 \bot

Т

ι

 \bot

Т

Р

Т

Т

Т

ι

ι

ι

 \bot

 \bot

 \bot

Q		P
F		Т
ι		Т
\bot		т
Т		ι
ι		l
\bot		l
Т		Ţ
ι		Ţ
		Ţ
	Q ⊤ 1 ⊥ ⊤ 1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥	Q ⊤ ↓ ⊥ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Р	N	Q
Т	т	Т
Т	ι	l
Т		Ť
l	т	Т
l	l	l
l	ι	Ť
T	т	Т
T	т	l
4	Т	4

$\mathbf{P} \supset \mathbf{P}$

Р		Р
F	F	H
ι	ι	ι

Bochvar and Kleene yield the same results

P ⊃ (**Q** ⊃ **P**)

Р	n	(Q	n	P)
H	F	F	F	Т
F	ι	l	ι	H
Т	Т	Ч	Т	Т
l	l	F	l	ι
l	l	l	l	ι
l	l	Ч	ι	ι
Ч	T	F	Н	Т
Ţ	ι	ι	ι	Т
Т	Т	\perp	Т	Т

Р		(Q	\supset	P)
Т	T	Т	F	Т
F	T	ι	F	Т
Т	F	\perp	Т	Т
l	ι	Т	ι	l
l	ι	l	l	l
l	F	Ч	F	l
\perp	F	Т	Ч	\perp
\bot	Т	l	ι	\perp
\perp	Т	\perp	Т	T

Bochvar

Kleene

K3 versus Bochvar

- Many classically logical truths still do not come out as tautologous.
- But more rows are completed in K3.
- Lukasiewicz tried to preserve the tautologies.

Lukasiewicz semantics (L3)

Р	~P
т	Ť
ι	ι
L	Т

Р	•	Q
Η	Т	H
Η	l	l
Т	Т	\perp
ι	ι	Т
ι	l	l
ι	Т	Т
L.	T	Т
L.	T	l
Ţ	\perp	\perp

Р	\vee	Q
Η	Т	Т
Н	Т	ι
Т	Т	Ť
ι	Т	Т
ι	l	l
ι	l	Ť
\perp	т	Т
Ţ	l	l
Ţ	T	T

Р	\cap	Q
Т	т	Т
т	ι	ι
Т		\perp
ι	т	Т
ι	т	l
ι	ι	T
	т	Т
	т	l
	т	T

The only difference between K3 and L3 is in the fifth row of the truth table for the conditional.

Top-Down Arguments

- One might wonder how we could justify calling a conditional with indeterminate truth values in both the antecedent and consequent true.
- What if the antecedent turns out true and the consequent turns out false?
- We motivated Bochvar and Kleene semantics by looking at each cell in the truth table.
- We can motivate L3 by looking at the results.

$\mathbf{P} \supset \mathbf{P}$

Р	Л	Р
Т	Т	Т
l	l	l
	Т	Ţ

Р	Π	Р
Т	F	Т
l	т	ι
1	Т	\perp

Bochvar/ Kleene

L3

$\mathbf{P} \supset (\mathbf{Q} \supset \mathbf{P})$

Р	N	(Q	n	P)
Т	Т	Т	т	т
Т	ι	l	ι	т
Т	Т	⊥	т	т
l	ι	Т	ι	l
ι	ι	ι	ι	ι
ι	ι	⊥	ι	l
Т	Т	Т	Ť	\bot
T	ι	l	l	T
Т	т	1	т	Т

Р	n	(Q	n	P)
т	Т	Т	F	Т
т	Т	ι	F	Т
т	Т	\perp	T	Т
l	ι	Т	ι	l
ι	ι	ι	ι	l
l	т	\perp	F	l
	Т	т	\perp	\perp
	т	ι	ι	\perp
T	Т	T	Т	T

Р	n	(Q		P)
Т	Т	Т	Т	Т
Т	F	ι	F	Т
Т	Т	\perp	T	Т
l	Т	Т	ι	l
l	H	ι	F	l
l	T	\perp	F	l
\perp	Т	т	\perp	\bot
\perp	Т	ι	ι	Ţ
	т	1	т	T

Bochvar

K3

L3

L3 and Tautologies

- In L3, we retain many, though not all, of the classical tautologies!
- 'P ∨ ~P' is still not a tautology.

L3 and Tautologies

- In L3, we retain many, though not all, of the classical tautologies!
- 'P ∨ ~P' is still not a tautology.
- Some folks would like to abandon that law, anyway.
- Indeed, three-valued logics were motivated largely by rejection of that law.
- We need not give up classical logical truths to have a threevalued logic.
- The fewer changes we make to the set of logical truths, the less "deviant" the logic is.
- But, the semantics which allows us to retain these logical truths may not be as pretty as we would like.

Р	\vee	~	Р
т	H	Ч	F
l	ι	l	l
⊥	т	Т	Ţ

Р	//	Q	\vee	Р
Т		Т	Τ	Η
Т		l	ι	Т
Т		\perp	Т	Т
ι		F	ι	l
ι		ι	ι	l
ι		\perp	ι	l
\dashv		H	Т	\perp
\perp		ι	ι	\bot
\perp		\perp	\perp	\perp

P / **Q** ∨ **P**

Р	//	Q	\vee	Р
т		Т	Т	Т
т		ι	ι	Т
т		\perp	Т	Т
ι		Т	ι	l
ι		l	ι	l
ι		⊥	ι	l
		т	Т	\perp
Ť		l	ι	
上			\perp	\perp

Р	//	Q	\vee	Р
Т		Т	Т	Η
т		l	Т	Т
т		⊥	Т	Η
ι		Т	Т	l
ι		l	ι	l
ι		⊥	ι	ι
\perp		F	T	\perp
\perp		l	ι	\perp
T		T	⊥	Т

Bochvar: counterexample in Row 2

Kleene: valid - no counter-example

Lukasiewicz: valid no counter-example

A Third Value, or a Missing Value?

- Assigning a truth-value of 'unknown' involves a conceptual confusion.
- 'Unknown' may not be a third truth value, but merely the lack of a truth value.
- Instead of filling in such cells in the truth table, we should just leave them blank.
- Leaving certain cells of the truth table blank is part of what is called the truth-value gap approach.
- Faced with truth-value gaps, or partial valuations, the logician may consider something called a supervaluation.
- A supervaluation considers the different ways to complete partial valuations, and classifies formulas and arguments according to the possibilities for completion.

Does Three-Valued Logic Solve The Motivating Problems?

- M1. Mathematical sentences with unknown truth values
- M2. Statements about the future
- M3. Failure of presupposition
- M4. Nonsense
- M5. Programming needs
- M6. Semantic paradoxes
- M7. The paradoxes of the material conditional
- M8. Vagueness

Maxim of Minimum Mutilation: Make the least disruptive change in your theory.

Epistemic Confusion

M1 and M2

- We can say that Goldbach's conjecture is either true or false, but we just do not know which.
- We can say that either there will be a party at Dunham tomorrow, or there will not.
- In both cases, we can blame ourselves, rather than the world, for our not knowing the truth value.
- We need not ascribe a deep problem to truth values.
 - Such sentences have truth values.
 - We just do not know them.
- Four-dimensionalism
 - We add a time-stamp to all our claims.
 - We can take a God's-eye point of view for time problems.
 - A statement about the future is true if it ends up true at the time.

Definite Descriptions and the Failures of Presupposition

М3

- 1: The woman on the moon is six feet tall.
- 2: There is a woman on the moon and she is six feet tall.
- Sentence 2 has the form 'P Q'.
- 'P' is false, so 'P Q' is false.
 - 3. The woman on the moon is not six feet tall.
 - 4: There is a woman on the moon and she is not six feet tall.
- In both cases, P is false, so the account of the falsity of both sentences D and E can be the same.
- We lose the motivation for introducing a third truth value.

Denying that a Sentence Expresses a Proposition

M4, nonsense, and M8, vagueness

- We can claim that just as some strings of letters do not form words, and some strings of words do not form sentences, some grammatical sentences do not express propositions.
- This would be the same as to call them meaningless.

The Strengthened Liar M6

- Bochvar hoped that his semantics would solve the problems of the semantic paradoxes.
- The liar sentence can be given a truth value in Bochvar semantics without paradox.
- A: A is untrue
 - Suppose A is true.
 - Thus, A is untrue.
 - But then A turns out to be true (because it says that A is untrue).

Others

- The needs of computer programmers (M5) shouldn't motivate our choice of logic, though there's no reason not to develop logics for those purposes.
- We can live the the paradoxes of the material conditional (M6).
- The problems of the conditional is, as we've seen, not a logical problem.
- Like the problem of vagueness, it is too broad to be solved by adopting a third truth value.
- Another motivation: quantum physics
- That's a good paper topic!

Philosophy 240 Symbolic Logic

Russell Marcus Hamilton College Fall 2010

Philosophy Friday #4: Three-Valued Logics October 8, 2010