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WAYS O F  B R A N C H I N G  Q U A N T I F E R S *  

1. INTRODUCTION 

Branching quantifiers were first introduced by L. Henkin in his 1959 paper 
'Some Remarks on Infinitely Long Formulas'. By 'branching quantifiers' 
Henkin meant a new, non-linearly structured quantifier-prefix whose dis- 
covery was triggered by the problem of interpreting infinitistic formulas 
of a certain form. 1 The branching (or partially-ordered) quantifier-prefix 
is, however, not essentially infinitistic, and the issues it raises have largely 
been discussed in the literature in the context of finitistic logic, as they 
will be here. Our discussion transcends, however, the resources of stan- 
dard lst-order languages and we will consider the new form in the context 
of 1st-order logic with 1- and 2-place 'Mostowskian' generalized quantifi- 
ers. 2 

Eventually we would like to know whether branching quantification is 
a genuine logical form. But today we find ourselves in an interesting 

* This paper is essentially part of my 1989 Columbia University dissertation, "Generalized 
Logic: A Philosophical Perspective with Linguistic Applications'. I wish to thank my dissert- 
ation director, Prof. Charles Parsons, as well as Robert May, Wilfried Sieg, James Higgin- 
botham, Peter Sher, Johan van Benthem and two anonymous referees of Linguistics and 
Philosophy for their helpful contributions. I would also like to thank the audiences at The 
Linguistic Institute (Summer 1986) and M.I.T. (Spring 1988) where I presented earlier 
versions of the paper. The current version was in part prepared while I was a Visiting Scholar 
at M.I.T. I am thankful to the Department of Linguistics and Philosophy for its hospitality. 
1 Henkin (1959), pp. 179-180. 
2 The Generalized Logic I refer to in this paper is a straightforward extension of Mostowski's 
system of 'cardinality' quantifiers in 'On a Generalization of Quantifiers'. This extension 
consists in applying Mostowski's criterion for i-place quantifiers (over 1-place 1st-order 
predicates) to 2-place quantifiers (over a pair of 1-place lst-order predicates). To the best 
of my knowledge, 2-place 'cardinality' quantifiers were first defined in Lindstrom (1966). 
However, a formal claim to the effect that the 2nd-order predicates construed as "cardinality' 
quantifiers are logical already appears in Lindenbaum and Tarski (1935). In my Ph.D. 
thesis I provide philosophical grounds for a view of logical terms which includes these 
quantifiers in its extension. The quantifiers in question satisfy °logicality' (see van-Benthem 
(1986)) but not other properties attributed to natural language quantifiers in the literature. 
Since the purpose of the present paper is to develop a notion of branching quantifcation 
which is applicable not only to linguistics but also to philosophy and 'pure' logic I feel this 
wider notion of quantifier is more appropriate. Below I will briefly describe the intended 
system and explain how to read its formulas for those readers unfamiliar with the subject. 
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O 1990 Kluwer Academic Publishers. Printed in the Netherlands. 



394 GILA SHER 

situation where it is not altogether clear what the branching form is. What  

happens when you take a collection of quantifiers, order them in an 
arbitrary partial ordering, and attach the result to a given formula? What  

truth conditions are to be associated with the resulting expression? Can 
we define these conditions as a function of the quantifiers involved and 

their ordering? These questions have not received definite answers in the 
context of generalized logic. Henkin ' s  work settled the issue of branching 

standard quantifiers but not of branching generalized quantifiers. Al- 
though significant progress in this direction was made by J. Barwise, D. 
Westerstahl,  J. van Benthem and others, the question is largely open. My 

purpose in this paper  is to further clarify the meaning of the branching 
form. Following the historical development ,  I will begin with standard 
quantifiers. 

There  are two natural ways to approach branching quantification: as a 
generalization on the ordering of standard quantifier-prefixes, and as a 

generalization of Skolem Normal  Forms. 

1.1. Genera l i z ing  on the Order ing  o f  S tandard  Quanti f ier-Pref ixes  

In standard modern  logic quantifier-prefixes are linearly ordered,  both 
syntactically and semantically. The syntactic ordering of a quantifier-prefix 

( ( Q l x t )  . . . .  , (Q~xn) )  (where Qi is either V or 3, for 1 ~< i<~ n) mirrors 
the sequence of steps used to construct well-formed formulas with that 
quantifier-prefix. Thus, if 

(1.1) (Qtx l )  • • • (Q,,x , , )dg(xl  . . . .  , x,~) 

is a well-formed formula,  exactly one out of any two quantifiers, Qixl and 

Qjxj  (1 ~< i 4:j ~< n) - namely, the innermore - preceeds the other in the 
syntactic construction of (1.1). The semantic ordering of a quantifier-prefix 
is the order of determining the truth (satisfaction) conditions of formulas 
with that prefix, and it is the backward image of the syntactic ordering. 
The truth of a sentence of the form (1.1) in a model J with a universe A 
is determined in the following order of stages: 3 

(i) conditions of truth (in d )  for ( Q l X l ) X l t l ( X l )  , 

where ~1 = (Q2x2) • • • ( Q n x n ) ~ ( x 1 ,  x2 , .  • • , xn); 
(ii) conditions of truth for (Qex2)XP'2(x2), 

3 For the sake of simplicity I assume that (1.1) has no free variables. I make similar 
assumptions throughout the paper. I speak of 'truth in a model' rather than of 'satisfaction 
by an assignment in a model', and I formulate the definitions as if I were dealing only with 
sentences. It is easy to extend these formulations to the case of formulas with free variables. 
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where fir2 = ( Q 3 x 3 )  • • . (Qnx,)d~(at, x2, x3 . . . . .  x~), and a l  i s  an ar- 
bitrary element of A; 

(n) conditions of truth for (Qnx,)~,(xn),  
where ~,, = qb(al, a2 . . . . .  an-l ,  xn), and a, . . . . .  an-i  are arbitrary 
elements of A. 

We obtain branched-quantification by relaxing the requirement that 
quantifier-prefixes be linearly ordered, allowing partial ordering instead. 
It is rather clear what renouncing the requirement of linearity means 
syntactically. But what does it mean semantically? What would a partially- 
ordered definition of truth for multiply quantified sentences look like? 
Approaching branching quantifiers as a generalization on the ordering of 
quantifiers in standard logic leaves the issue of their correct semantic 
definition an open question. 

1.2. Generalizing from the Existence of  Skolem Normal Forms 

The Skolem Normal Form Theorem 4 says that every 1st-order formula is 
logically equivalent to a 2nd-order prenex formula of the form 

(1.2) (3 f~) . - -  (3fm)(Vx~) . . .  (Vxn)q b, 

where x~ . . . . .  xn are individual variables, f~ . . . . .  fm are functional 
variables (m, n/> 0), and ~ is a quantifier-free formula. This 2nd-order 
formula is a Skolem Normal Form, and the functions satisfying a Skolem 
Normal Form are Skolem Functions. 

The idea is, roughly, that given a formula with an individual existential 
quantifer  in the scope of one or more individual universal quantifiers we 
obtain its Skolem Normal Form by replacing the former with a functional 
existential quantifier governing the latter. For example, 

(1.3) y, z) 

is equivalent to 

(1.4) (afz)(Vx)(Vy)~(x,  y, fZ(x, y)). 

The functional variable f 2  in (1.4) replaces the individual variable z bound 
by the existential quantifier (3z) in (1.3), and the arguments o f f  2 are all 
the individual variables bound by the universal quantifiers governing (3z) 
there. It is characteristic of a Skolem Normal Form of a lst-order formula 

4 See, for example,  Ender ton  (1972), p. 275. 
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with more than one existential quantifier that for any two functional 
variables in it, the set of arguments of one is included in the set of 
arguments of the other. Consider, for instance, the Skolem Normal Form 
of 

(1.5) (Vx)(3y)(Vz)(3w)Cb(x, y, z, w) 

namely, 

(1.6) (3fl)(3g2)(Vx)(Vz)Cb(x,fl(x), z, g2(x, z)). 

In general, Skolem Normal Forms of lst-order formulas are formulas of 
the form (1.2) satisfying the property: 

(1.A) The functional existential quantifiers (3fl) . . . . .  (3fro) can be 
ordered in such a way that for all 1 ~< i, j <~ m, if (3j}) syntacti- 
cally precedes (3fi), then the set of arguments of fi in qb is 
essentially included in the set of arguments of/~ in qb.s 

This property reflects what W. J. Walkoe calls the 'essential order' of 
liner quantifier-prefixes. 6 

The existence of Skolem Normal Forms for all 1st-order formulas is 
thought to reveal a systematic connection between Skolem Functions and 
existential individual quantifiers. However, this connection is not 1-1: not 
all formulas of the form (1.2) - General Skolem Forms - are expressible 
by standard (i.e., linear) lst-order formulas. General Skolem Forms not 
satisfying (1.A) are not. 

It is natural to generalize the connection between Skolem Functions 
and existential quantifiers into a complete correspondence. But such a 
generalization requires that lst-order quantifier-prefixes not be, in general, 
linearly ordered. The simplest Skolem Form not satisfying (1.A) is: 

(1.7) (3fl)(3gl)(Vx)(Vz) [x,fl(x), z, gl(z)l. 
Relaxing the requirement of syntactic linearity, we can construct a '1st- 
order' correlate for it: 

(1.8) (Vx)(3y) 
q~ (x, y, z, w). 

(Vz)(3w) 

We see that the semantic structure of a partially-ordered quantifer  
prefix is introduced, in this approach, together with (or even prior to) the 

5 Henkin (1959), p. 181. 
6 Walkoe (1970), p. 538. 
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syntactic structure. The interpretation of a 1st-order branching formula is 
fixed to begin with by its postulated equivalence to a 2nd-order, linear 
Skolem Form. 

Comparing 1.1 and 1.2, we ask: Do the two generalizations necessarily 
coincide? Do 2rid-order Skolem Forms provide the only reasonable seman- 
tic interpretation for the syntax of partially-ordered quantified formulas? 
The definition of branching quantifiers by generalized Skolem Functions 
was propounded by Henkin, who recommended it as 'natural'. Most subse- 
quent writers on the subject took Henkin's definition as given. I was led 
to reflect on the possibility of alternative definitions by J. Barwise's paper 
'On Branching Quantifiers in English' (1979). Barwise shifted the dis- 
cussion from standard to generalized branching quantifiers, forcing us to 
rethink the principles underlying the branching structure. Reviewing the 
earlier controversy around Hintikka's purported discovery of branching- 
quantifier constructions in natural language and following a course of 
inquiry begun in my previous work on 1st-order quantifiers, I came to 
think that both logico-philosophical and linguistic considerations suggest 
further investigation of the semantics of branching quantifiers. 

2. LINGUISTIC MOTIVATION 

In his paper 'Quantifiers vs. Quantification Theory' (1973) J. Hintikka 
first pointed out that some quantifier constructions in English are branch- 
ing rather than linear. A well known example is: 

(2.1) Some relative of each villager and some relative of each towns- 
man hate each other. 7 

Hintikka says: "This [example] m a y . . ,  offer a glimpse of the ways in 
which branched quantification is expressed in English. Quantifiers occur- 
ring in conjoint constituents frequently enjoy independence of each other, 
it seems, because a sentence is naturally thought of as being symmetrical 
semantically vis-a-vis such constituents". 8 Another linguistic form of the 
branching-quantifier structure is illustrated by: 

(2.2) Some book by every author is referred to in some essay by 
every critic. 9 

Hintikka's point is that sentences such as (2.1) or (2.2) contain two 

7 Hintikka (1973), p. 344, (37). 
8 Ib id . ,  ibid. 
9 Ib id . ,  p. 345, (39). 



398 GILA SHER 

independent pairs of iterated quantifiers, the quantifiers in each pair being 
outside the scope of the quantifiers in the other. A standard lst-order 
formalization of such sentences - for instance, that of (2.1) as 

(2.3) 

or 

(2.4) 

(Vx)(3y)(Vz)(3w)[Vx & Tz ~ RELyx & RELwz 
& Hyw & Hwy] 

(Vx)(VZ)(3y)(3w)[Vx & TZ---~ RELyx & RELwz 
& Hyw & Hwy] 

(with the obvious readings of V, T, REL and H) - creates dependencies 
where none should exist. A branching-quantifier reading, on the other 
hand - 

(2.5) (Vx)(3y) 
Vx & Tz --+ RELyx & RELwz & Hyw & Hwy 

(vz)(3w) 
simulates accurately the dependencies and independencies involved. Hin- 
tikka does not ask what truth conditions should be assigned to (2.5), 
assuming it is interpreted in the 'usual' way as: 

(2.6) (3fl)(3gl)(Vx)(Vz)[Vx & Tz-* REL(f l (x ) ,  x) 
& REL(gl(z) ,  z) & H(f l(x) ,  g~(z)) & H(g~(z),fl(x))]. 

Hintikka's paper brought forth a lively exchange of opinions, and G. 
Fauconnier (1975) raised the following objection (which I will formulate 
in my own words): (2.6) implies that the relation of mutual hatred between 
relatives of villagers and relatives of townsmen has what we might call a 
massive nucleus - one which contains at least one relative of each villager 
and one relative of each townsman - and such that each villager-relative 
in the nucleus hates all the townsman-relatives in it, and vice versa. 
However, Fauconnier objects, it is not true that every English sentence 
with syntactically independent quantifiers implies the existence of a mass- 
ive nucleus of objects standing in the relation quantified. For instance, 

(2.7) Some player of every football team is in love with some dancer 
of every ballet company w 

does not; it is compatible with the assumption that men are in love with 
one woman at a time (and that dancers/football-players do not belong to 
more than one ballet-company/football-team at a time). 

10 Fauconnier (1975), p. 560, (10). 
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We can illustrate the point graphically as follows: 

V i l l a g e r s  V i l l a g e r s '  M u t u a l  T o w n s m e n ' s  

R e l a t i v e s  H a t r e d  R e l a t i v e s  

399 

T o w n s m e n  

v l  . . . . . . . . . . .  ~ . 

v 2  . . . . . . . .  _> . . . 

v 3  . . . . . . . . . . . . . .  

v 4  . . . . . . . . . . . . . . .  9 

v 5  . . . . . . . . . . . . .  9 " 

F o o b b a l l  P l a y e r s  

T e a m s  

F i g .  1.  

L o v e  

=> 

• . e . . . . . . . .  t l  

. . . . . . . . . . .  t 2  

• ÷ . . . . . . . . .  t 3  

. . . . . . . . . . . . .  t 4  

. . . . . . . . . . . .  t 5  

D a n c e r s  B a l l e t  

C o m p a n i e s  

f l  . . . . . . . . . . .  _~ , 

? 

f 2  . . . . . . . . .  .~ • . • 

M A S S I V E  

f 3  . . . . . . . . . . . . .  _) 

N U C L E U S  

f4 . . . . . . . . . . . . . . .  ~ 

? 

f 5  . . . . . . . . . . . .  _> • 

F i g .  2 .  

. • ~ . . . . . .  b l  

e . . . . . . . . .  b 2  

• . • ~- . . . . .  b 3  

. . . . . . . . . . . . .  b 4  

. . . . . . . . . .  b 5  

Even if Hintikka's interpretation of (2.1) is correct, Fauconnier argues, 
i.e., (2.1) implies the existence of a massive nucleus of villagers and 
townsmen in mutual hatred, (2.7) does not imply the existence of a massive 

nucleus of football players in love with dancers• Hintikka's interpretation, 
therefore, is not appropriate to all scopally independent quantifiers in 
natural language. 

The point is accentuated in the following examples: 

(2.8) Some player of every football team is the boyfriend of some 
dancer of every ballet company, 

(2.9) Some relative of each villager and some relative of each towns- 
man are married (to one another)• 
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Is (2.8) logically false? Does (2.9) imply that the community in question 
is polygamous? 

Fauconnier's conclusion is that natural-language constructions with 
scopally independent quantifiers are sometimes branching and sometimes 
linear, depending on the context. The correct interpretation of (2.7), for 
instance, is: 

(2.10) (Vx)(Vy)(3z)(3w)(FTx & BCy--->Pzx & Dwy & Lzw). 

Thus, according to Fauconnier, the only alternative to 'massive nucleus' 
is linear quantification,. 

We can, however, approach the matter somewhat differently. Acknowl- 
edging the semantic independence of syntactically unnested quantifiers in 
general, we can ask: Why should independence of quantifiers have any- 
thing to do with the existence of a 'massive nucleus' of objects standing 
in the quantified relation? Interpreting branching quantifiers nonlinearly, 
yet without commitment to a 'massive nucleus', would do justice both to 
Hintikka's insight regarding the nature of scopally independent quantifiers 
and to Fauconnier's (and others') observations regarding the multiplicity 
of situations which such quantifiers can be used to describe. We are thus 
led to search for an alternative to Henkin's definition which would avoid 
the problematical commitment. 

3. L O G I C O - P H I L O S O P H I C A L  M O T I V A T I O N  

Why are quantifier-prefixes in modern symbolic logic linearly ordered? 
M. Dummett (1973) ascribes this feature of quantification theory to the 
genius of Frege. Traditional logic failed because it could not account for 
the validity of inferences involving multiple quantification. Frege saw that 
the problem could be solved if we construed multiply quantified sentences 
as complex step-by-step constructions, built by repeated applications of 
the simple logical operations of universal and/or existential quantification. 
This step-by-step syntactic analysis of multiply-quantified sentences was 
to serve as a basis for a corresponding step-by-step semantic analysis, 
unfolding the truth conditions of one constructional stage - i.e., a singly 
quantified formula - at a time. (See Section I above.) In other words, by 
Frege's method of logical analysis the problem of defining truth for a 
quantified many-place relation was reduced to that of defining truth for a 
series of quantified predicates (one-place relations), a problem whose 
solution was essentially known. 11 The possibility of such a reduction was 

11 D u m m e t t  (1973), pp. 8f. 
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based, however,  on a particular way of representing relations. In Tarskian 
semantics this form of representation is reflected in the way the linear 

steps in the definition of truth are 'glued' together,  namely, by a relative 
expression synonymous with 'for each one of which' ( 'f .e.w. ') .  Thus, for 
example, the Fregean-Tarskian definition of truth for 

(3.1) (Qlx)(Q2y)(Q3z)R3(x, y, z) 

(where Q1, Q2 and Q3 are either V or 3) proceeds as follows: (3.1) is 
true in a model M with a universe A iff (if and only if) there are q l  a's in 
A f.e.w, there are q2b's in A f.e.w, there are q3c 's  in A such that 
'R3(a, b, c)' is true in M (where q l ,  q2 and q3 are the quantifier conditions 
associated with QI ,  Q2 and Q3 respectively). 12 

Intuitively, the view of R 3 embedded in the definition of truth for (3.1) 

is that of a multiple tree: 

a, a= a 

C I I ~ C ; \  C l  I ~C~ , \  

Fig. 3. 

|, 

Each row in the multiple tree represents one domain of R 3 (the extension 
of one argument place of R3); each tree represents the restriction of R 3 

to some one element of the domain listed in the upper row. In this way, 
the extension of the second domain is represented relative to that of the 
first, and the extension of the third, relative to the (already relative) 
representation of the second. Different quantifier-prefixes allow different 
multiple-tree views of relations, but Frege's linear quantification limits the 
expressive power of quantifier-prefixes to properties of relations which are 
discernible in a multiple-tree representation. 

We can describe the sense in which (all but the outermost) quantifiers in 
a linear prefix are semantically dependent  as follows: a linearly dependent 
quantifier assigns a property not to a complete domain of the relation 
quantified, but to a domain relativized to individual elements of another 

12 An alternative reading: ql a's in A are such that for each one of them [q2 b's in A are 
such that for each one of them [q3 c's in A are such that for each one of them "R3(a, b, c)' 
is true in M]]. 
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domain, higher up in the multiple tree. It is characteristic of a linear 
quantifier-prefix that each quantifier (but the outermost) is directly depen- 
dent on exactly one other quantifier. We shall therefore call linear quantifi- 
ers uni- or simply-dependent. 

There are two natural alternatives to simple dependence: (i) no depen- 
dence, i.e., independence, and (ii) complex dependence. These correspond 
to two ways in which we can view relations in a non-linear manner: we 
can view each domain separately, complete and unrelativised; or we can 
view a whole cluster of domains at once, in their mutual relationships. 

Syntactically, we will represent an independent quantification by: 

(3.2) (Qlxl) 

(Q,x~) 

R-(xx  . . . .  , x . ) ,  

and a complex quantification by: 

(3.3) ( Q l X l ) N  n 
: , ~ R  (xl . . . .  ,x~). 

(Q~x~) 

Of course there are many complex patterns of dependence among quantifi- 
ers. These can be represented by partially-ordered prefixes. 

Our analysis indicates that the concept of independent quantification is 
different from that of complex quantification. Therefore, the first question 
regarding the correct interpretation of natural-language sentences with 
branching quantifiers is: Are the quantifiers in these sentences indepen- 
dent or complex? 

4. INDEPENDENT BRANCHING Q U A N T I F I E R S  

It is easy to give a precise definition of independent quantification: 

(4.1) 
(Qlx)  Cb(x, y) =Dr (Qlx)(3y)q~(x, y) & (Q2y)(3x)Cb(x, y), 
(Q2y) 

or, more generally: 
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fo rm 

(4.9) (QZx) ~lx ,  d~xy. 

(Q~y) ~2y, 

H e r e ,  however ,  we can apply  the not ion of i ndependen t  quant i f icat ion in 
several  ways.  G iven  a b inary  re la t ion R,  two sets, A and B, and two 
quant i f ier -condi t ions  q l  and q2, we can say: 

(a) The  re la t ion R has q l  A ' s  in its domain  and q2 B's  in its range;  

(b) The  re la t ion  A q R l B has q l  e lements  in its domain  and q2 
e lements  in its range  (where  A ] R I B is ob ta ined  f rom R by 
restr ict ing its domain  to A and its range  to B); 

(c) The  re la t ion  A 1 R I B has q l  A ' s  in its domain  and q2 B's  in 
its range;  

(d) The  re la t ion R I B has q l  A ' s  in its domain  and q2 B 's  in its 

range;  
etc. 

As  the r eade r  can verify,  ( a ) - (d )  above  are not  equivalent .  H o w e v e r ,  for  
the examples  discussed in this p a p e r  it suffices to define (4.9) for  case (c). 
We  thus p ropose  the fol lowing definit ion of a pa i r  of  2-place i ndependen t  
quantifiers:  

(4.10) (Q2x) ~lx ,  ~xy =De(Q~x)[XPlX, (3y)(*~x & W2y & dPxy)] & 

(Q2y) ~2y,  (QZ2y)[W2y, ( 3 x ) ( ~ l X  & W2y & d)xy)]. 

W h e n  QI~ and Q~ are conservative - i .e. ,  (Q2x)(Opx,'trx) is logically 

equiva len t  to (Q2x)(~x, cbx & Wx) - we can replace  (4.10) by the s impler  

(4.11) (QZx) "tr~x, Cbxy =Df(Q~x)[~ax, ( 3 y ) ( ~ z y  & dpxy)] & 

(Q~y) ~2y, (Q~y)[~2y, (3x)(~ax & ~xy)]. 

Using this definit ion, we can in te rpre t  (4 .12)-(4.13)  be low as i ndependen t  

'(Most2x)(Plx, P2x)' is true in ~¢ iff the extension of Plx & PZ~ in ~ff is larger than the 
extension of Plx & -P2x in ~; '(Few2x)(Plx, P2x)' is true in d i f f  the extension of Plx 
& P2x in ~/ is 'small with respect to the extension of Plx in ~/' (where "small... ' 
receives some quantitative interpretation, say 'less than a third of the extension of Plx in 
o~g'); '(Only2x)(Plx, P2x)' is true in~  iff the extension of -vPlx & P2x in ~ is empty; '(As- 
many-as2x) (P1x, P2x)' is true in ~ iff the extension of Plx in ~ is of the same cardinality 
as the extension of P2x in ~4; etc. In the body of the paper I will sometimes omit the 
superscripts of 2-place quantifiers. 
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(4.12) All the boys ate all the apples. 17 

(4.13) Two boys ate half the apples. 

We could also analyze (4.6)-(4.8)  as independent  quantifications of  the 
form (4.11). 18 

What  about  Hint ikka ' s  (2.1) and Fauconnie r ' s  (2.7)? Should we inter- 

pret  these as independent  branching quantifications of  the fo rm (4.11)? 

U n d e r  such an interpreta t ion (2.1) would  say that  the relat ion of  mutual  

hatred be tween relatives of  villagers and relatives of  townsmen includes 

at least one  relative of  each villager in its domain  and at least one relative 

of  each townsman in its range;  (2.7) would  be unders tood  as saying that  

the relat ion of  love be tween football  players and ballet dancers  includes 

at least one  player  of  each football  t eam in its domain  and at least one 

dancer  f rom each ballet c om pa ny  in its range. Such interpretat ions would 

be compat ible  bo th  with Figure 1 and with Figure 2. La ter  on we will 

suggest a test to  determine whether  the in tended interpreta t ion of  a given 

natural- language sentence with branching quantifiers is that  of  an indepen-  

dent  or  complex quantification, and this might  give us a clue regarding 

Hint ikka 's  and Fauconnie r ' s  sentences.  As  for the linear opt ion,  here  the 

quest ion is whether  one  pair  of  quantifiers is within the scope of  the other.  

General ly ,  I would  say that  when  ' and '  appears  as a quantifier connect ive 

- 'Q1 A ' s  and Q2 B 's  stand in the relat ion R '  - the quantification is not  

linear. However ,  when  the quantification is of  the fo rm 'Q1 A ' s  R Q2 B 's ' ,  

the si tuation is less clear. For  relevant  discussions see May  (1987) and van 

Ben them (1988). 19 Here  I would just c o m m e n t  that  somet imes  the me thod  

17 I would like to thank an anonymous referee for suggesting (4.12) as an example for an 
independent quantification which, unlike (4.6)-(4.8), cannot be analyzed by (4.1). 
18 However,  to analyze 'Mostly women were elected to the vacant seats in Congress' we 
will have to define independent quantification of type (d): 

(&ix) I q~lx, ¢bxy =Df(Q2x)('~I X, (3y)(~2y & ~xy)) & 
(Q2zy) l ~2y, (Q2y)(~2y ' (3x)(pxy). 

Construing 'mostly' and the plural 'the' as 2-place Mostowskian quantifiers defined by: 
'(The2x)(Plx, P2x)' is true in a model M iff the extension of Plx in ,~ is not empty and the 
extension of Plx & -P2x in M is empty; '(Mostly z x) (Plx, P2x)' is true in M iff the extension 
of Plx & P2x in M is larger than the extension of - P l x  & P2x in M - we get the intended 
reading of 'Mostly women... ' .  
19 Johan van Benthem suggests that we characterize independent quantifiers as 'scope free', 
where 'Q1 A's stand in the relation R to Q2 B's' is scope-free iff it satisfies (i) invariance under 
passive transformations: 'Q1 A's stand in the relation R to Q2 B's' is logically equivalent to 
'Q2 B's stand in the relation/~ to Q1 A's', where/? is the converse of R, and (ii) domain/range 
invariance: if S is a relation such that DOM(R) = DOM(S) and RAN(R) = RAN(S), then 
'Q1 A's stand in the relation R to Q2 B's' is logically equivalent to 'Q1 A's stand in the 
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(4.2) ( Q l l X l l )  ""  " ( Q l r n ~ X l m l )  

I~)(Xil . . . . .  X l m l ,  . . . .  X n l  , . . . , X . . . .  ) : D f  

(Qn lx , , 1 )  . . . ( Q  ..... x ..... ) 

( Q 1 1 x l l )  . . . ( Q l m  x ~ m , ) ( 3 x 2 1 )  . . . ( 3 x  . . . .  ) 

( I ) (Xl l  . . . . .  X l r n , ,  • • • , X n l  . . . . .  X n m . )  ¢ ~  " " " 

( Q ,  l X n O  . . . (Q n m ,  x n m , , ) ( 3 x l O  " " (3X -lmo ,) 
[~D (Xl  1 . . . . .  Xlrnt  , . . . .  X n l  . . . . .  X . . . .  )" 

This analysis gives the notion of branching quantification a sense which 
is very different from that of Henkin's.  Independent quantification is 
essentially lst-order. It does not involve commitment to a 'massive nu- 
cleus' or to any other complex structure of objects standing in the quan- 
tified relation. Therefore it enables us to analyze natural-language branch- 
ing quantifications in a straightforward manner, and without forcing any 
independent quantifier into a nested position. We thus propose (4.1) as a 
definition of branching quantifiers qua i n d e p e n d e n t  quantifiers. Linguisti- 
cally, this construal is supported by the fact that 'and' often appears as a 
'quantifier connective' in natural-language branching structures in a way 
which might indicate a shift from the 'original' position as a sentential 
connective. Moreover,  natural-language branching quantifiers are sym- 
metrical in much the same way that the conjuncts in our definition are. 
An English sentence with standard quantifiers which appears to exemplify 
independent quantification is: 

(4.3) Nobody loves nobody, 

understood as 'Nobody loves anybody'.  13 We will symbolize it as 

(4.4) ( - 3 x )  L x y  

(-3y) 

and interpret it by: 

(4.5) - ( 3 x ) ( 3 y ) L x y  & - ( 3 y ) ( 3 x ) L x y .  

Extending our logical apparatus by adding 1-place Mostowskian general- 

13 I wish to thank Robert May for this example. 
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ized quantifiers 14 we will be able to interpret the following English sen- 
tences as independent branching quantifications: 

(4.6) 
(4.7) 
(4.8) 

Three frightened elephants were chased by a dozen hunters. 
Four Martians and five Humans exchanged insults. 
[Can] an odd number of beds serve an even number of patients 
[?] 

The 'independent' interpretation of (4.6)-(4.7) reflects a 'cumulative' 
reading, 15 under which no massive nucleus, or any other complex relation- 
ship between the domain and range of the relation in question, is intended. 
We thus understand (4.6) as saying that the relation 'a frightened elephant 
x was chased by a hunter y' includes three individuals in its domain and 
a dozen individuals in its range. And this reading is captured by (4.1). 
Similarly, (4.1) yields the cumulative interpretations of (4.7) and (4.8). 

To extend the applicability of our definition further, we will allow 2- 
place Mostowskian quantifiers, 16 yielding branching quantifications of the 

14 A 1-place Mostowskian quantifier is, syntactically, an operator  Q such that if x is an 
individual variable and • is a formula, (Qx)~ is also a formula. Semantically, Q assigns to 
every model M for (the non-logical vocabulary of) the language a function qoq such that: (i) 
if A is the universe of ~ / a n d  B is a subset of A, then q~(B) E {T, F}, and (ii) for any models 
~ ,  sg' with universes A, A ' ,  respectively, if B C_ A, B'  C_ A' and the structures <-4, B>, <A', B'> 
are isomorphic, then qa(B)= qa,(B'). Intuitively a Mostowskian quantifier Q is logical 
because it distinguishes only the structure of the predicates over which it ranges. As 
was proved by Mostowski, such a quantifier is a 'cardinality' quantifier in that  the value 
it assigns to any 1-place predicate P in a given model s¢ depends only on the cardinality 
of the extensions of P and its complement  in sO. Among 1-place Mostowskian quantifiers we 
find 'Exactly~at-least~at-most n' for every natural number  n, 'between m and n ' ,  'most ' ,  
'few', 'one-half ' ,  'infinitely many' ,  'countably/uncountably many' ,  'an even number  of ' ,  etc. 
Given a 1-place 1st-order predicate P and a model sO, '(Exactly-nx)Px' is true in s4 if and 
only if the extension of Px in ~ is of cardinality n; ' (Most x)Px' is true in s¢ if and only if 
the extension of Px in s¢ is larger than the extension of ~Px in ~Q¢; etc. 
i5 See van Benthem (1988). 
16 A 2-place Mostowskian quantifier is, syntactically, an operator  Q2 such that if x is an 
individual variable and ~ ,  ~ are formulas, (Q2x)(q), g ')  is a formula. Semantically, Q2 assigns 
to every model ~ / a  function q2  such that: (i) if A is the universe of M and B, C are subsets 
of A, then q~(B, C) ~ {T, F}, and (ii) for any models s/,  ~ '  with universes A, A ' ,  respectively, 
if B, CC_A, B', C' CA' and the structures (A, (B, C)), (A' ,  (B ' ,  C ' ) )  are isomorphic, then 
q2(B, C) = q~,(B', C') .  2-place Mostowskian quantifiers are logical in the same sense as 1- 
place Mostowskian quantifiers are. They are also 'cardinality'  quantifiers since q~(B, C) 
depends (aside from the order of the pair (B, C))  only on the eardinalities of the atoms of 
the Boolean algebra generated by B and C in A. (The atoms are B - C, B n C, C - B, and 
A - (B tA C).)  Among 2-place Mostowskian quantifiers we find 'All  2', 'Exactly-n 2', 'Most  2', 
'Fev¢ z', 'Only 2', 'Half  2', 'There  are as many --- as ***', 'There  are fewer --- than ***',  etc. 
Given a model ~ with a universe A and two 1-place 1st-order predicates P1 and P20 
' (All  2 x)(Plx, P2x) '  is true in ~ / i f f  the extension of Plx & ~P2x in s¢ is empty; '(Exactly- 
n2x) (P lx ,  P2x)' is true in sg iff the extension of Plx & P2x in ~ / h a s  exactly n elements;  
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of semantic representation itself forces upon us one interpretation over 
the other. For example, in standard semantics relations are represented 
in such a way that it is impossible for the range of a given binary relation 
to be empty while its domain is not empty. Thus a quantification of the 
form 'Three A's stand in the relation R to zero B's' would be logically 
false if interpreted as independent branching quantification. To render it 
logically contingent we may reduce it to a series of quantifications over 1- 
place predicates, and this gives us the linear reading. 

We now turn to complex quantification. Evidently, Henkin's quantifiers 
belong in this category. We ask: What kind of information on a quantified 
relation does a complex quantifier-prefix give us? To create a more general 
context for our investigation we will, following Barwise, discuss the issue 
within the framework of generalized logic. 

5 .  B A R W I S E ' S  G E N E R A L I Z A T I O N  OF H E N K I N ~ S  Q U A N T I F I E R S  

Barwise (1979) generalized Henkin's definition of standard branching 
quantifiers to 1-place monotone-increasing Mostowskian quantifiers 2° in 
the following way: 

(5.1) 
(Qlx) \ .~. = Df (3X) (3 Y)[(Qlx)Xx & (Q2y) Yy & 
(Q2y) "p tpxy (Vx) (Vy) (Xx & Yy --~ Cbxy)]. 2a 

Technically, the generalization is based on a relational reading of the 
Skolem functions in Henkin's defnition. Thus, the Barwise equivalent of 
Henkin's (1.7) is: 

(5.2) (3R)(3S)[(Vx)(3y)Rxy & (Vz)(3w)Szw & 
(Vx)(Vy)(Vz)(Vw)(Rxy & Szw----~ qb(x, y, z, w)]. 

Clearly, Barwise's quantifiers are, like Henkin's,  complex, not indepen- 
dent branching quantifiers. 

Barwise suggested that this generalization enables us to give English 
sentences with unnested monotone-increasing generalized quantifiers a 

relation S to Q2 B's' .  (This definition applies to independent quantifiers of types (a)-(c).) 
van Benthem suggests that if we have evidence that a natural language sentence of the above 
form satisfies the two invariance conditions (i) and (ii), its logical form is that of independent  
quantification. 
20 A quantifier Q is monotone-increasing iff (Qx)d~x and (Vx)(dpx---~x) imply (Qx)~x. 
21 Barwise (1979), p. 63. 
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'Henkinian' interpretation similar to Hintikka's interpretation of (2.1) and 
(2.2). Here are two of his examples: 22 

(5.3) Most philosophers and most linguists agree with each other 
about branching quantification. 

(5.4) Quite a few boys in my class and most girls in your class have 
all dated each other. 

In order to interpret (5.3) and (5.4) based on Barwise's (5.1), we have to 
extend (5.1) to 2-place quantifiers: Let Q2 and Q2 be 2-place monotone- 
increasing quantifiers, then:  

(5.5) (Q~X). ~lX 

• xy =of 

(Q~y) " gr 2y 

(3X)(3Y){(Q2x)[ ~lx,  Xx] & (Q~y)[ ~2y, Yy] 
& (Vx) (Vy) [Xx & Yy ~ dPxy]}. 

We can now interpret (5.3) by: 

(5.6) (M2x) • Px, 

Axy & Ayx = Df 

(M2y) • Ly, 

(3X) (3 Y) {(M2x) [Px, Xx] & (MZy) [Ly, Yy] 
& (Vx)(Vy)[Xx & Yy -+Axy & Ayx]} 

with the obvious readings of P, L, A, and where M 2 stands for the 2-place 
'most'. We interpret (5.4) in a similar manner. 

Barwise emphasized that his definition of branching monotone-increas- 
ing generalized quantifiers is not applicable to monotone-decreasing, non- 
monotone 23 and mixed branching quantifiers. This is easily explained by 
the fibsurd results of applying (5.1) to such quantifiers: (5.1) would render 
any monotone-decreasing branching formula vacuously true (by taking X 
and Y to be the empty set); it would render false non-monotone branching 
formulas true, as in the case of 'Exactly one x and exactly one y stand in 
the relation R' ,  where R is universal and the cardinality of the universe 
is larger than 1. 

22 Barwise (1979), p. 60, (21) and (22). 
z3 Q is monotone-decreasing iff (Qx)dpx and (Vx)(q~x--+~x) imply (Qx)Wx; Q is non- 
monotone iff it is neither monotone-increasing nor monotone-decreasing. 



W A Y S  O F  B R A N C H I N G  Q U A N T I F I E R S  409 

Barwise proposed the following definition for a pair of 1-place mono- 
tone-decreasing branching quantifiers: 

(5.7) ( Q l x ) \ . . .  
t " /~q'xy =Df(3X)(3Y){(Qlx)Xx & (O2y) Yy & 

(Vx)(Vy)[Cbxy-, Xx & yy]}.24 

(5.7) provides an intuitively correct semantics for English sentences with a 
pair of unnested monotone-decreasing quantifiers. Consider, for instance: 

(5.8) Few philosophers and few linguists agree with each other about 
branching quantification. 

As to non-monotone and mixed branching quantifiers, Barwise left the 
former unattended, remarking skeptically about the latter: "there is no 
sensible way to interpret 

(s) Q2Y :A(x, y) 

when one [quantifier] is increasing and the other is decreasing. Thus, for 
example, 

(29)? Few of the boys in my class and most of the girls in your class 
have all dated each other. 

appears grammatical, but it makes no sense. ''25 
Barwise's work suggests that the semantics of branching quantifiers 

depends on the monotonicity properties of the quantifiers involved. The 
truth conditions for a sentence with branching monotone-increasing quan- 
tifiers are altogether different from the truth conditions for a sentence 
with branching monotone-decreasing quantifiers, and truth for sentences 
with mixed branching quantifiers is simply undefinable. Is the meaning of 
branching quantification as intimately connected with monotonicity as 
Barwise's analysis may lead one to conclude? 

First I would like to observe that Barwise interprets branching mono- 
tone-decreasing quantifiers simply as independent quantifiers: when Q1 
and Q2 are monotone-decreasing (5.7) is logically equivalent to our (4.1). 
The latter definition, as we have seen, has meaning - the same meaning - 
for all quantifiers irrespective of monotonicity. On this lst-order reading 

24 Barwise (1979), p. 64. 
2~ Barwise (1979), pp. 65-66. 
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(5.8) says that the relation of mutual agreement about branching quan- 
tification between philosophers and linguists includes (at most) few philo- 
sophers in its domain and (at most) few linguists in its range. 

Barwise explained the limited applicability of (5.1) in the following 
way: Every fomula of the form 

(5.9) (Qx)Ogx, 

where Q is monotone-increasing, is logically equivalent to a 2nd-order 
formula of the form 

(5.10) (3X)[(Qx)Xx & (Vx)(Xx--~x)], 

which is structurally similar to (5.1). This fact establishes (by analogy?) 
(5.1) as the correct definition of branching monotone-increasing quantifi- 
ers. However, (5.10) is not a 2nd-order representation of quantified for- 
mulas with non monotone-increasing quantifiers. Hence, (5.1) does not 
apply to branching quantifiers of the latter kind. The definition of branch- 
ing monotone-decreasing quantifiers by (5.7) is explained in a similar 
manner: When Q is monotone-decreasing, (5.9) is logically equivalent to 

(5.11) (3X)[(Qx)Xx & (Vx)(*x--+Xx)], 

which is structurally similar t o  ( 5 . 7 ) .  26 

I do not find this explanation convincing. Linear quantifiers vary with 
respect to monotonicity as much as branching quantifiers do, yet the 
semantic definition of linear quantifiers is the same for all quantifiers, 
irrespective of monotonicity. Linear quantification is also meaningful for 
all combinations of quantifiers (including mixed-monotone). Why 
shouldn't branching quantification be the same? Moreover, if the 2nd- 
order representation of 'simple' 1st-order quantifications is significant for 
the analysis of branching quantifications, Barwise has not shown that there 
is no 2nd-order representation of (5.9) which applies universally, without 
regard to monotonicity. 

6. A G E N E R A L  D E F I N I T I O N  OF  C O M P L E X ~  H E N K I N - - B A R W I S E  

B R A N C H I N G  Q U A N T I F I E R S  

The Henkin-Barwise conception of complex branching quantification em- 
bedded in (5.1) sets the following truth conditions for branching formulas 

26 Barwise (1979), pp. 62-64. 
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of the form 

(6.1) (Qlx)\.~. 
(Q2y),, 2u'xy" 

(where Q1 and Q2 are monotone-increasing): (6.1) is true in a model s// 
with a universe A iff: 

(6.A) THERE IS AT LEAST ONE PAIR, (X, Y}, OF SUBSETS 
OF A FOR WHICH (1)-(3) BELOW HOLD: 
(1) X SATISFIES THE QUANTIFIER-CONDITION Q1; 
(2) Y SATISFIES THE QUANTIFIER-CONDITION Q2; 
(3) EACH ELEMENT OF X STANDS IN THE RELATION 

• ~ TO A L L  THE ELEMENTS OF Y.. 

The condition expressed by (3) we shall call the each-all (Or all-all) 
condition on (X, Y) with respect to c~ ~. We will then be able to express 
(6.A) more succinctly as: 

(6.B) THERE IS AT LEAST ONE PAIR OF SUBSETS OF THE 
UNIVERSE SATISFYING THE EACH-ALL CONDITION 
WITH RESPECT TO q ~  WITH ITS FIRST ELEMENT 
SATISFYING Q1 AND ITS SECOND ELEMENT SATISFY- 
ING Q2. 

Set theoretically, (6.B) says that d~-~ includes at least one Cartesian Prod- 
uct of two subsets of the universe satisfying Q1 and Q2 respectively. (The 
'massive nucleus' of Section 2 above was an informal term for a Cartesian 
Product.) 

Is the complex quantifier-condition expressed by (6.B) meaningful only 
with respect to monotone-increasing quantifiers? I think that what (6.B) 
says makes sense no matter what quantifiers Q1 and Q2 are. However, 
(6.B), as it stands, is not general enough. It fails to capture the intended 
condition when Q1 and/or Q2 are not monotone-increasing. In that case 
Q1 and/or Q2 set a limit on the size of the sets X and/or Y such that 
(X, Y) satisfies the each-all condition with respect to qb~: (6.1) is true 
only if there is a small enough Cartesian Product included in ~ J .  But 
whenever there are two subsets of the universe, X and Y, whose cardinali- 
ties exceed the limits set by Q1 and Q2 but whose Cartesian Product 
is included in ~°~, (6.B) is automatically satisfied. (This is because for 
two non-empty sets, A and B, if A x B is a Cartesian Product included in 
• ~ so is A' × B', where A' and B' are any proper subsets of A and B 
respectively.) The difficulty, however, appears to be technical. What we 
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need is an additional condition on the Cartesian Product in question: Only 
maximal Cartesian Products should count. 

We therefore add a maximality condition to (6.A), arriving at the 
following semantic definition for complex branching quantifications of the 
form (6.1), where no restriction is set on Q1 and Q2: 

(6.C) THERE IS AT LEAST ONE PAIR, (X, Y), OF SUBSETS 
OF A FOR WHICH (1)-(4) BELOW HOLD: 
(1) X SATISFIES THE QUANTIFIER-CONDITION Q1; 
(2) Y SATISFIES THE QUANTIFIER-CONDITION Q2; 
(3) EACH ELEMENT OF X STANDS IN THE RELATION 

qb "~ TO ALL THE ELEMENTS OF Y. 
(4) THE PAIR (X, Y) IS A MAXIMAL PAIR SATISFYING 

(3). 

(6.C) is formally correct. (I.e., given a model ~/with a universe A, a 
binary relation qb ~ and two subsets, B and C, of A s.t. B x C ___ qb ~, there 
are subsets B' and C' o f A  s.t. B C B ' ,  CCC'  and B' x C' is a maximal 
Cartesian Product included in d#~.) 

Referring to (3)-(4) as 'the maximal each-all condition on (X, Y) with 
respect to ~ a ' ,  we reformulate (6.C) more concisely as: 

(6.D) THERE IS AT LEAST ONE PAIR OF SUBSETS IN THE 
UNIVERSE SATISFYING THE MAXIMAL EACH-ALL 
CONDITION WITH RESPECT TO ~ SUCH THAT ITS 
FIRST ELEMENT SATISFIES Q1 AND ITS SECOND 
ELEMENT SATISFIES Q2. 

We thus propose to replace (5.1) by 

(6.2) (Qlx)~..~. 
( QZy ),,~'a-'xy =Dr 

(3X) (3Y){(Qlx)Xx& (Q2y) Yy& (Vx)(Vy)[Xx & Yy ~ Cbxy I & 
(VX')(VY')[(Vx)(Vy)(Xx & ry ---~ X'x & Y'y)] 
& (Vx)(Vy)(X'x& Y'y -,d~xy) --~ 

r (Vx)(Vy)(Xx & ry  x x & r'y)]} 
as the generalized definition of Henkin-Barwise complex branching quan- 
tifiers. 

We can rewrite (6.2) more shortly as: 

(6.3) (Olx) ~,, ~, 
(O2y) J,."wxY =Dr 

(qX)(=lY){(Qlx)Xx& (Q2y)Yy& X x YC_ eb & 
(VX ' ) (VY ' ) [Xx  YC_X' x Y'C_dp---~Xx Y = X '  x Y']}. 
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More concisely yet, we have: 

(6.4) ( Q l x ) , .  
(Q2y).~dPxY =Dr 

(3X) (3 Y){(Qlx)Xx& (Q2y) Yy& 
(VX')(VY')[Xx Y C X ' X  Y'C_q~<--~Xx Y = X ' x  Y']}. 

It is easy to see that whenever Q1 and Q2 are monotone-increasing, 
(6.3) is logically equivalent to (5.1). At the same time, (6.3) avoids the 
problems which arise when (5.1) is applied to non-monotone-increasing 
quantifiers. 

Is the maximality condition ad-hoc? I think it is not. The Henkin-Bar-  
wise branching quantifier-prefix expresses a certain condition on a subset 
of the relation quantified. It seems to me that when we talk about sets it 
is generally maximal sets that we are interested in. Indeed, any condition 
on a set is, unless otherwise specified, a condition on a maximal set: 
Consider, for instance, the statement 'Three students passed the test'. 
Would this statement be true had 10 students passed the test? It would 
be if the quantifier '3!3'  set a condition on a non-maximal set: a partial 
extension of 'x is a student who passed the test' would satisfy that con- 
dition. Consider also 'No student passed the test' and 'Two people live in 
America' .  

The fact that quantification in general sets a condition on maximal sets 
(relations) is reflected by the equivalence of any 1st-order formula of the 
form 

(5.9) (Qx)c~x - 

no matter  what quantifier Q is (monotone-increasing, monotone-decreas- 
ing or non-monotone)  - to 

(6.5) (3X){(Qx)Xx & (Vx)(Xx-+Opx) & (VX')[XC_X' & 
(Vx)(X'x = x ] } ,  

which expresses a maximality condition. (Thus, if we accept arguments 
by analogy, the logical equivalence of (5.9) to (6.5) provides a further 
justification for the reformulation of (5.1) as (6.3).) 27 

We have seen that the two conceptions of non-linear quantification 

27 Maximality conditions are very common  in mathematics .  Generally,  when a structure is 
maximal  it is 'complete '  in some relevant sense. Thus ,  the structure of a-maximal consistent 
set of  formulas gives us enough  information to construct a syntactic model  as in Henkin ' s  
proof of  the completeness  of s tandard 1st-order logic. (I wish to thank Charles Parsons for 
this example.)  In set theory,  Zorn ' s  l emma expresses a sufficient condition for the existence 
of a maximal  set, and the numerous  uses of  this powerful lemma present  abundant  evidence 
for the importance of maximality. Etc. 
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discussed so far - independence (lst-order), and complex dependence (2nd- 
order) - have little to do with monotonicity or its direction. The two 
conceptions lead to entirely different definitions of the branching quant- 
ifier-prefix, both, however, universally applicable. 

Linguistically, our suggestion is that to determine the truth conditions 
of natural language sentences with a non-linear quantifier-prefix one has 
to ask not whether the quantifiers involved are monotone-increasing, 
monotone-decreasing, etc., but whether the prefix is independent or com- 
plex. Our analysis points to the following clue: Complex, Henkin-Barwise 
quantifications always include an inner each-all condition, explicit or im- 
plicit. Independent quantifications, on the other hand, do not include any 
such condition. 

Barwise actually gave several examples of branching sentences with an 
explicit each-all condition: 

(5.4) Quite a few boys in my class and most girls in your class have 
all dated each other. 2s 

(6.6) Most of the dots and most of the stars are all connected by 
lines .29 

Such an explicit 'all' also appears in his 

(29) Few of the boys in my class and most of the girls in your class 
have all dated each other. 3° 

I therefore suggest that we interpret (29) as an instance of (6.3). 
Some natural examples of Henkin-Barwise complex branching quantifi- 

ers in English involve non-monotone quantifiers. E.g., 

(6.7) A couple of boys from my class and a couple of girls from your 
class were all dating each other. 

(6.8) An even number of dots and an odd number of stars are all 
connected by lines. 

Another expression which seems to point to a complex branching quan- 
tification (by indicating a 2nd-order structure) is 'the same'. Consider: 

(6.9) Most of my friends have all applied to the same few graduate 
programs. 

2s The italicization is mine. 
29 , Barwise (1979),  p. 62 (23). See also (25). The italicization is mine. 
30 My italicization. 



W A Y S  O F  B R A N C H I N G  Q U A N T I F I E R S  415 

To give the above sentences a formal interpretation we have to extend 
(6.3) to 2-place quantifiers. As in the case of 2-place independent quantifi- 
ers we can apply the notion of complex, 'each all' quantification in more 
than one way. (See Section 4 above.) We will define ' Q I A ' s  and Q2 B's 
all stand in the relation R'  by: 'There is at least one maximal Cartesian 
Product included in A ] R { B such that its domain includes Q1 A's and 
its range includes Q2 B's'. In symbols: 

(6.10) (QZx)" ~lx, 

• xy = D r  

(Q~y)  • 'I,2y, 

(3X) (3 Y){(Q~x) [~Flx, Xx] & (Q~y) [ ~Lr2 y, Yy] 
( V X t ) ( V Y ' ) [ X x  Y c X '  x Y'  c.~ttll ] (D ~ ~tt2K--->Xx Y -~X '  x Y']}. 

Going back to the controversy regarding Hintikka's reading of natural 
language sentences with non-nesting quantifiers, we can reformulate Fau- 
connier's criticism as follows: Some natural language sentences with un- 
nested quantifiers do not appear to contain, explicitly or implicitly, an 
inner each-all quantifier condition. On our analysis, these are not Henkin- 
Barwise branching quantifications. Whether Hintikka's (2.1) includes an 
implicit each-all condition, I leave an open question. 

Remark: The analysis of branching quantifiers in this paper is intended 
mainly to clarify the nature of a new logical form. As such, this is not 
a linguistic analysis. It appears, however, that natural language sen- 
tences with a pair of unnested quantifiers and an explicit inner 'each- 
all' condition are naturally interpreted as Henkin-Barwise complex quan- 
tifications. (Note that the inner 'all' does not bind any new individual 
variables in addition to those bound by Q1 and Q2, and therefore a 
'standard' reading of such sentences would be very problematic.) The 
question, however, arises how to treat English statements with a pair of 
unnested quantifiers when an explicit 'each-all' condition does not occur. 
Our discussion so far indicates three possible readings: as independent 
quantifications, as linear quantifications (the syntactic unnesting is mislead- 
ing), or as Henkin-Barwise complex quantifications (the 'each-all' con- 
dition is taken to be implicit). In the next section we will propose further 
alternatives. 

7. B R A N C H I N G  Q U A N T I F I E R S :  A F A M I L Y  O F  I N T E R P R E T A T I O N S  

The Henkin-Barwise definition of branching quantifiers - in its original 
as well as generalized form - includes two quantifier conditions in addition 
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to those explicit in the definiendum: the outer quantifier condition 'there 
is at least one pair {X, Y)', and the inner (maximal) 'each-all' quantifier 
condition. By generalizing these conditions we arrive at a new definition- 
schema whose instances comprise a family of semantic interpretations for 
multiple quantifiers. Among the members of this family are both the 
independent branching quantifiers of Section 4 above and the Henkin- 
Barwise complex quantifiers of Section 6 above. This generalized definit- 
ion-schema delineates a (certain) totality of f o r m s  o f  q u a n t i f i e r - d e p e n d -  

ence .  Degenerate dependence is independence; linear dependence is a 
particular case of the (non-degenerate) Henkin-Barwise dependence. 31 

We arrive at our definition-schema in two steps. First we generalize the 
inner 'each-all' quantifier condition: 

(7.A) FOR AT LEAST ONE PAIR, {X, Y), OF SUBSETS OF THE 
UNIVERSE SATISFYING THE MAXIMAL QUANTIFIER 
CONDITION ~1 WITH RESPECT TO ~ THE FOLLOW- 
ING HOLDS: X SATISFIES Q1 AND Y SATISFIES Q2, 

where R1 represents any (lst-order) maximal quantifier-condition on a 
pair of subsets of the universe with respect to ~ .  The following are a 
few instances of ~1: 

(7.a) Maximal o n e - o n e  quantifier condition: (X, Y) is a maximal pair 
such that each element of X stands in the relation q~a to exactly 
one element of Y, and for each element of Y there is exactly 
one element of X which stands to it in the relation ~ .  

(7.b) Maximal each  - t w o - o r - m o r e  quantifier condition: (X, Y) is a 
maximal pair such that each element of X stands in the relation 
• ~ to two or more elements of Y, and for each element of Y 
there is an element of X which stands to it in the relation q~.  

(7.c) Maximal each  - m o r e - t h a n . . ,  quantifier condition: (X, Y) is a 
maximal pair such that each element of X stands in the relation 
q ~  to more t h a n . . ,  elements of Y, and for each element of 
Y there is an element of X which stands to it in the relation 
~ s ~ .  

31 TO see that linear quantification is a particular instance of the Henkin-Barwise  complex 
quantification we have to express the conception of branching embedded  in (6.3) more 
generally, so that  it applies to any partially-ordered quantifier prefix. I will not  discuss the 
nature of such a definition here,  but  in the case of '(Qlx)(Q2y)~xy' the definition I have 
in mind will yield the following 2nd-order counterpart:  (3X)(3R){(Qlx)Xx & X is a max. 
set s.t. (Vx)[Xx-~(Q2y)Rxy] & R is a max. relation s.t. (gx)(Vy)[Rxy--~q~xy]}. 
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(7.d) Maximal each - at-least-half/at-least-half - each quantifier con- 
dition: (X, Y) is a maximal pair such that each element of X 
stands in the relation ~ a  to at least half the elements of Y and 
to each element of Y at least half the elements of X stand in 
the relation ~ .  

We can find natural language sentences which exemplify the instances 
of (7.A) obtained by substituting (7.a)-(7.d) respectively for ~1: 

(7.1) Most of my right hand gloves and most of my left hand gloves 
match one to one. 

(7.2) Most of my friends saw at least two of the same few Truffaut 
movies. 

(7.3) The same few characters repeatedly appear in many of her 
early novels. 

(7.4) Most of the boys and most of the girls in this party are such 
that each boy has chased at least hal f  the girls, and each girl 
has been chased by at least hal f  the boys. 

The adaptation of (7.A) to 2-place quantifiers, needed in order to give 
(7.1)-(7.4) a formal interpretation, is analogous to (6.10). 

We can verify the correctness of our interpretations by checking whether 
they can be put in the following canonical forms: 

(7.5) Most of my right hand gloves and most of my left hand gloves 
are such that each of the former matches exactly one of the 
latter and vice versa. 

(7.6) Most of my friends and few of Truffaut 's movies are such that 
each of the former saw at least two of the latter, and each of 
the latter was seen by at least one of the former. 

(7.7) Few of her characters and many of her early novels are such 
that each of the former appears in more t h a n . . ,  of the latter 
and each of the latter includes at least one of the former. 

(7.4) is already in canonical form. 

By replacing ~1 in (7.A) with (7.e) below we get the independent  
quantification of Section 4 above. 

(7.e) Maximal each-some~some-each quantifier condition: (X, Y) is a 
maximal pair such that each element of X stands in the relation 
• ~ to some element of Y, and for each element of Y there is 
some element of X which stands to it in the relation (b ~ 
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Thus, both independent branching quantifiers and complex, Henkin-Bar- 
wise branching quantifiers fall under the general schema (7.A). 

The second generalization abstracts from the outermost existential con- 
dition: 

(7.B) FOR ~2 PAIRS, (X, Y), OF SUBSETS OF THE UNIVERSE 
SATISFYING THE MAXIMAL QUANTIFIER CON- 
DITION ~1 WITH RESPECT TO ~ THE FOLLOWING 
HOLDS: X SATISFIES Q1 AND Y SATISFIES Q2. 32 

The following sentences exemplify two instances of (7.B) obtained by 
substituting 'by and large' (interpreted as 'most') and 'at most few' for ~2 
respectively (RI is the 'each-all' condition): 

(7.8) By and large, no more than a few boys and a few girls all date 
one another. 

(7.9) There are at most few cases of more than a couple Eastern 
delegates and more than a couple Western delegates who are 
all on speaking terms with one another. 

The family of branching structures delineated above enlarges consider- 
ably the array of interpretations available for natural language sentences 
with multiple quantifiers. The task of selecting the right alternative for a 
given natural language quantification is easier if an explicit inner/outer 
quantifier-condition occurs in the sentence, but is more complicated other- 
wise. One could of course be assisted by 'context' ,33 but linguists will be 
interested in formulating general guidelines based on constant regularities 
as well. Indeed, we may look at Barwise's claims regarding monotone- 
increasing and monotone-decreasing English branching quantifiers in this 
light: According to Barwise, in English monotone-increasing branching 
quantifiers regularly appear in complex quantifications of the 'each-all' 
type (with 'some' as the outer quantifier-condition); monotone-decreasing 
quantifiers regularly appear in 'each-some, some-each' quantifications, 
which are, as we have seen, equivalent to independent branching quantific- 
ations. Thus Barwise's claims can be expressed as conjectures in terms of 
the general definition schema of multiple quantification (7.B). 34 

32 The quantifiers over which 22 ranges are higher-order Mostowskian quantifiers which 
' treat '  pairs as single elements.  

33 Thus,  contextual considerations may lead us on some occasions to read (4.8) as a complex 
quantification with an inner ~one-one' quan t i fe r  condition (and an outer  ' some')  rather than 
as an independent  quantification. 
34 Another  conjecture expressible in terms of our general definition schema was suggested 
by an anonymous  referee. Compare:  
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8 .  C O N C L U S I O N  

Our investigation has yielded a general definition-schema for a pair of 
branching, or partially-ordered, generalized quantifiers. The existing defi- 
nitions, due to Barwise, constitute particular instances of this schema. The 
next task would be to extend the schema, or particular instances thereof 
(especially (6.3)), to arbitrary partially-ordered quantifier-prefixes. This 
work is, however, beyond the scope of the present paper. 

In a recent article, 'Branching Quantifiers and Natural Language', D. 
Westerstahl proposed a general definition for a pair of branching quantifi- 
ers different from the ones discussed in this paper. Although Westerstahl's 
motivation is similar to mine: dissatisfaction with the multiplicity of partial 
definitions - he approaches the problem in a different way. Accepting 
Barwise's definitions for monotone-increasing and monotone-decreasing 
branching quantifiers, plus van Benthem's definition for non-monotone 
quantifiers of the form 'exactly n', Westerstahl constructs a general for- 
mula which yields the above definitions when the quantifiers plugged in 
have the 'right' kind of monotonicity. That is, Westerstahl is looking for 
an 'umbrella' under which the various partial existent definitions fall. 
When Westerstahl's article was published the present paper had already 
been written. It seemed to me better not to include a discussion of Wester- 
stahl's work since from the point of view of the issues discussed here his 
approach is very similar to Barwise's. As for van Benthem's proposal for 
the analysis of non-monotone branching quantifiers, his definition is: 

(8.1) (Exactly-nx) • A x ,  

Rxy  = Df 

(Exactly-m y) • By, 

( 3 X ) ( 3 Y ) ( X C _ A  & YC_B & I X l = n  & ] Y I = m & R = X ×  y).35 

For 1-place quantifiers, the definition would be: 

(i) In the class, most of the boys and most of the girls all like each other; 
(ii) In the class, most of the boys and most of the girls like each other. 

Conjecture: the difference between (i) and (ii) is in the intended inner quantifier-condition. 
The presence of the explicit 'all' in (i) indicates that the inner quantifier-condition is 'each- 
all'. However,  the absence of 'all' in (ii) signifies that there the inner quantifier-condition is 
weaker. The reviewer suggests that this condition is, however, stronger than 'each-some, 
some-each'  (independence).  'Each-most '  appears appropriate. 
35 Westerstahl (1987), p. 274. 
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(8.2) (Exactly-n x) 
y )~Rxy  =Dr (=:IX)(3Y)(]XI = n &]Y[ 

(Exactly-rn 
= m & R = X x  Y). 

Given the equivalence of (8.2) to (8.3) below, we can express van Ben- 
them's proposal in terms of our general definition-schema (7.B) as follows: 
Quantifiers of the form 'Exactly n' tend to occur in complex quantifications 
obtained from (7.B) by substituting 'each-all' for ~1 and the singular 'the' 
f o r  ~2 .36 

(8.3) The (only) pair (X, Y) of subsets of the universe satisfying the 
maximal each-all condition with respect to R is such that X has 
exactly n elements and Y has exactly m elements. 

I would like to end with a philosophical note. Russell divided the 
enterprise of logic into two tasks: the discovery of universal 'templates' 
of truth and the discovery of new, philosophically significant, logical forms. 
In this context branching quantifiers offer a striking example of an alto- 
gether new way of building formulas. Speaking about the new form H. 
B. Enderton said: "We speak in real time, and real time progresses 
l inearly. . .  But formal languages are not spoken (at least not easily). So 
there is no reason to be influenced by the linearity of time into being 
narrow-minded about formulas. And linearity is the ultimate in nar- 
rowness". 37 Thus, according to Enderton, the passage from linear to 
partially-ordered quantifier-prefixes signifies real progress in our under- 
standing of the possibilities of language. One cannot, however, avoid 
asking: When does a generalization of a particular linguistic structure lead 
to a new, more general form of language and when does it lead to a formal 
system which can no longer be considered language? Henkin, for instance, 
mentioned the possibility of constructing a densely-ordered quantifier- 
prefix. Would this be language? What about a finite collection of quantifi- 
ers positioned in a circle around a formula? Etc. 

With respect to partially-ordered quantifiers, I see the situation as fol- 
lows: Henkin demonstrated the feasibility of introducing standard branch- 
ing quantification into abstract language. As for natural language, al- 

36 the singular ' the'  (or 'the only') is a 2-place Mostowskian quantifier defined by: 
'(The x)(Plx, P2x)' is true in ~¢ iff the extension of Plx in d is a unit set and is included in 
the extension of P2x in ~4. In (8.3) we have the 2nd-order version of "the', where (X, Y) is 
taken as a single element. 
37 Enderton (1970), p. 393. 
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though various natural language constructions do appear to exemplify 
branching structures, we have to admit that these are particularly simple 
instances of the general form and as such could probably be construed as 
exemplifying other logical principles. But quite apart from this, the ques- 
tion arises whether, in principle, we can introduce new forms of quan- 
tification into natural language. It is common to say that present day 
languages do not fully use their resources, at least as far as lexicon and 
grammatical complexity go. The case of branching quantifiers makes one 
wonder whether logical form is another unexhausted resource. 

Other general questions regarding branching quantifiers have been 
raised by Barwise. Do branching quantifiers commit us to a 2nd-order 
ontology? Do they show that language is not compositional in Frege's 
sense? It appears that before we can determine whether branching quanti- 
tiers are genuinely logical operators, we have to engage in a critical exam- 
ination of our concept of language. Indeed, branching quantifiers offer an 
interesting starting point for such an investigation. 
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