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62 METALOGIC

(AvB)=(~A>B).
So we can rewrite A, v A, as ~A, o A,. Then we have:
Ifk; Ao B, thenkp AD (~A; 2 Ay) and kp(~A; D Ay o B.

So we have a formula C,, viz. (~A; 2 A,) such that F, A> C,,
and ¥, C, o B, and C, has only (n—1) propositional symbols that
occur in A but not in B.

Now repeat the argument on k» C, > B (instead of on F A B),
and we should have k, C, o C,, and ¥, C, o B, and C, has only
(n-2) propositional symbols that occur in A but not in B.

Repeat the argument for (n—2) more times, collecting together
all the results; we should now have: k, A> C,, Fp C, 2 C,, B, Cy, D
Cy..... B C2CLEC, DB,

From these, it could be established, via the truth-table for ‘2’°,
that £, Ao C_ and k» C, > B, where C, has no propositional sym-
bols that occur in A but not in B, and C, is the required C.
(Thanks to Edwin Hung.)

A rigorous proof of this theorem, by mathematical induction
on the number of propositional symbols in A but not in B, is
given as the answer to the exercise on §27.

21 P’s powers of expression. Adequate sets of connectives

We shall prove (Theorem 21.1) that the language P is capable
of expressing any truth function, in the following sense:

To every truth function there corresponds in a natural way
a complete truth table. To every complete truth table there
corresponds (not necessarily uniquely) a formula of P (‘corre-
sponds’ in the sense of having that truth table as its truth
table).

Examples:
1. To the truth function material implication there corre-
sponds the table

(T, T) =T
F, T =T
(T,F) =F
(F,F) =T

To that table there corresponds the formula p’ > p”, among
others:
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pp’ pop”
T T T
F T T
T F F
F F T
& jta Tb?ethe nameless truth function to which there corresponds
(T,T,T) =F
(F,T,T) =F
(T,F,T) =F
(F,F,T) =F
(T, T,F) =F
F,T,F) =T
(T,F,F) =F
(F,F,F) =F

there corresponds (among others) the formula

~(~(~p' 2 ~p) > )
thus:

~
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Ins_tead of saying that P is capable of expressing any truth
function, we shall say that the set of connectives {~,2}is
adequate for the expression of any truth function, since the
qnly connectives in P are ~ and >. Some other sets of connec-
tives are also adequate; i.e. some languages, that differ from P
pnly in having different connectives, are also capable of express-
Ing any truth function. (‘Different connectives’ here means con-
nectives that differ in their truth-table definition, not merely in
the physical shape of their tokens.)
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Theorem 21.1 (which we still have to prove) is our first
important metatheorem:

21.1 The set {~, >} is adequate for the expression of any truth
Sfunction [so P can express any truth function]

The proof of Metatheorem 21.1 is in two stages. We prove
first that the set {~, A, v} is adequate (Metatheorem 21.2);
then that if the set {~, A, v } is adequate, then the set {~, >}
is.

21.2 The set {~, A, v} is adequate
Proof. Intuitively, the proof consists in showing that, given
any complete truth table, we can construct a formula® in dis-
junctive normal form that has that table as its truth table.
A formula is in disjunctive normal form (DNF) iff it is a dis-
junction of conjunctions of single propositional symbols or
their negations; counting as degenerate cases of disjunctions /
conjunctions single propositional symbols and their nega-
tions, and allowing disjunctions / conjunctions of more than
two disjuncts /conjuncts and of just one disjunct / conjunct.
Examples (throughout we only include such brackets as are
necessary to avoid ambiguity):
1. (pl A ~pll Aplll) V (pll A ~pl) v (Np”" Aplll)
2. (pl A ~pll APII’) V (pll A NP’)V ~pllll
[~p”” counts as a degenerate conjunction with only
one conjunct. ]
3‘ pl V pll
[Each of p’ and p”’ counts as a degenerate conjunction. ]
4. pl A pll
[This counts as a degenerate disjunction with only one
disjunct, viz. the whole formula.]
5. ~p'
[This counts as a degenerate disjunction of a degenerate
conjunction. ]
Notice that a formula is in DNF only if
(1) the only connectives that occur in it are connectives for
negation, conjunction and disjunction (not necessarily all
of these), and

1 From here to the end of the section ‘formula’ is used to cover not only
formulas of P but also formulas of languages with truth-functional propositional
connectives additional to those in P.
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(2) negation is over single propositional symbols only, not
over any more complicated expressions (e.g. not over
conjunctions or disjunctions).

Now the proof can go quite simply:

Let f be any arbitrary truth function of an arbitrary number,
n, of arguments. Write out the complete truth table corre-
sponding to f. It will have n + 1 columns and 2» rows. Look at
the T’s and F’s in the last column (i.e. the column that gives the
values of the function for the sets of arguments in the corre-
sponding rows). There are three possibilities:

1. The last column is all F’s.

2. There is exactly one T in the last column.

3. There is more than one T in the last column.

We show in each case how to construct a formula in DNF
having n distinct propositional symbols and the same truth
table as f.

Case 1 (The last column is all F’s)
Then

PIANPIAP"AP"’A,..AP"'
[where p” is an abbreviation for p followed by n dashes] is a
formula in DNF that has the same truth table as f. Forp’ A ~p’
always gets F, and so therefore does anything of which it is a
conjunct.

Case 2 (The last column has just one T)
Go along the row that has the T in its final column. If the

- first entry in the row is T, write p'; if the first entry is F, write

~p'. If the second entry is T, write p”; if it is F, write ~p”.
And so on, as far as and including the nth entry. Form the con-
Junction of what you have written (i.e. insert » — 1 conjunction
signs in the appropriate places). The resulting formula will be
in DNF and have the same truth table as the function f.
Example: Let f'be the function of three arguments that has the

table
T =F

R Rl
" -

T =F
T=T
T =F
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T T F=F
F T F=F
T F F=F
F F F=F
Then the formula ' ’e
.. truth table as f. It has the va
;:f 1zllilaIiFTanp§lh£:st%°’ :"‘I‘:g;m has T; in all other cases 1t has
the value F.
Case 3 (More than one T)

i truct a formula asin Case 2.
For each row that endsina T cons et lting Case

| disiunction of all these form
f:i)]linl;ethi; II)SJI:I?" and have the same truth table as f. ot has
Example: Let f be the function of three arguments

the table

e e R el
e e R B R R B
e B e B B B B
I T LTI
R e R R B e

Then the formula
(o' A~p" AP"YV(~P AP
is in DNF and has the same truth
in each of the three cases
1 4 T’ P” F’ plll T
O L E Ty F
(3) pl’ pll’ pIII a]lF

d the value F otherwise.
anThis completes the proof of Metatheorem 21.2.

" A ~plll) V (~pl A ~pll A ~plll)
table as f. It has the value T

Proof of Metatheorem 21.1 (The set {~,>}is adequate)

has the same
- metion of two formulas A and B 5
trult.h?algec::{:‘grmxﬂa in which A and B are related by ~ and

> instead of A, thus:
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(A AB)=~(A>~B).

Let C be any formula in which A occurs. Then by replacing
every subformula of C that has the form (A A B) by a sub-
formula of the form ~(A > ~B) we get a formula in which A
does not occur and that has the same truth table as C.

2. Similarly for v. Any disjunction of two formulas A and B
has the same truth table as a formula in which A and B are
related by ~ and > instead of v, thus:

(AvB)y=(~A>B) [ie.([~A]>B)]

3. Let W be any formula in which either A or v occurs, or
both A and Vv occur. By carrying out successively the replace-
ment operations described in (1) and (2) above, we get a for-
mula W’ in which no connectives other than ~ and > occur
and that has the same truth table as W.

4. So since the set {~, A, v} is adequate for the expression
of any truth function [21.2], so also is the set {~, 2}.

Q.E.D.
By similar arguments other sets of connectives can also be
shown to be adequate.

21.3 The set {~, v} is adequate [Emil L. Post, 1920]
Proof. Use Metatheorem 21.2 and the tautological schema

(AAB)=~(~AV~B).

21.4 The set {~, A} is adequate
Proof. Use Metatheorem 21.2 and the tautological schema
(AvB)=~(~AA~B)

C. S. Peirce in a paper of about 1880 that he did not publish
(‘A Boolian Algebra with One Constant’, Collected Papers, iv,
§§12-20 [pp. 13-18]) presented a language for Boolean algebra
with just one constant ‘which serves at the same time as the only
sign for compounding terms and which renders special signs for
negation, for “what is” and for “nothing” unnecessary’. For
our present purpose we can take it as a dyadic connective
meaning ‘Neither A nor B’. Peirce claimed that it was adequate,
but he did not give a rigorous proof of its adequacy. Later, in
another unpublished paper, written in 1902 (Collected Papers,
iv, §265 [p. 216]), he showed that anything that could be
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expressed by the connective meaning ‘Neither A nor B’ could
equally be expressed using only a connective meaning ‘Either
not A or not B’. Henry M. Sheffer, without knowing Peirce’s
result, showed (1912) that all truth functions expressible by
means of the primitive connectives (~, v) of Principia Mathe-
matica could be expressed by either of Peirce’s two connectives.
Emil L. Post was the first to give a completely general proof of
adequacy (for {~, v}, in his doctoral dissertation for Columbia
University, completed in 1920 and published in the following
year: cf. Post, 1920).

21.5 The set {} is adequate [C. S. Peirce, c. 1880; H. M. Sheffer,
1912, But see comment above.]
A | B has the value T iff A and B both bave the value F. So
P ¥ g can be read as ‘Neither p nor ¢’.
Proof. Use Metatheorem 21.4 and the tautological schemata

~A=A} A, (AAB)=(A} A)! (B! B).

21.6 The set {|} is adequate [C. S. Peirce, 1902; H. M. Sheffer,
1912. But see comment preceding 21.5.]

The symbol | expresses what is usually called ‘the Sheffer
stroke function’ (for which see the comment preceding 21.5).
A |B has the value F iff A and B both have the value T. So p|g
can be read as ‘Not both p and ¢’ or as ‘Either not p, or not g,
or not p and not ¢°.

Proof. Use Metatheorem 21.3 and the tautological schemata

~A=A|A, (AvB)=(A|A)|®B|B).
There are other adequate sets, and some inadequate ones.

21.7 The set { A, V } is inadequate '

The proof (which here we only indicate) is by showing that
the negation of a formula cannot be expressed by any combina-
tion of propositional symbols, A, and v. Let P’ be a language
just like P, except that it has the connectives A and Vv in place
of the connectives ~ and >. It is shown that (1) no formula of
P’ that consists of just one [occurrence of a] symbol can have
the value T when all its component propositional symbols have
the value F. Then it is shown that (2) if this is true of every
formula of P’ with fewer than m [occurrences of ] symbols, then
it is also true of every formula of P with exactly m symbols. It
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follows that no formula of P’ can have the value T when all its
component propositional symbols have the value F, and there-
fore that P’ cannot express negation. [This type of proof is
known as proof by (strong) mathematical induction, about
which more later.]

21.8 The set { A, 2} is inadequate
Proof similar to that for 21.7.

21.9 The set {>, V } is inadequate
Proof similar to that for 21.7.

Not every set that has ~ as a member is adequate, and not
every set that does not is inadequate:

21.10 The set {~, =} is inadequate

The proof is similar to that for 21.7, but in this case we show
that material implication, for example (we could equally well
take conjunction, or disjunction), cannot be expressed by any
combination of propositional symbols, ~, and =. For the truth
table for material implication has four rows and a final column
with three T’s and one F; while any four-rowed truth table for
any formula with no connectives other than ~ and = must
have either all T’s in its final column, or all F’s, or two T’s and
two F’s. (This is rigorously proved by mathematical induction
in the answer to exercise 2 of §27, p. 90.)

21.11 Material implication and exclusive disjunction together are
adequate
[There is no agreed symbol for exclusive disjunction. The
truth table for it is

A B  Aexcldisj.B
T T F
F T T
T F T
F F F

Tt can be seen that exclusive disjunction has the same truth table
as negated material equivalence. So we shall use the symbol £
for exclusive disjunction. ] '
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Progf. Use 21.1 and the tautological schema
~A=(A%(A D A)).

21.12 The only dyadic connectives that are adequate by them-
selves are | and | [Zylinski, 1924]
Proof. Suppose there was another connective. Let it be ». We
work out what its truth table would have to be, row by row:

A B AsB
T T ?
F T ?
T F ?
F F ?

If the entry in the first row were T, then any formula built up
using only » would take the value T when all its propositional
symbols took the value T. So no combination could express
the negation of A. So the entry for the first row must be F.
Similarly, the entry for the last row must be T.

This gives us:
A B AsB
T T F
F T ?
T F ?
F F T

If the second and third entries were both Ts, * would have the
same table as | (and so would be the same connective as |, in all
but the physical shape of its tokens, which is not important from
a theoretical point of view).l If they were both Fs, * would be the
same as . That leaves just two possibilities to consider, viz. (1)
second entry T, third entry F, and (2) second entry F, third entry
T. In the first case we would have

A»B=~A,
In the second case we would have
A*B=~B.

1 A truth-functional propositional connective is a meaningIA ul bol, not a
merely formal symbol, ymbol
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In either case » would be definable in terms of ~. But ~ is not
adequate by itself, because the only functions of one argument
definable from it are negation and identity. L.e. starting from a
formula A and using only negation we can get formulas that are
truth-functionally equivalent to A and formulas that are truth-
functionally equivalent to ~ A, but nothing else:

A

~A
~~A
~~~A

~~~~A

We cannot define in terms of ~ alone either of the other two
truth functions of one argument (§16, pp. 50, 51 above), viz.

R
and 1

{fﬂ) =F

fiE) =F

So any dyadic connective that is not the same as either | or § is
inadequate by itself.
Q.E.D.

22 A deductive apparatus for P: the formal system PS. Defini-
tions of proof in PS, theorem of PS, derivation in PS, syn-
tactic consequence in PS, proof-theoretically consistent set
of PS

Treat this section as though it followed on directly from the end
of §18. Pretend that you know nothing of the contents of
§§19-21, i.e. nothing about any interpretation of P.

We now specify a deductive apparatus for the formal language
P, viz. a set of axioms and a rule of inference. We call the result-
ing formal system the system PS (propositional system).



