The Right Logic? Handout

I. Branching quantifiers

1. Some relative of each villager and some relative of each townsman hate each other.

2.
$$(x)\{Vx \supset (\exists y)\{Ryx \bullet (z)[Tz \supset (\exists w)(Rwz \bullet Hyw \bullet Hwy)]\}\}$$

3. (x){Tx
$$\supset$$
 (\exists y){Ryx • (z)[Vz \supset (\exists w)(Rwz • Hyw • Hwy)]}}

4.
$$(x)(\exists y)(z)(\exists w)[(Vx \supset Ryx) \bullet (Tz \supset Rwz) \bullet Hyw \bullet Hwy]$$

5.
$$(x)(\exists y)$$
:
: $[(Vx \supset Ryx) \bullet (Tz \supset Rwz) \bullet Hyw \bullet Hwy]$
 $(z)(\exists w)$:

6. Some book by every author is referred to in some essay by every critic.

II. Virtues of first-order logic

- 1. Completeness
- 2. A variety of definitions of logical truth concur: in terms of logical structure, substitution of sentences or of terms, satisfaction by models, and proof.
- 3. Every consistent first-order theory has a model.
- 4. Compactness
- 5. Upward and downward Löwenheim-Skolem features

All of these properties fail in second-order logic; see Mendelson, *Introduction to Mathematical Logic*, p 377.

III. Change of logic - change of subject

Chair₁: desk chairs, dining room chairs, and such, but not recliners or bean bag chairs Chair₂: all chair₁ objects, and also recliners and bean bag chairs

IV. The existence of God

$$\begin{vmatrix} 1. & \neg(\exists x)x = g \\ 2. & (x)x = x \end{vmatrix}$$
 Assumption, for indirect proof Principle of identity
$$\begin{vmatrix} 3. & (x) \neg x = g \\ 4. & g = g \end{vmatrix}$$
 1, Change of quantifier rule
$$\begin{vmatrix} 4. & g = g \\ 5. & \neg g = g \end{vmatrix}$$
 2, UI
$$\begin{vmatrix} 5. & \neg g = g \\ 6. & g = g \bullet \neg g = g \end{vmatrix}$$
 3, UI
$$\begin{vmatrix} 6. & g = g \bullet \neg g = g \\ 6. & (\exists x) & x = g \end{vmatrix}$$
 4, 5, Conj
$$\begin{vmatrix} 1-5, & \text{Indirect proof} \end{vmatrix}$$
 1-5, Indirect proof