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Chapter I

The General Idea Behind Goédel’s Proof

In the next several chapters we will be studying incompleteness
proofs for various axiomatizations of arithmetic. Gédel, 1931, car-
ried out his original proof for axiomatic set theory, but the method
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is equally applicable to axiomatic number theory. The incomplete-
ness of axiomatic number theory is actually a stronger result since
it easily yields the incompleteness of axiomatic set theory.

Godel begins his memorable paper with the following startling
words.

“The development of mathematics in the direction of greater pre-
cision has led to large areas of it being formalized, so that proofs can
be carried out according to a few mechanical rules. The most com-
prehensive formal systems to date are, on the one hand, the Principia
Mathematica of Whitehead and Russell and, on the other hand, the

Zermelo-Fraenkel system of axiomatic set theory. Both systems are
so extensive that all methods of proofused in mathematics today
can be formalized in them—i.e. can be reduced to a few axioms and
rules of inference. It would seem reasonable, therefore, to surmise
that these axioms and rules of inference are sufficient to decide all
mathematical questions which can be formulated in the system con-
cerned. In what follows it will be shown that this is not the case, but
rather that, in both of the cited systems, there exist relatively simple
problems of the theory of ordinary whole numbers which cannot be
decided on the basis of the axioms.”

Gédel then goes on to explain that the situation does not depend
on the special nature of the two systems under consideration but
holds for an extensive class of mathematical systems.

Just what is this “extensive class” of mathematical systems? Var-
ious interpretations of this phrase have been given, and Godel’s the-
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2 Chapter I. The General Idea Behind Godel’s Proof

orem has accordingly been generalized in several ways. We will con-
sider many such generalizations in the course of this volume. Curi-
ously enough, one of the generalizations that is most direct and most
easily accessible to the general reader is also the one that appears
to be the least well known. What makes this particularly curious is
that the way in question is the very one indicated by Gédel himself in
the introductory section of his original paper! We shall shortly turn
to this (or rather to a further generalization of it), but before that,
we would like the reader to look at the following little puzzles which
illustrate G6del’s essential idea in a simple and instructive way.

A Godelian Puzzle. Let us consider a computing machine that
prints out various expressions composed of the following five symbols:

~ PN ()

By an ezpression, we mean any finite non-empty string of these
five symbols. An expression X is called printable if the machine can
print it. We assume the machine programmed so that any expression
that the machine can print will be printed sooner or later.

By the norm of an expression X, we shall mean the expression
X(X)—e.g. the norm of P~ is P~(P~). By a sentence, we mean any
expression of one of the following four forms (X is any expression):

(1) P(X)

(2) PN(X)
(3) ~ P(X)
(4) ~ PN(X)

" Informally, P stands for “printable”; N stands for “the norm of”
and ~ stands for “not”. And so we define P(X) to be true if (and
only if) X is printable. We define PN(X) to be true if the norm
of X is printable. We call ~ P(X) true iff (if and only if) X is not
printable, and ~ PN(X) is defined to be true iff the norm of X is not
printable. [This last sentence we read as “Not printable the norm of
X7, or, in better English: “The norm of X is not printable”.)

We have now given a perfectly precise definition of what it means
for a sentence to be true, and we have here an interesting case of
self-reference: The machine is printing out various sentences about
what the machine can and cannot print, and so it is describing its
own behavior! [It somewhat resembles a self-conscious organism, and
we can see why such computers are of interest to those working in
artificial intelligence.] i

We are given that the machine is completely accurate in that all
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sentences printed by the machine are true. And so, for example, if
the machine ever prints P(X), then X really is printable (X will be’
printed by the machine sooner or later). Also, if PN(X) is printable,
80 is X(X) (the norm of X). Now, suppose X is printable. Does
it follow that P(X) is printable? Not necessarily. If X is printable,
then P(X) is certainly true, but we are not given that the machine is
capable of printing all true sentences but only that the machine never
prints any false ones. [Whether the machine can print expressions
that are not sentences at all is immaterial. The important thing is
that among the sentences printable by the machine, all of them are
true.]

Is it possible that the machine can print all true sentences? The
answer is no and the problem for the reader is this: Find a true
sentence that the machine cannot print. [Hint: Find a sentence that
asserts its own non-printability—i.e. one which is true if and only if
it is not printable by the machine. The solution is given after the
next problem.] -

A Variant of the Puzzle. The following variant of the above puz-
zle will introduce the reader to the notion of Gédel numbering.

We now have another machine that prints out expressions com-
posed of the following five symbols:

~ PN10O

We are representing the natural numbers in binary notation (as
strings of 1’s and 0’s), and for purposes of this problem, we will
identify the natural numbers with the binary numerals that represent
them.

To each expression we assign a number which we call the Gédel
number of the expression. We do this according to the following
scheme: The individual symbols ~, P, N, 1,0 are assigned the respec-
tive Goédel numbers 10,100,1000,10000,100000. Then, the Gddel
number of a compound expression is obtained by replacing each
symbol by its Gédel number—for example, PN P has Gédel number
1001000100. We redefine the norm of an expression to be the expres-
sion followed by its Gédel number-—for example, the norm of PN P
is the expression PN P1001000100. A sentence is now an expression
of one of the four forms: PX, PNX, ~ PX and ~ PNX, where X
is any number (written in binary notation). We call PX true if X
is the G'ddel number of a printable expression. We call PN X true
iff X is the Gédel number of an expression whose norm is printable.
We call ~ PX true if PX is not true (X is not the Godel number
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of a printable expression), and we call ~ PNX true iff PN X is not
true.

Again we are given that the machine never prints a false sentence.
Find a true sentence that the machine cannot print.

Solutions. For the first problem, the sentence is ~ PN(~ PN).
By definition of “true”, this sentence is true if and only if the norm
of ~ PN is not printable. But the norm of ~ PN is the very
sentence ~ PN(~ PN)! And so the sentence is true if and only if
it is not printable. This means that either the sentence is true and

not printable, or it is printable and not true. The latter alternative

violates the given hypothesis that the machine never prints sentences
that are not true. Hence the sentence must be true, but the machine
cannot print it.

Of course, instead of having talked about a machine that prints
various expressions in our five symbols, we could have talked about a
mathematical system that proves various sentences in the same five
symbols. We would then reinterpret the letter P to mean provable
in the system, rather than printable by the machine. Then, given
that the system is wholly accurate (in that, false sentences are never
provable in it), the sentence ~ PN(~ PN) would be a sentence that
is true but not provable in the system.

Let us further observe that the sentence PN (~ PN)is false (since
its negation is true). Hence it is also not provable in the system
(assuming that the system is accurate). And so the sentence

PN(~ PN)

is an example of a sentence undecidable in a system—i.e. neither it
nor its negation is provable in the system.
For the second problem, the solution is ~ PN 101001000.

Now we shall turn to some incompleteness arguments in a general
setting: We consider a very broad notion of a mathematical system
and show that if it has certain features, then G6del’s argument goes
through. In the chapters that follow, we will look at some particular
systems and show that they do indeed possess these features.
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I.  Abstract Forms of Godel’s and Tarski’s
Theorems

Each of the languages £ to which Godel’s argument is applicable
contains at least the following items.

1. A denumerable set £ whose elements are called the ezpressions
of L.

2. A subset S of £ whose elements are called the sentences of L.

. A subset P of & whose elements are called the provable sen-

tences of L.
. A subset R of § whose elements are called the refutable (some-
times disprovable) sentences of L.

5. A set H of expressions whose elements are called the predicates
of L. [These were called class names in Gédel’s introduction.
Informally, each predicate H is thought of as being the name
of a set of natural numbers.]

6. A function ® that assigns to every expression £ and every nat-
ural number n an expression E(n). The function is required to
obey the condition that for every predicate H and every natu-
ral number n, the expression H(n) is a sentence. [Informally,
the sentence H(n) expresses the proposition that the number n
belongs to the set named by H.]

w

S

In the first incompleteness proof that we will give for a par-
ticular system £, we will use a basic concept made precise by
Alfred Tarski [1936]—viz. the notion of a true sentence (defined
quite differently than that of a provable sentence of a system).
And so we consider a seventh and final item of our language L.

7. A set 7 of sentences whose elements are called the true sen-
tences of L.

This concludes our abstract description of the type of systems that
we will study in the next several chapters.

Expressibility in £. The notion of ezpressibility in £, which we
are about to define, concerns the truth set 7 but does not concern
either of the sets P and R.

The word number shall mean natural number for the rest of this
volume. We will say that a predicate H is true for a number n or
that n satisfies H if H(n) is a true sentence (i.e. is an element of
T). By the set ezpressed by H, we mean the set of all n that satisfy
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H. Thus for any set A of numbers, H expresses A if and only if for

every number n:
H(n)eT - ne A

Definition. A set A is called ezpressible or nameable in L if A is
expressed by some predicate of L.

Since there are only denumerably many expressions of £, then
there are only finitely or denumerably many predicates of £. But
by Cantor’s well-known theorem, there are non-denumerably many
sets of natural numbers. Therefore, not every set of numbers is
expressible in L.

Definition. The system £ is called correct if every provable sentence
is true and every refutable sentence is false (not true). This means
that P is a subset of 7 and R is disjoint from 7. We are now
interested in sufficient conditions that £, if correct, must contain a
true sentence not provable in L.

Godel Numbering and Diagonalization, Welet g be a 1-1 func-
tion which assigns to each expression E a natural number g(E) called
the Gédel number of E. The function g will be constant for the rest
of this chapter. [In the concrete systems to be studied in subsequent
chapters, a specific Gédel numbering will be given. Our present
purely abstract freatment, however, applies to an arbitrary Goédel
numbering.] It will be technically convenient to assume that ev-
ery number is the Gédel number of an expression. [Gdédel’s original
numbering did not have this property, but the Gédel numbering we
will use in subsequent chapters will have this property. However,
the results of this chapter can, with minor modifications, be proved
without this restriction (cf. Ex. 5).] Assuming now that every num-
ber n is the G&del number of a unique expression, we let E,, be that
expression whose Gddel number is n. Thus, g(E,) = n.

By the diagonalization of E, we will mean the expression E,(n).
If E, is a predicate, then its diagonalization is, of course, a sentence;
this sentence is true iff the predicate E,, is satisfied by its own Gddel
pumber n. [We write “iff” to mean if and only if; we use “~”
synonymously.]

For any n, we let d(n) be the Gddel number of E,(n). The func-
tion d(z) plays a key réle in all that follows; we call it the diagonal
function of the system.

We use the term number-set to mean set of (natural) numbers.
For any number set A, by A* we shall mean the set of all numbers
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n such that d(») € A. Thus for any n, the equivalence
n€EA"-dn)eA

holds by definition of A*. [A* could also be written d~!(A), since it
is the inverse image of A under the diagonal function d(z).]

An Abstract Form of Godel’s Theorem. We let P be the set
of Gddel numbers of all the provable sentences. For any number set
A, by its complement A, we mean the complement of A relative to
the set N of natural numbers—i.e. A is the set of all natural numbers
not in A.

Theorem (GT)—After Gédel with shades of Tarski. If the set
P* is ezpressible in L and L is correct, then there is a true sentence
of £ not provable in L.

Proof. Suppose L is correct and P* is expressible in £. Let H be a
predicate that expresses P* in £, and let h be the Gédel number of
H. Let G be the diagonalization of H (i.e. the sentence H(h)). We
will show that G is true but not provable in L.

Since H expresses P* in £, then for any number n, H(n) is true «
n € P*. Since this equivalence holds for every n, then it holds in
particular for n the number A. So we take h for n (and this is the part
of the argument called diagonalizing) and we have the equivalence:
H(h) is true « h € P*. Now,

heP* o d(h)e P d(h) ¢ P.

But d(h) is the G6del number of H(h) (since k is the G6del number of
H) and so d(h) € P « H(h) is provable in £ and d(k) ¢ P « H(h)
is not provable in L. And so we have e

1. H(h) is true « H(h) is not provable in £. This means that
H(h) is either true and not provable in £ or false but provable
in £. The latter alternative violates the hypothesis that £ is
correct. Hence it must be that H(h) is true but not provable
in L.

When it comes to the particular languages £ that we will study,
we will verify the hypothesis that P* is expressible in £ by separately
verifying the following three conditions.

G1: For any set A expressible in £, the set A* is expressible in L.
G3: For any set A expressible in £, the set A is expressible in L.
G3: The set P is expressible in L.
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Conditions G; and Gs, of course, imply that for any set A express-
ible in L, the set A* is expressible in £. Hence if P is expressible in
L, then so is P*.

We might remark that the verification of G1 will turn out ﬁo.be
relatively simple; the verification of G2 will be completely trivial;
but the verification of G will turn out to be extremely elaborate.

Gé5del Sentences. Woven into the proof of Theorem GT is a very
important principle which was made explicit by Rudolf Carnap [193.4]
and which is closely related to Tarski’s theorem, to which we will
soon turn.

Call a sentence E, a Géidel sentence for a number set A if either

E, is true and its Godel number n lies in A, or E, is false and i‘ts
Godel number lies outside A. Thus, Ey is a Godel sentence for A iff
the following condition holds:

E,eT «neA

[Informally, a G8del sentence for A can be thonght of as a se.ntence
asserting that its own G6del number lies in 4. If the sentence is tr1¥e,
then its Gédel number does lie in A. If the sentence if false, then its
Gddel number does not lie in A.]

The following lemma and theorem pertains only to the set 7. The
sets P and R are irrelevant.

Lemma (D)—A Diagonal Lemma. (a) For any set A, if A” is
expressible in £, then there is a Godel sentence for A.
(b) If £ satisfies condition Gy, then for any set A expressible in
L, there is a Gddel sentence for A.

Proof.

(a) Suppose H is a predicate that expresses A* in L; let h be its
Gédel number. Then d(h) is the Godel number of H(h). For
any number n, H(n) is true < n € A*, therefore, H(h) is
true < h € A*. And h € A* & d(h) € A. Therefore, H(h) is
true «» d(h) € A, and since d(h) is the Godel number of H (h),
then H(h) is a Godel sentence for A.

(b) Immediate from (a).

Let us note that if we had first proved Lemma D, we would have
had the following swift proof of Theorem GT: Since P* is nameable
in £, then by lemma D, there is a G6del sentence G for P. A Godel
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sentence for P is nothing more nor less than a sentence which is
true if and only if it is not provable (in £). And for any correct
system £, a Gédel sentence for P is a sentence which is true but not
provable in L. [Such a sentence can be thought of as asserting its
own non-provability in L.]

An Abstract Form of Tarski’s Theorem. Lemma D has another
important consequence: Let T be the set of GSdel numbers of the
true sentences of £. Then the following theorem holds.

Theorem (T) (After Tarski).

1. The set T* is not nameable in L.

2. If condition Gy holds, then T is not nameable in L.

3. If conditions Gy and Gy both hold, then the set T is not name-
able in L. ‘

Proof. To begin with, there cannot possibly be a Gddel sentence for
the set T° because such a sentence would be true if and only if its
Godel number was not the Gédel number of a true sentence, and
this is absurd.

1.  T* were nameable in £, then by (a) of Lemma D, there would
be a Gédel sentence for the set T, which we have just shown is
impossible. Therefore, T* is not nameable in L.

2. Suppose condition G holds. Then if T were nameable in £,
the set 7* would be nameable in £, violating (1). 5

3. If G2 also holds, then if T were nameable in £, then T would
also be nameable in £, violating (2).

Remarks.

1. Conclusion (3) above is sometimes paraphrased: For systems
of sufficient strength, truth within the system is not definable
within the system. The phrase “sufficient strength” has been
interpreted in several ways. We would like to point out that
conditions G, and G suffice for this “sufficient strength.”

2. Godel (1931) likens his proof to the famous paradox of the Cre-
tan who says that all Cretans are liars.! An analogy that comes
closer to GSdel’s theorem is this: Imagine aland in which every
inhabitant either always tells the truth or always lies. Some of
the inhabitants are Athenians and some are Cretans. It is given

1 Actually, the liar paradox is more closely related to Tarski's theorem than to Gédel’s.
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that all the Athenians of the land always tell the truth and all
the Cretans of the land always lie. What statement could an
inhabitant make that would convince you that he always tells
the truth but that he is not an Athenian?

All he would need to say is: “I am not an Athenian.” A liar
couldn’t make that claim (because a liar is really not an Athe-
nian; only truth-tellers are Athenian). Therefore, he must be
truthful. Hence his statement was true, which means that he
is really not an Athenian. So he is a truth teller but not an
Athenian.

If we think of the Athenians as playing the role of the sentences
of £, which are not only true but provable in £, then any inhab-
itant who claims he is not Athenian plays the réle of Godel’s
sentence G, which asserts its own non-provability in £. {The
Cretans, of course, play the réle of the refutable sentences of £,
but their function won’t emerge till a bit later.]

II. Undecidable Sentences of L

So far, the set R of refutable sentences has played no rdle. Now it
shall play a key one. :

L is called consistent if no sentence is both provable and refutable
in £ (i.e. the sets P and R are disjoint) and inconsistent otherwise.
The definition of consistency refers only to the sets P and R, not
to the set T. Nevertheless, if £ is correct, then it is automatically
consistent (because if P is a subset of 7 and 7 is disjoint from R,
then P must be disjoint from R). The converse is not necessarily
true (we will later consider some systems that are consistent but not
correct).

A sentence X is called decidable in L if it is either provable or
refutable in £ and undecidable in L otherwise. The system [ is
called complete if every sentence is decidable in £ and incomplete if
some sentence is undecidable in L.

Suppose now L satisfies the hypothesis of Theorem GT. Then
some sentence G is true but not provable in £. Since G is true, it is
not refutable in £ either (by the assumption of correctness). Hence
G is undecidable in £. And so we at once have

II. Undecidable Sentences of £ ' 11

Theorem 1. If £ is correct and if the set P* is expressible in £,
then £ is incomplete.

A Dual of Theorem 1. In T.F.S. (Theory of Formal Systems,
1961) we introduced what might aptly be called a “dual form” of
Gddel’s argument, which we will first explain informally. Instead of
constructing a sentence that says “I am not provable,” we will con-
struct a sentence that says “I am refutable.” As we are about to see,
such a sentence must also be undecidable in £ (if £ is correct).

We have defined P to be the set of Gédel numbers of the provable
sentences. We now define R to be the set of Gddel numbers of the
refutable sentences.

Theorem (1°)—(A Dual of Theorem 1). If £ is correct and the
set R* is expressible in £, then £ is incomplete. More specifically, if
L is correct and K is a predicate that expresses the set R*, then its
t}l{i;gona]ization K (k) is undecidable in £ (k is the Godel number of

Proof. Assume hypothesis. Since K expresses R*, then by the proof
of (a) of Lemma D, the sentence K(k) is a Godel sentence for the set
R. Thus, K(k) is true iff its Godel number is in R, or, what is the
same thing, K (k) is true iff X (k) is in R, so K (k) is true iff K(k)
is refutable in £. This means that K (k) is either true and refutable

* or false but not refutable. By the assumption of correctness, K(k)

cannot be true and refutable. Hence it is false but not refutable.
Since the sentence is false, it is not provable either (again by the
assumption that L is correct). Hence K (k) is neither provable nor
refutable in L.

Remarks. Just as the Godel sentence H(h) can be thought of as
saying: “I am not provable in £,” we can think of K(k) as saying:
“I am refutable in £.” Going back to our analogy of Athenians
and Cretans, just as H(h) corresponds to an inhabitant who claims
that he is not an Athenian, the sentence K(k) corresponds to an
inhabitant who claims that he is a Cretan. He must be a liar but
not a Cretan. Hence (like an inhabitant who claims he is not an
Athenian) he must be neither an Athenian nor a Cretan.

Suppose now we have a correct system L satisfying the following
two conditions:

G: For any expressible set A, the set A* is expressible

G3’: The set R is expressible

Then, of course, the set R* is expressible. So by Theorem 1°, £
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is inconsistent or incomplete. We note that the complementation
condition (3 is not required in this proof. ‘

The first exercise below contains an interesting variant of Theo-
rem 1°,

Exercise 1. Suppose L is a correct system such that the following
two conditions hold.

1. The set P* is expressible in L.

2. For any predicate H, there is a predicate H' such that for every
n, the sentence H'(n) is provable in £ if and only if H(n) is
refutable in L.

Prove that £ is incomplete.

Exercise 2. We say that a predicate H represents a set A in L if
for every number n, the sentence H(n) is provable in L if and only
if n € A. [Note that this definition makes no reference to the truth
set 7 but only to the provability set P.]

Show that if the set R* is representable in £, then £, if consistent,
is incomplete.

Exercise 3. Show that if some superset of R* disjoint from P* is
representable in £, then £ is incomplete. [We call B a superset of A
if A is a subset of B.]

Exercise 4. Let us say that a predicate H contrarepresents a set
A in L if for every number n, the sentence H(n) is refutable in L
iff n € A. Show that if the set P* is contrarepresentable in £ and
L is consistent, then £ is incomplete. [This result and the result of
Exercise 2 will be expanded in Chapter 5; the result of Exercise 3
is related to Rosser’s incompleteness proof, which we will study in
Chapter 6.]

Exercise 5. Suppose we have a Gddel numbering g such that it is
not the case that every number is a Godel number. Then we define
a function d(z) to be a diagonal function (rather than the diagonal
function) if it has the property that for any number e, if € is the
Godel number of an expression E, then d(e) is the Gédel number
of E(e). Prove that for any diagonal function d(z), if d~1(4) is
expressible in £, then there is a Gddel sentence for A.

Exercise 6. Is it necessarily true that for any set A, the set A* is
the same as the set A*?

Exercise 7. To emphasize the wholly constructive nature of Gédel’s
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proof, suppose £ is a correct system such that the following three
conditions hold. : -

1. F7 is a predicate that expresses the set P.

2. For any number n, if E, is a predicate, then so is Ea,, and Es,
expresses the complement of the set expressed by E,.

3. For any number n, if E, is a predicate, then F3,44 is a pred-
icate, and if A4 is the set expressed by E,, then A* is the set
expressed by F3,qy.

(a) Find numbers @ and b (either the same or different) such
that Eq(b) is a true sentence not provable in L. [There are
two solutions in which a and b are both less than 100. Can
the reader find them both?]

(b) Show that there are infinitely many pairs (a, b) such that
E,(b) is true but not provable in L.

(c) Given that Eyg is a predicate, find numbers ¢ and d such
that E.(d)is a G5del sentence for the set expressed by E;q.




