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The logic of quantum mechanics*

I want to begin by considering a case in which ‘necessary’ truths (or
rather ‘truths’) turned out to be falsehoods: the case of Euclidean
geometry. I then want to raise the question: could some of the ‘necessary
truths’ of logic ever turn out to be false for empirical reasons? 1 shall
argue that the answer to this question is in the affirmative, and that logic
is, in a certain sense, a natural science.

I. The overthrow of Euclidean geometry

Consider the following assertion (see Figure 1): two straight lines AB
and CD are alleged to come in from ‘left infinity’ in such a way that, to
the left of EF, their distance apart is constant (or, at any rate, ‘constant
on the average’), while after crossing EF they begin to converge — i.e.
their distance apart diminishes ~ without its being the case that they bend
at E or F (i.e. they are really straight, not just ‘piecewise straight’).

E
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F
Figure 1

Is it not ‘intuitively clear’ that this is a contradiction? If one did not
know anything about non-Euclidean geometry, relativity, etc., would the
intuitive évidence that this is a contradiction, an impossibility, a com-
plete absurdity, etc., be any less than the intuitive evidence that no

* First published as ‘Is logic empirical?’ in R. Cohen and M. Wartofsky (eds.),
Boston Studies in the Philosophy of Science, 5 (Dordrecht, Holland, D. Reidel 1968).
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surface can be scarlet (all over) and bright green at the same time? Or
that no bachelor is married? Is the intuitive ‘feeling’ of contradiction
really different in the following three cases?

(1) Someone claims that 4B and CD are both straight lines, not-
withstanding their anomalous behavior.

(2) Someone claims that he has a sheet of paper which is scarlet (all
over, on both sides) and green (all over, on both sides) at once.

(3) Someone claims that some men are married (legally, at the present
time) and nonetheless still bachelors.

It seems to me that it is not. Of course, (1) does not involve a ‘ contra-
diction’ in the technical sense of formal logic (e.g. ‘p- —2’); but then
neither does (2), nor, unless we stipulate the definition ‘Bachelor = man
who has never married’, does (3). But then ‘contradiction’ is often
employed in a wide sense, in which not all contradictions are of the
form ‘p- —p’, or reducible to that form by logic alone.

The important thing, for present purposes, is this: according to
General Relativity theory, the claim mentioned in (1) is possible, not
impossible. AB and CD could both be straight paths in the strict sense:
that is, for no P, P’ on AB (or on CD) is there a shorter way to travel
from Pto P’ than by sticking to the path 4B (respectively, CD). If we are
willing to take ‘shortest distance between two points’ as the defining
property of straight lines, then AB and CD could both be straight lines
(in technical language: geodesics), notwithstanding their anomalous
behavior.

To see this, assuming only the barest smattering of relativity: assume
space is Euclidean ‘in the large’ — i.e. the average curvature of space is
zero. (This is consistent with the General Theory of Relativity.) Then
two geodesics could well come in from ‘left infinity’ a constant distance
apart on the average (‘on the the average’ mind you! —and I am speaking
about straight lines!). Suppose these two geodesics — they might be the
paths of two light rays approaching the sun on opposite sidest — enter the
gravitational field of the sun as they cross EF. Then, according to GTR,
the geodesics — not just the light, but the very geodesics, whether light
is actually travelling along them or not — would behave as shown in
Figure 1.

Conclusion: what was yesterday’s ‘evident’ impossibility is today’s
possibility (and even actuality — things as ‘bad’ as this actually happen,

+ The physics of this example is deliberately oversimplified. In the GTR it is the
four-dimensional ‘path’ of the light-ray that is a geodesic. To speak of (local) ‘three’
dimensional space’ presupposes that a local reference system has been chosen. But even
the geodesics in three-dimensional space exhibit non-Euclidean behavior of the kind
described.
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according to the GTR — indeed, if the average curvature of space is not
zero, then ‘worse’ things happen!)

If this is right, and I believe it és right, then this is surely a matter of
some philosophical importance. The whole category of ‘necessary truth’
is called into question. Perhaps it is for this reason that philosophers have
been driven to such peculiar accounts of the foundations of the GTR:
that they could not believe that the obvious account, the account accor-
ding to which ‘conceptual revolutions’ can overthrow even ‘necessary
truth’, could possibly be correct. But it is correct, and it is high time we
began to live with this fact.

II. Some unsuccessful attempts to dismiss the foregoing

One way to dismiss the foregoing is to deny that ‘straight line’ ever
meant ‘geodesic’. But then one is forced to give up ‘a straight line is the
shortest path’, which was surely a ‘necessary truth’ too, in its day.
Moreover, if the geodesics are not the ‘straight’ paths in space, then
which paths in space are ‘straight’? Or will one abandon the principle
that there are straight paths?

Again, one might try the claim that ‘distance’ (and hence ‘shortest
path’) has ‘changed its meaning’. But then what is the ‘distance’
between, say, 4 and B in the old sense? And what path between 4 and B
is shorter than AB even in the old sense? No matter what path one may
select (other than AB) as the ‘really’ straight one (i.e. the one that was
“straight’ before the alleged ‘ meaning change’), it will turn out that one’s
path AGB will not look straight when one is on it, will not feel straight, as
one travels along it, and will measure longer, not shorter, than AB by
any conventional method of measurement. Moreover, there will be no
nonarbitrary ground for preferring AGB over AG’B, AG"B (Figure 2)

. as the ‘really straight’ path from A4 to B.

A 8

Figure 2
A
This brings out, indeed, one of the important facts about a conceptual

revolution: such a revolution cannot successfully be dismissed as a mere
case of relabeling. It is easy to see why not. The old scientific use of the
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term ‘straight line’ rested on a large number of laws. Some of these laws
were laws of pure geometry, namely, Euclid’s. Others were principles
from physics, e.g. ‘light travels in straight lines’, ‘a stretched thread will
lie in a straight line’, etc. What happened, in a nutshell, was that this
cluster of laws came apart. If there are any paths that obey the pure
geometrical laws (call them ‘E-paths’), they do not obey the principles
from physics, and the paths that do obey the principles from physics —
the geodesics - do not obey the old principles of pure geometry. In such
a situation, it scarcely makes sense to ask ‘what paths are straight in the
old sense’ ? We cannot say that the E-paths are straight, because they are
not unique; there is no one way of picking out paths in space and calling
them ‘straight’ which preserves Euclidean geometry: either there is no
way of doing this, or there are infinitely many. We can say that the
geodesics are straight, because they at least obey what were always
recognized to be the operational constraints on the notion of a straight
line; but they do not obey the old geometry. In short, either we say that
the geodesics are what we always meant by ‘straight line’, or we say that
there is nothing clear that we used to mean by that expression. (Or,
perhaps, that what answered to the expression were not-too-long pieces
of geodesics; that the old notion of ‘straight line’ cannot successfully
be applied ‘in the large’.) But in neither case is it correct to say: it is just
a matter of shifting the ‘label’ ‘straight line’ from one set of paths to
another. A good maxim in this connection would be: Do not seek to have
a revolution and minimize it too.

On the other hand, one is not committed by the foregoing to denying
that ‘straight line’ changes its meaning as one goes over to the GTR.
Perhaps one wants to say it does, perhaps one does not want to say this.
That is a question about the best way to use the expression ‘change of
meaning’ in a very difficult class of cases. The important thing is that it
does not ‘change its meaning’ in the trivial way that one might at first
suspect. Once one appreciates that something that was formerly literally
unimaginable has indeed happened, then one also appreciates that the
usual ‘linguistic’ moves only help to distort the nature of the discovery,
and not to clarify it.

II. The logic of quantum mechanics

In classical physics, the state of a system S consisting of /V particles
01,. . ., Oy is specified by giving the 3V position coordinates and the 3N
momentum coordinates. Any reasonably well-behaved mathematical
function of these 6/V quantities represents a possible physical ‘magni-
tude’ m(s). Statements of the form m(s) = r — ‘the magnitude m has the
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value 7 in the system S’ — are the sorts of statements we shall call basic
physical propositions here.

The basic mathematical idea of quantum mechanics is this: a certain
infinite dimensional vector space H(s) is coordinated to each physical
system S, and each basic physical proposition is coordinated to 2 sub-
space of the vector space. In the case of what is called a ‘nondegenerate’
magnitude m(s), the subspace corresponding to the basic physical pro-
position m(s) = r is a one-dimensional one, say V,, and the one-
dimensional subspaces V, ‘span’ the whole space. The reader may
easily picture this situation as follows: pretend the space H(s) is a finite
dimensional space. (Indeed, nothing is lost if we pretend for now thatall
physical magnitudes have finitely many values, instead of continuously
many, and in such a world the space H(s) would be just an ordinary
finite dimensional space.) Then to each number 7 which is a possible
value of such a physical magnitude as position (remember that we are
pretending that there are only finitely many such!), there corresponds a
single dimension of the space H(s) - i.e. V, is simply a straight line in the
space — and the lines V, corresponding to all the possible values of, say,
position form a possible coordinate system for the space. (In fact, they
meet at right angles, as good coordinates should.) If we change from
one physical magnitude m;(s) to a different magnitude my(s) (say, from
position to momentum) then the new coordinates ¥, will be inclined at
an angle to the old, and will not coincide with the old. But each possible
momentum 7 will correspond to a straight line ¥’,, though not to a
straight line which coincides with any one of the lines ¥, corresponding
to a possible position r.

So far we have said that there exists a ‘prescription’ for coordinating
basic physical propositions to subspaces of the space Hi (5)- This mapping
can be extended to compound statements by the following rules (here,
let S(p) be the space corresponding to a proposition p):

S(pv q) = the span of the spaces S(p) and S(g), (1)
S(pq) = the intersection of the spaces S(p) and S@@), (2)
S(—p) = the orthocomplement of S(p)- (3)

These rules can also be extended to quantifiers, since, as is well known,
the existential quantifier works like an extended disjunction and the
universal quantifier works like an extended conjunction.

These rules, however, conflict with classical logic. To see this, let
71,7,...,, be all the possible values of some ‘non-degenerate’ magni-
tude. Then the straight lines V,,..., V, ‘span’ the whole space
H(s) — i.e. the number = is also the number of dimensions of H(s), and
any vector in the space H(s) can be expressed as a combination of vectors
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in these directions V,,. Since the ‘span’ of V,,..., V,, is the whole
space, the statement:

m(s) = r,Vvm(s) = raV ---vms) =7, (1)

(where m is the magnitude in question) is an always-true statement.

Now let m’ be any magnitude such that the straight line V', represent-
ing the statement m'(s) = r (where r is some real number) does not
coincide with any of the z lines V, , V,,,. .., V, (such a magnitude can
always be found). The statement:

m'(s) = r-[m(s) = ryv - vn(s) = r,] (2)

fzorresponds to the intersection of V', with the whole space, and this is
just V'.. Thus (2) is equivalent to:

m'(s) = 7. ()
On the other hand, consider the disjunction

[m'(s) = r-m(s) = r,]v[m'(s) = 7-m(s) = ra] v - - -
VIm'(s) = 7-m(s) = ,] @

Each term in this disjunction corresponds to the o-dimensional
subspace (the origin), which we consider to represent the always-false
?roposition. For a typical term [m'(s) = r-m(s) = r,] corresponds to the
intersection of the two one-dimensional subspaces V', and V,, and this
is just the origin. Thus (4) is the space spanned by # o-dimensional
subspaces, and this is just the o-dimensional subspace. So two proposi-
tions which are equivalent according to classical logic, viz. (2) and (4),
are mapped onto different subspaces of the space H(s) representing all
possible physical propositions about S. Conclusion: the mapping is
nonsense - or, we must change our logic.

Suppose we are willing to adopt the heroic course of changing our
logic. What then?

It turns out that there is a very natural way of doing this. Namely,
Just read the logic off from the Hilbert space H(S). Two propositions are
to be considered equivalent just in case they are mapped onto the same
subspace of H(S), and a proposition P; is to be considered as ‘implying’
a proposition P, just in case Sp_ is a subspace of Sp,. This idea was first
advanced by Birkhoff and von Neumann some years ago, and has been
recently revived by a number of physicists. Perhaps the first physicist to
fully appreciate that all so-called ‘anomalies’ in quantum mechanics
come down to the non-standardness of the logic is David Finkelstein of
Yeshiva University, who has defended this interpretation in a number
of lectures.
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IV. The peculiarities of quantum mechanics

It is instructive to examine some of the peculiarities of quantum
mechanics in the light of the foregoing proposal. Consider, first of all,
complementarity. Let S be a system consisting of a single electron with a
definite position 7 (strictly speaking, position is a vector and not a real
number, but we may consider a one-dimensional world). The subspace
of H(S) representing the statement ‘the position of S is 7’ is, as already
remarked, a one-dimensional subspace V,. Let V', represent the state-
ment ‘ the momentum of S is #"’, where 7’ is any real number. Then the
intersection ¥V, N V', is o-dimensional; thus we have:

For all 7, 7, the statement: (the electron has position r. the electron (1)
has momentum r') is logically false.

Or, in ordinary language ‘an electron cannot have an exact position and
an exact momentum at the same time’.

All cases of ‘complementarity’ are of this kind: they correspond to
logical tncompatibilities in quantum logic.

Next, consider the famous ‘two-slit’ experiment. Let 4, be the state-
ment ‘the photon passes through slit 1’ and let A, be the statement ‘the
photon passes through slit 2°. Let the probability that the photon hits a
tiny region R on the photographic plate on the assumption 4, be
P(4;, R) and let the probability of hitting R on the assumption 4,
be P(4,; R). These probabilities may be computed from quantum
mechanics or classical mechanics (they are the same, as long as only one
slit is open), and checked experimentally by closing one slit, and leaving
only A, (respectively A;) open in the case of P(4, R) (respectively,
P(4,, R)). _

Now, it is often said that if both slits are open the probability that the
particle hits R ‘should be’ $P(4;, R)+3P(4;, R). This is the proba-
bility predicted by classical mechanics. However, it is not the observed
probability (which is correctly predicted by quantum mechanics, and not
by classical mechanics). How was this ‘classical’ prediction arrived at?

First of all, the probability that the photon hits the slit 4; = the
probability that it hits 4,. This can be tested experimentally, and also
insured theoretically by symmetrizing the apparatus, rotating the
apparatus periodically, etc. Since we count only experiments in which
the photon gets through the barrier, and hence in which the disjunction
A, v A, is true, we have

P(A;v 4,3, R) = P[(4,V A3) R}/P(A, v 4,)
= P(4,-Rv A;-R)|P(A, Vv A,)
= P(A4,-R)[P(A, v A,)+ P(4y- R)[P(A, v A5)
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(here ‘P[(A,V A5)-R]’ means ‘the probability of (4,v 4;)-R’, and
similarly for ‘P(4, v 4,)’, etc.

Since P(4,) = P(4,),
we have P4, v Ay) = 2P(4,) = 2P(4,).
Thus  P(A,-R)/P(A,v A4,) = P(4,-R)|2P(A;) = +P(A,, R)
and similarly
P(A5-R)P(A, v A;) = P(A,-R)|2P(4,) = 3P(4,, R).
Substituting these expressions in the above equation yields:
P(A4,v A,, R) = 3P(4,, R)+31P(4,, R). (2)

Now a crucial step in this derivation was the expansion of (4, v 4;)-R
into A;-Rv A,-R. This expansion is fallacious in quantum logic; thus
the above derivation also fails. Someone who believes classical logic must
conclude from the failure of the classical law that one photon can some-
how go through two slits (which would invalidate the above deduction,
which relied at many points on the incompatibility of 4; and 4,), or
believe that the electron somehow ‘prefers’ one slit to the other (but only
when no detector is placed in the slit to detect this mysterious prefer-
ence), or believe that in some strange way the electron going through
slit 1 ‘knows’ that slit 2 is open and behaves differently than it would if
slit 2 were closed ; while someone who believes quantum logic would see
no reason to predict P(4, v 4, R) = $P(4,, R)+31P(A4,, R) in the first
place. '

For another example, imagine a population P consisting of hydrogen
atoms, all at the same energy level e. Let D be the relative distance be-
tween the proton and the electron, and let E be the magnitude ‘energy’.
Then we are assuming that E has the same value, namely e, in the case
of every atom belonging to P, whereas D may have different values
dy, d,,. .. in the case of different atoms A4,, 4,,...

The atom is, of course, a system consisting of two parts — the electron
and the proton — and the proton exerts a central force on the electron. As
an analogy, one may think of the proton as the earth and of the electron
as a satellite in orbit around the earth. The satellite has a potential
energy that depends upon its height above the earth, and that can be
recovered as usable energy if the satellite is made to fall. It is clear from
the analogy that this potential energy P associated with the electron (the
satellite), can become large if the distance D is allowed to become
sufficiently great. However, P cannot be greater than E (the total energy).
So if E is known, as in the present case, we can compute a number d
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such that D cannot exceed d, because if it did, P would exceed e (and
hence P would be greater than E, which is absurd). Let us imagine a
sphere with radius d and whose center is the proton. Then if all that we
know about the particular hydrogen atom is that its energy E has the
value e, we can still say that wherever the electron may be, it cannot be
outside the sphere. The boundary of the sphere is a ‘potential barrier’
that the electron is unable to pass.
All this is correct in classical physics. In quantum physics we get

Every atom in the population has the energy level e 3)
and we may also get

10%, of the atoms in the population P have values of D which
exceed d. (4)

The “resolution’ of this paradox favored by many people is as follows.
They claim that there is a mysterious ‘ disturbance by the measurement’,
and that (3) and (4) refer to values after measurement. Thus, in this view,
(3) and (4) should be replaced by

If an energy measurement is made on any atom in P, then the
value e is obtained, 3"

and

If a D-measurement is made on any atom in P, then in 109, of the

cases a value greater than d will be obtained. )

These statements are consistent in view of

An E-measurement and a D-measurement cannot be performed
at the same time (i.e. the experimental arrangements are mutu-
ally incompatible). : (5)

Moreover, we do not have to accept (3') and (4') simply on the
authority of quantum mechanics. These statements can easily be checked,
not, indeed, by performing both a D-measurement and an E-measure-
ment on each atom (that is impossible, in view of (5)), but by performing
a D-measurement on every atom in one large, fair sample selected from
P to check (3) and an E-measurement on every atom in a different
large, fair sample from P to check (4'). So (3") and (4") are both known
to be true.

In view of (3'), it is natural to say of the atoms in P that they all ‘have
the energy level e’. But what (4') indicates is that, paradoxically, some of
the electrons will be found on the wrong side of the potential barrier.
They have, so to speak, ‘passed through’ the potential barrier. In fact,
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quantum mechanics predicts that the distance D will assume arbitrarily
large values even for a fixed energy e.

The trouble with the above ‘resolution’ of this paradox is twofold. In
the first place, if distance measurement, or energy measurement (or
both) disturb the very magnitude that they seek to measure, then there
should be some tAeory of this disturbance. Such a theory is notoriously
lacking, and it has been erected into an article of faith in the state of
Denmark that there can be no such theory. Secondly, if a procedure
distorts the very thing it seeks to measure, it is peculiar it should be
accepted as a good measurement, and fantastic that a relatively simple
theory should predict the disturbed values when it can say nothing about
the undisturbed values.

The resolution provided by quantum logic is quite straightforward.
The statement

(Such-and-such electrons in P [some specific 10%,] have a D-
value in excess of d). The energy level of every electron in
Pise

is logically false in both classical and quantum logic.

Let Sy, S,,. .., Sg be all the statements of the form ‘such-and-such
electrons in P [some specific 10%,] have a D-value in excess of d’, i.e.
let R be the number of subsets of P of size 10%,, and let there be one
S; for each such subset. Then what was just said can be rephrased thus:
for each fixed i, i = 1, 2,..., R the statement below is logically false:

S;-E = e. ©6)

Also, in both classical and quantum logic, the following statement is
likewise false:

S;(E=e)vS;(E=¢e)v---vS-(E = e) @)

(since the o-space, any number of times, only spans the o-space).
However,

(E = €)-(S;vSyV -+ VSy) ®)

is not logically false in quantum logic! In fact, the subspace of (E = e)is-
included in the subspace of (S, v S,V - - - v S), so that (8) is equivalent
to just

E=e )]
which has a consequence '
SIVSQV"'VSR. (IO)
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In words: the statement (9) (or (3)) is not incompatible with but
implies the statement (10) (or (4)).

These examples should make the principle clear. The only laws of
classical logic that are given up in quantum logic are distributive laws,
eg. p-(qvr) = p-qvg-r; and every single anomaly vanishes once we
give these up.

V. The quantum mechanical view of the world

We must now ask: what is the nature of the world if the proposed inter-
pretation of quantum mechanics is the correct one? The answer is both
radical and simple. Logic is as empirical as geometry. It makes as much
sense to speak of ‘physical logic’ as of ‘ physical geometry’. We live in a
world with a non-classical logic. Certain statements — just the ones we
encounter in daily life — do obey classical logic, but this is so because the
corresponding subspaces of H(S) form a very special lattice under the
inclusion relation: a so-called ‘Boolean lattice’. Quantum mechanics
itself explains the approximate validity of classicallogic ‘in the large’, just
as non-Euclidean geometry explains the approximate validity of Euck-
dean geometry ‘in the small’.

The world consists of particles, in this view,} and the laws of physics
are ‘deterministic’ in a modified sense. In the classical physics there was
(idealizing) one proposition P which was true of S and such that every
physical proposition about S was implied by P. This P was simply the
complete description of the state of S. The laws of classical physics say that
if such a P is the state of S at 7, then the state after the lapse of time ¢
will be a certain f(P). This is classical determinism.

In quantum mechanics, let us say that any P whose corresponding
S, s one-dimensional is a state-description. Let Sy, Sy,. . ., Sp be all the
possible positions of a one-particle system S, and let T, T,..., Ty be
all the possible momenta. Then

SivSv---vS; (1)
is a valid statement in quantum logic, and so is:
TvTov---vTq (2)
In words:
Some S, is a true state-description (")
and Some T} is a true state-description. 2"

+ This is so only because we are quantizing a particle theory. If we quantize a field
theory, we will say ‘the world consists of fields’, etc.
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However, as we have already noted, the conjunction S;- T is inconsis-
tent for all 7, j. Thus the notion ‘state’ must be used with more-than-
customary caution if quantum logic is accepted. A system has no complete
description in quantum mechanics; such a thing is a logical impossibility,
since it would have to imply one of the S;, in view of (1), and also have to
imply one of the T} in view of (2). A system has a position-state and it
has a momentum-state (which is not to say ‘it has position 7, and it has
momentum r,’, for any #,, r;, but to say [(it has position7;V - - Vv it has
position 7z). (It has momentum 7,V --- V it has momentum )], as
already explained); and a system has many other ‘states’ besides (one for
each ‘non-degenerate’ magnitude). These are ‘states’ in the sense of
logically strongest comsistent statements, but not in the sense of ‘the
statement which implies every true physical proposition about S’.

Once we understand this we understand the notion of ‘determinism’
appropriate to quantum mechanics; if the state at 7, is, say, S,, then
quantum mechanics says that after time ¢ has elapsed the state will be
U(S,), where U is a certain ‘unitary transformation’; and, similarly,
quantum mechanics says that if the state at £, is T}, then the state after ¢
will be U(T)). So the state at #, determines the state after any period of
time 7, just as in classical physics. But, it may happen that I know the
state after time ¢ has elapsed to be U(T;) = T, say, and 1 measure not
momentum but position. In this case I cannot predict (except with
probability) what the result will be, because the statement T; does not
imply any value of position. ‘Indeterminacy’ comes in not because the
laws are indeterministic, but because the states themselves, although
logically strongest factual statements, do not contain the answers to all
physically meaningful questions. This illustrates how the conflict
between ‘determinacy and indeterminacy’ is resolved in quantum
mechanics from the standpoint of quantum logic.

Finally, it remains to say how probabilities enter in quantum mech-
anics under this interpretation. (This has been pointed out by David
Finkelstein, whose account I follow.) Suppose I have a system S, and I
wish to determine the probability of some magnitude M having a value
in a certain interval, given some information T about S. I imagine a
system P consisting of a large number N of non-interacting ‘copies’ of S,
all in the same ‘state’ T. This new system P has a Hilbert space H(P) of
its own, i.e. H(P) is a vector space representing all possible physical
propositions about P. Let R, be the statement that R% of the systems
S in P have an M-value in the interval I am interested in. It turns out
that, as N is allowed to approach infinity, the subspace corresponding
to R, either contains the subspace corresponding to ‘all the ““copies”
are in state T ‘in the limit’ or is orthogonal to it ‘in the limit’. In other
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words, given that all of the systems in P are in state T and that they
do not interact, it follows with almost certainty that R%, of them have
M(S}) in the interval or with almost certainty that some other percent
have M(S) in the interval, if the number of such systems in P is very
large. But, if we can say ‘if we had sufficiently many identical copies of
S, RY, of them would have the property we are interested in’, then, on
any reasonable theory of probability, we can say ‘the probability that S
has the property is R’. In short, probability (on this view) enters in
quantum mechanics just -as it entered in classical physics, via considering
large populations. Whatever problems may remain in the analysis of
probability, they have nothing special to do with quantum mech-
anics.

Lastly, we must say something about ‘disturbance by measurement’
in this interpretation. If I have a system in ‘state’ .S, (i.e. ‘the position
is 7.’), and I make a momentum measurement, I must ‘disturb’ S,. This
is so because whatever result 7 I get is going to be incompatible with S,,.
Thus, when I get T;, I will have to say that S, is no longer true; but this
is no paradox, since the momentum measurement disturbed the position
even according to classical physics. Thus the only ‘disturbance’ on this
interpretation is the classical disturbance; we do not have to adopt the
strange view that position measurement ‘disturbs’ (or ‘brings into
being’, etc.) position, or that momentum measurement disturbs (or ‘brings
into being’, etc.) momentum, or anything of that kind.

The idea that momentum measurement ‘brings into being’ the value
found arises very naturally, if one does not appreciate the logic being
employed in quantum mechanics. If I know that S, is true, then I know
that for each T; the conjunction S,- T} is false. It is natural to conclude
(‘smuggling in’ classical logic) that S,-(Tyv T, v ... v T}) is false, and
hence that we must reject (T3 v T3V ... v Tg) — i.e. we must say ‘the
particle has no momentum’. Then one measures momentum, and one
gets a momentum — say, one finds that T),. Clearly, the particle now has a
momentum — so the measurement must have ‘brought it into being’.
However, the error was in passing from the falsity of S, T,V S,-
Tyv...v 8, Ty to the falsity of S,-(TyvTyv...v T3). This latter
statement is frue (assuming S,); so it is #rue that ‘the particle has a
momentum’ (even if it is also true that ‘the position is r’); and the
momentum measurement merely finds this momentum (while disturbing
the position); it does not create it, or disturb it in any way. It is as simple
as that.

At this point let us return to the question of ‘ determinism’ for the last
time. Suppose I know a ‘logically strongest factual statement’ about
S at ¢, and I deduce a similar statement about .S after time £ has elapsed
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- say, S;. Then I measure momentum. Why can I not predict the out-
come? We already said: ‘because S; does not imply T for any j°. But a
stronger statement is true: Sy is incompatible with T, for all j! But it
does not follow that S; is incompatible with (T v T,V ... v Tg).

Thus it is still true, even assuming S;, that ‘the particle has a
momentum’; and if I measure I shall find it. However, S; cannot tell me
what I shall find, because whatever 1 find will be incompatible with S,
(which will no longer be true, when I find T}). Quantum mechanics is
more deterministic than indeterministic in that all inability to predict is due
to ignorance.

Let U,, U,,. .., Uy be statements about S at ¢, such that ‘U, at ¢, is
equivalent to ‘T after time ¢ has elapsed’, for ¢ = 1, 2,..., R. Then it
can be shown that

UvUyv...vU,

1s logically true — i.e. there is a statement which is true of S at 1, from
which it follows what the momentum (or whatever) will be after the lapse of
time t. In this sense, my inability to say what momentum S has now is
due to ‘ignorance’ — ignorance of what U, was true at ;. However, the
situation is not due to mere ignorance; for I could not know which
U, was true at #,, given that I knew something that implied that S; would
be true now, without knowing a logical contradiction.

In sum:

(1) For any such question as ‘what is the value of M(S) now’, where
M is a physical magnitude, there exists a statement U, which was true of
S at tysuch that had I known U, was true at #,, I could have predicted the
value of M(S) now; but

(2) Itis logically impossible to possess a statement U; which was true of
S at ¢, from which one could have predicted the value of every magnitude
M now.

You can predict any ome magnitude, if you make an appropriate
measurement, but you cannot predict them all.

VL The ‘change of meaning’ issue

While many philosophers are willing to admit that we could adopt a
different logic, frequently this is qualified by the assertion that of course
to do so would merely amount to a ‘ change of language’. How seriously
do we have to take this?

The philosophical doctrine most frequently associated with this
‘change of language’ move is conventionalism. In, say, Carnap’s version
this amounts to something like this:
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(1) There are alleged to be ‘rules of language’ which stipulate that
certain sentences are to be true, among them the axioms of logic and
mathematics.

(2) Changing our logic and mathematics, if we ever do it, will be just
an instance of the general phenomenon of change of conventions.

I have criticized this view at length elsewhere, and I shall not repeat
the criticism here. Suffice it to say that if there were such conventions I
do not see how they could be justified. To stipulate that certain sentences
shall be immune from revision is frrational if that stipulation may lead
one into serious difficulties, such as having to postulate either mysterious
disturbances by the measurement (or to say that the measurement brings
what it measures into existence) or ‘hidden variables’. Moreover, if our
aim is a true description of the world, then we should not adopt arbitrary
linguistic stipulations concerning the form of our language unless there is
an argument to show that these cannot interfere with that aim. If the
rules of classical logic were really arbitrary linguistic stipulations (which I
do not for'a moment believe), then I have no idea how we are supposed
to know that these stipulations are compatible with the aims of inquiry.
And to say that they are nonarbitrary stipulations, that we are only
free to adopt conventions whose consequences are consistent (in 2 non-
syntactical sense of ‘consequence’) is to presuppose the notion of ‘con-
sequence’, and hence of logic. In practice, as Quine has so well put it, the
radical thesis that logic is true by language alone quickly becomes
replaced by the harmless truism that ‘logical truth is truth by virtue of
language plus logic’. Those who begin by ‘explaining’ the truth of the
principles of logic and mathematics in terms of some such notion as ‘rule
of language’ end by smuggling in a quite old fashioned and unexplained
notion of a prioricity. :

Even if we reject the idea that a language literally has rules stipulating
that the axioms of logic are immune from revision, the ‘change of
meaning’ issue may come up in several ways. Perhaps the most sophisti-
cated way in which the issue might be raised is this: it might be suggested
that we identify the logical connectives by the logical principles they
satisfy. T'o mean ‘or’ e.g. a connective must satisfy such principles as:
‘p implies p or ¢’ and ‘g implies p or ¢°, simply because these formulate
the properties that we count as ‘the meaning’ of ‘or’.

Even if this be true, little of interest to the philosophy of logic follows,
however. From the fact that ‘a language which does not have a word ¥V
which obeys such-and-such patterns of inference does not contain the
concept or (or whatever) in its customary meaning’ it does not follow
either that a language which is adequate for the purpose of formulating
true and significant statements about physical reality must contain a
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word V which obeys such-and-such patterns of inference, or that it
should contain a word ¥ which obeys such-and-such patterns of infer-
ence. Indeed, it does not even follow that an optimal scientific language
can contain such a word V; it may be that having such a connective (and
‘closing’ under it, i.e. stipulating that for all sentences S;, S, of the
language there is to be a sentence .S, v S;) commits one to either chang-
ing the laws of physics one accepts (e.g. quantum mechanics), or accept-
ing ‘anomalies’ of the kind we have discussed. If one does not believe (1)
that the laws of quantum mechanics are false; nor (2) that there are
‘hidden variables’; nor (3) that the mysterious ‘ cut between the observer
and the observed system’ exists; one perfectly possible option is this: to
deny that there are any precise and meaningful operations on propositions
which have the properties classically attributed to ‘and’ and ‘or’. In
other words, instead of arguing: ‘classical logic must be right; so some-
thing is wrong with these features of quantum mechanics’ (i.e. with com-
plementarity and superposition of states), one may perfectly well decide
‘quantum mechanics may not be right in all details; but complemen-
tarity and superposition of states are probably right. If these are right,
and classical logic is also right, then either there are hidden variables, or
there is a mysterious cut between the observer and the system, or some-
thing of that kind. But I think it is more Lkely that classical logic is wrong
than that there are either hidden variables, or “cuts between the ob-
server and the system”, etc.” Notice that this completely bypasses the
issue of whether adopting quantum logic is ‘changing the meaning’ of
‘and’, ‘or’, etc. If it is, so much the worse for ‘the meaning’.

From the classical point of view, all this is nonsense, of course, since
no empirical proposition could literally be more kkely than that classical
logic is right. But from the classical point of view, no empirical proposi-
tion could be more likely than that straight lines could not behave as
depicted in Figure 1. What the classical point of view overlooks is that
the a prioricity of logic and geometry vanishes as soon as alternative
logics and alternative geometries begin to have serious physical application.

But is the adoption of quantum logic a ‘change of meaning’? The
following principles:

p impliesp v q. ()
g implies pv q. (2)
if p implies 7 and ¢ implies 7, then p v ¢ implies 7. (3)

all hold in quantum logic, and these seem to be the basic properties of
‘or’. Similarly

P> g together imply p-q. (4)
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(Moreover, p-q is the unique proposition that is implied by every prop-
osition that implies both p and gq.)
p-gq implies p. : (5)
p-q implies g. 6)
all Aold in quantum logic. And for negation we have

p and —p never both hold. (p- —p is a contradiction) ()]

(pv —p) holds. (8
— —p is equivalent to p. ©)

Thus a strong case could be made out for the view that adopting
quantum logic is 7ot changing the meaning of the logical connectives,
but merely changing our minds about the law

?p-(qVr)is equivalent to p-gV p-r (which fails in quantum logic).(10)
Only if it can be made out that (10) is ‘part of the meaning’ of ‘or’

‘and/or ‘and’ (which? and how does one decide?) can it be maintained

that quantum mechanics involves a ‘change in the meaning’ of one or
both of these connectives. '

My own point of view, to state it summarily, is that we simply do not
possess a notion of ‘change of meaning’ refined enough to handle this
issue. Moreover, even if we were to develop one, that would be of
interest only to philosophy of knguistics and not the philosophy of logic.

The important fact to keep in mind, however one may choose to
phrase it, is that the whole ‘change of meaning’ issue is raised by philo-
sophers only to minimize a conceptual revolution. But only a demonstra-
tion that a certain kind of change of meaning is involved, namely,
arbitrary linguistic change, would successfully demolish the philosophical
significance I am claiming for these conceptual revolutions. And this
kind of ‘change of meaning’ is certainly not what is involved.

VIL. The analogy between logic and geometry

It should now be clear that I regard the analogy between the episte-
mological situation in logic and the epistemological situation in geometry
as a perfect one. In the remainder of this essay, I shall try to deal with
two points of apparent disanalogy: (1) that geometrical notions such as
‘straight line” have a kind of operational meaning that logical operations
lack; and (2) that physical geometry is about something ‘real’, viz.
physical space, while there is nothing ‘real’ in that sense for logic to be
‘about’. But it is useful at this point to summarize how far the analogy
has already been seen to extend.
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We saw at the beginning of this essay that one could keep Euclidean
geometry, but at a very high cost. If we choose paths which obey Euclid’s
axioms for ‘straight line’ in some arbitrary way (and there are infinitely
many ways in which this could be done, at least in space Zopologically
equivalent to Euclidean space), and we retain the law that F' = ma, then
we must explain the fact that bodies do not follow our ‘straight lines’,
even in the absence of differential forcest by postulating mysterious
forces. For, if we believe that such forces do not really exist, and that
F = ma, then we have no choice but to reject Euclidean geometry. Now
then, Reichenbach contended that the choice of any metric for physical
space is a matter of ‘definition’. If this is so, and, if ‘F = ma’ is true even
when we change the metric (as Reichenbach assumed), then what forces
exist is also a matter of definition, at least in part. I submit that:

On the customary conception of ‘force” it is false (and not a matter of
a conventional option) that a body not being acted upon by differential
forces is being pushed about by mysterious ‘universal forces’; and that
the whole significance of the revolution in geometry may be summarized
in the following two propositions:

(A) There is nothing in reality answering to the notion of a ‘universal
force’.

(B) There is something in reality approximately answering to the tradi-
tional notion of a ‘straight line’, namely a geodesic. If this is not a
‘straight line’, then nothing is.

(Reichenbach’s view is that (A) represents a definition; it is precisely
this that I am denying, except in the trivial sense in which it is a ‘defini-
tion’ that ‘force’ refers to force and not to something else.)

Now then, the situation in quantum mechanics may be expressed thus:
we could keep classical logic, but at a very high price. Just as we have to
postulate mysterious ‘universal forces’ if we are to keep Euclidean
geometry ‘come what may’, so we have to postulate equally mysterious
and really very similar agencies — e.g. in their indetectability, their
violation of all natural causal rules, their ad hoc character — if we are to
reconcile quantum mechanics with classical logic via either the ‘ quantum
potentials’ of the hidden variable theorists, or the metaphysics of Bohr.
Once again, anyone who really regards the choice of a logic as a ‘matter
of convention’, will have to say that whether ‘hidden variables exist’, or

+ By a ‘differential’ force what is meant is one that has a source, that affects different
bodies differently (depending on their physical and chemical composition), etc. The
‘forces’ that one has to postulate to account for the behavior of rigid rods if one uses an
unnatural metric for a space are called ‘universal forces’ by Reichenbach (who intro-~

duced the terminology ‘differential{universal’); these have no assignable source, affect
all bodies the same way, etc.
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whether, perhaps, a mysterious ‘ disturbance by the measurement exists’.
or a fundamental difference between macro- and micro-cosm exists, etc.,
is likewise a matter of convention. And, once again, our standpoint can
be summarized in two propositions:

(A") There is nothing really answering to the Copenhagen idea that two
kinds of description (classical and quantum mechanical) must al-
ways be used for the description of physical reality (one kind for the
‘observer’ and the other for the ‘system’), nor to the idea that
measurement changes what is measured in an indescribable way
(or even brings it into existence), nor to the ‘quantum potential’,
‘pilot waves’, etc. of the hidden variable theorists. These no more
exist than Reichenbach’s ‘universal forces’.

(B’) There are operations approximately answering to the classical
logical operations, viz. the v, -, and — of quantum logic. If these
are not the operations of disjunction, conjunction, and negation,
then no operations are.

VII. The ‘operational meaning’ of the logical connectives

It is well known that operationalism has failed, at least if considered as a
program of strict epistemological reduction. No nonobservational term
of any importance in science is strictly definable in terms of ‘ observation
vocabulary’, ‘measuring operations’, or what not. In spite of this, the
idea of an ‘operational definition’ retains a certain usefulness in science.
What is usually meant by this — by scientists, not by philosophers — is
simply a description of an idealized way of determining whether or not
something is true, or what the value of a magnitude is, etc. For example,
the ‘operational meaning’ of relativity is frequently expounded by
imagining that we had errorless clocks at every space-time point.

Now the physicist who expounds the ‘operational meaning’ of a
theory in terms of ‘clocks at every space-time point’ knows perfectly
well that (1) all clocks have, in practice, some error; (2) no criterion can
be formulated in purely observational language for determining the
amount of error exactly and in all conceivable cases; (3) anyway, clocks
have a certain minimum size, so one could not really have a clock at each
point. Nevertheless, this kind of Gedankenexperiment is useful, because
the situation it envisages can at least be approximated (i.e. one can have
pretty accurate clocks which are pretty small and pretty close together),
and because seeing exactly what happens in such situations according to
the theory (which is made easier by the idealization — that is the whole
reason for ‘idealizing’) gives one a better grasp of the theory. Provided
one does not slip over from the view that ‘operational definitions’ are a
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useful heuristic device for getting a better grasp of a theory, to the view
that they really tell one what theoretical terms mean (and that theoretical
statements are then mere ‘shorthand’ for statements about measuring
operations), no harm results. It has to be emphasized, however, that the
idealized clocks, etc., involved in typical ‘operational analyses’ are
themselves highly theoretical entities — indeed, their very designations
‘clock’, ‘rigid rod’, etc., presuppose the very theoretical notions they are
used to clarify — so that operational analyses would be circular (in addi-
tion to other defects) if they really were intended as definitions in the

~ strict sense of ‘definition’.

What the ‘operational meaning’, in the loose sense just discussed, of
the geometrical terms is, is well known. A ‘straight line’, for example, is
the path of a light ray; or of a stretched thread. It is also the ‘shortest
distance’ between any two of its points, as measured again by, say, a tape
measure, or by laying off rigid rods, etc. The idealizations here are
obvious. Light, for example, is really a wave phenomenon. A ‘light ray’,
strictly speaking, is simply a normal to a wave front. And the notion of a
‘normal’ (i.e. a perpendicular) presupposes both the notions of straight
line and angle.

If we avoid the wave nature of light by speaking of the ‘path’ of a
single photon, we run into difficulties with complementarity: the
photon can never be assigned a particular position ; and a particular
momentum 7; at the some time (in quantum logic the conjunction: the
position of E is 7, and the momentum of E is 7, is even inconsistent), so
the notion ‘path of a photon’ is operationally meaningless. And the
idealized character of ‘operational definitions’ of ‘straight line’ in terms
of stretched threads, rigid rods, etc., should be completely evident to
anyone.

In spite of this, as we remarked before, such ‘operational definitions’
have a certain heuristic value. It enables us to grasp the idea of a non-
Euclidean world somewhat better if we are able to picture exactly how
light rays, stretched threads, etc., are going to behave in that world.
But do the logical connectives have analogous ‘operational definitions’,
even in this loose sense?

The answer ‘yes’ has been advanced in a provocative paper by David
Finkelstein (Finkelstein, 1964). In order to explain the sense in which
Finkelstein ascribes operational meaning to the logical vocabulary, it is
necessary to first summarize a few well-known facts about logic. (These
hold in both classical and quantum logic.)

First of all, propositions form what is called a partial ordering with
respect to the relation of implication; that is, the relation of implication
has the properties of being reflexive (p implies p), and transitive (if p
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implies ¢ and ¢ implies 7, then p implies 7). Moreover, if we agree to
count equivalent propositions as the same, then implication has the
property: p implies g and ¢ implies p both hold only when p and g are the
same proposition.

The proposition p v g is what is called an upper bound on both p and g:
for it is implied by p (think of the implicandum as ‘above’ the implicans)
and implied by ¢. Moreover, it is the least upper bound; for every propo-
sition which is ‘above’ both p and g in the partial ordering of propo-
sitions by the implication relation is above their disjunction pvgq.
Similarly, the conjunction p- g is the greatest lower bound of p and gin the
partial ordering.

In mathematics, a partial ordering in which there are for any two
elements x, ¥ a least upper bound xvy and a greatest lower bound
x-y is called a lattice; what we have just said is that propositions form a
lattice with respect to implication.

The tautological proposition pv —p is the greatest element in the
whole lattice (we denote it by ‘1’) and the inconsistent proposition is the
least element, since every proposition implies a tautology and is implied
by an inconsistency.

The proposition —p has the property that its greatest lower bound
with p (i.e. its conjunction with p) is o and its least upper bound with
pis 1. A lattice in which there is for every x a complement — x with these
properties is called a complemented lattice. Thus propositions form a

complemented lattice. (So do sets, under inclusion, and many other

things.)
A lattice in which the laws:

2 (yva)=(x-y)v(x-2) and xv(y-2) = (xvy)(xv2)

hold (where ‘-’ denotes the greatest lower bound and ‘v’ denotes the
least upper bound) is called a distributive lattice. The whole difference
between classical and quantum logic lies in this: that propositions do not
form a distributive lattice according to quantum loglc, whereas accord-
ing to classical logic they do.

In this paper we explained quantum logic in terms of the vector space
representing the states of a system: however, one could equally well take
the lattice of propositions as basic, for the subspaces of the vector space
are in one-one correspondence to the propositions, and all the inclusion
relations are the same.

Since conjunction and disjunction are simiply greatest lower bound and
least upper bound under implication, and negation is likewise charac-
terized in terms of the implication lattice, it suffices to give an opera-
tional meaning to ‘implication’.
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This is accomplished by Finkelstein with the aid of the notion of a test.
Let us pretend that to every physical property P there corresponds a test
T such that something has P just in case it ‘passes’ T (i.e. it would pass
T, if T were performed). This is no more than the idealization which is
always made in all operational analysis. Then we define the following
natural ‘inclusion’ relation among tests:

T, = T, just in case everything that ‘passes’ T, ‘passes’ T,. (1)

This inclusion relation may be operationally tested in the following
way: take a large population of things which are supposed to all pass T
(say, on the basis of theory). Take out a large fair sample Sy, and apply
test T, to every member of the sample. If they all pass, then our
hypothesis that P consists of things which pass T, is operationally con-
firmed. Otherwise, we have to look for a different P. Now (assuming
they all pass), we take a different fair sample S, from P and apply T} If
all the elements of S, pass T,, the hypothesis that ‘all things that pass T}
also pass T’ has been confirmed. (Note that we do not test Ty, < T, by
applying T, to the things to which T, was applied; this would be bad
practice because those things may no longer have P after T, has been
performed — i.e. they might not still pass T, — if T, were repeated.)

Now then, if quantum mechanics is true, then it turns out that there is
an idealized test T v T, which is passed by everything which passes T}
and by everything which passes T and which is such that the things that
pass this test pass every test T such that T, © T'and T, = T. This test
T, v T, is the least upper bound on T; and T, in the lattice of tests.
Similarly, there is a greatest lower bound T-T,, with the properties
T, Toc T, Ty Ty Tyyand T'< Ty-Tyfor all Tsuch that T'< T
and T « T,, and a test — T which is a ‘complement to 7" in the sense
that T'- — T = o (the impossible test)and T v — T = 1 (the vacuous test).

Quantum mechanically these tests may be described as follows. Let p
be a proposition corresponding to a subspace .S, and ¢ be a proposition
corresponding to a subspace S, of the vector space H(S). Let S; be the
subspace spanned by S, and S, - i.e. the smallest subspace containing
both S, and S,. Then there is always a physical magnitude m, and a set
Z' of values of m, such that S, is exactly the subspace corresponding to
the proposition that m(S)e Z. Let T be the test which consists in
measuring m, and ‘passing’ if a value in X is obtained. Then it follows
from quantum mechanics that everything that passes the test corre-
sponding (in the same sense) to the subspace S, passes T, i.e. T, < T,
and similarly T, © T. Moreover, as Finkelstein shows, any possible test
T"suchthat T, © T'and T, « T'issuch that T < T’; so T is indeed
a ‘least upper bound’ on T}, and T,
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Now then, suppose the proposition ‘Pv Q’ has any operational
meaning at all (i.e. that there is any test T at all which is passed by all and
only the things which have either property P or property Q).

Since the things that have property P all pass the corresponding test
T,, and everything that has P certainly has Pv Q, it must be that
T, < T. Similarly, it must be that T, < T. On the other hand, let 7 be
any test such that T, © T’ and T, < T". Since everything that has P
passes T, by hypothesis, it follows that the things with property P are a
subset of the things which pass 7", and similarly the things with pro-
perty O are a subset of the things which pass 7. So the things with
Pv Q) are a subset of the things which pass 7, and since the things with
Pv Q are assumed to be just the things which pass T, it follows that
T < T'. Thus if there is any test at all (even ‘idealizing’, as we have
been) which corresponds to the disjunction Pv Q, it must have the
property of being a least upper bound on T, and T,

But, by Finkelstein’s result, the only tests which have this property are
the ones which are equivalent to the test T corresponding to the sub-
space spanned by S, and S,. Similarly, if conjunction is to correspond
to any test at all, it must be the test determined by the intersection of the
spaces S, and S,, and negation must correspond to the orthocomplement
of S,. Thus we are led directly to guantum logic and not to classical logic!

In sum: if we seek to preserve the (approximate) ‘operational mean-
ing’ that the logical connectives always had, then we have to change our
logic; if we insist on the old logic, then no operational meaning at all can
be found for the logical connectives that will work in all cases. (Of
course, for macroscopic propositions the lattice is distributive ; so we may
keep the classical logic and the classical tests for these cases. But as soon
as one tries to extend this to an operational meaning for microscopic
propositions in any consistent way, we will be in trouble in view of
Finkelstein’s result.)

Two points may now be made with regard to the philosophical signi-
ficance of Finkelstein’s work.

First, the operational analysis of the logical connectives has the same
heuristic value that the operational analysis of the geometrical notions
does. If we interpret ‘Pv Q’ (as applied to a system .S) as meaning ‘S
passes the test 7" which is the least upper bound on T, and T, — this is
equivalent to ‘S passes every test which is passed by everything that
passes T, and passed by everything that passes T, — and similarly inter-
pret ‘P-Q’ as ‘S passes the test T which is such that T'< T, and
T < T, and T is passed by everything that passes any test 7" such that
T"c T,and T' = T/, and ‘— P’ as ‘S passes the test T which is such
that nothing that passes T passes T, and everything passes any test
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which is passed by everything that passes T, and everything that passes
T, then we can figure out exactly what to expect in a quantum logical
world. Reichenbach once replied to the neo-Kantian claim ‘that
Euclidean geometry is the ‘only geometry that can be vis1'1ahz¢?d’
roughly as follows: ‘If to imagine a non-Euclidean world is to imagine
a world upon which a Euclidean description cannot be forced, even by
introducing “universal forces”, then of course no such world ca‘n'be
imagined: for any geometry can be imposed on a world, if we are W}Hlng
to adopt enough ad hoc hypotheses. But if to imagine a non—Euch_dean
world is to imagine a world which conforms to the standard operational
significance of non-Euclidean geometry, then of course such a wo'rld
can be imagined.’ (Poincaré had earlier made a similar point: to imagine
a non-Euclidean world, imagine the experiences you would have if
you lived in such a world. ~ Assuming, of course, the standard ‘opera-
tional definitions’.) ]

In exactly the same way, one can say: if to imagine a world whlcl} d9es
not obey classical logic is to- imagine a world upon which a_descnpt}on
presupposing classical logic cannot be forced, even by mtroducm.g
‘hidden variables’ or Copenhagen double-think, then of course this
cannot be done. But one can imagine a world which conforms to the
operational significance of quantum logic. Or, adapting Poincaré: ‘to
imagine a quantum logical world, imagine the experiences you would
have in such a world’. (You hve in one.) Assuming, of course, the
‘operational definitions’ of the logical connectives, as we just analyzed
them.
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