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THE JoUrRNAL oF Symsoric Logic
Volume 3, Number 4, December 1938

ON NOTATION FOR ORDINAL NUMBERS
8. C. KLEENE

Consider a system of formal notations for ordinal numbers in the first and
second number classes, with the following properties. Given a notation for an
ordinal, it can be decided effectively whether the ordinal is zero, or the successor
of an ordinal, or the limit of an increasing sequence of ordinals. In the second
case, a notation for the preceding ordinal can be determined effectively. In the
third case, notations for the ordinals of an increasing sequence of type w with
the given ordinal as limit can be determined effectively.

Are there systems of this sort which extend farthest into the second number
class? When the conditions for the systems have been made precise, the ques-
tion will be answered in the affirmative. There is an ordinal w; in the second
number class such that there are systems of notations of the sort described which
extend to all ordinals less than w;, but none in which w, itself is assigned a
notation.!

1. An effective or constructive operation on the objects of an enumerable
class is one for which a fixed set of instructions can be chosen such that, for each
of the infinitely many objects (or n-tuples of objects), the operation can be
completed by a finite process in accordance with the instructions. This notion
is made exact by specifying the nature of the process and set of instructions.
It appears possible to do so without loss of generality.

A function of natural numbers, with-natural numbers as values, is taken to be
effective if it is Herbrand-Gédel recursive.’ The set of instructions for a

Received September 16, 1938. Preliminary report presented to the American Mathe-
matical Society, December 31, 1936.

1 A closely related result, and a discussion of the significance of these questions of
notation, are given in Alonzo Church, The constructive second number class, Bulletin of the
American Mathematical Society, vol. 44 (1938), pp. 224-232. The ordinal w; is the least
ordinal not represented by formulas in the A-notation, Alonzo Church and 8. C. Kleene,
Formal definitions in the theory of ordinal numbers, Fundamenta mathematicae, vol. 28
(1936), pp. 11-21, Rules i-iv.

2 Kurt Godel, On undecidable propositions of formal mathematical systems, mimeo-
graphed lecture notes, Princeton 1934, pp. 26-27; 8. C. Kleene, General recursive functions
of natural numbers, Mathematische Annalen, vol. 112 (1936), pp. 727-742.

This notion of effectiveness appears, on the following evidence, to be general. A variety
of particular effective functions and classes of effective functions (selected with the inten-
tion of exhausting known types) have been found to be recursive. Two other notions,
with the same heuristic property, have been proved equivalent to the present one, viz.,
Church-Kleene A-definability and Turing computability. Turing’s formulation comprises
the functions computable by machines. See S. C. Kleene, N\-definability and recursiveness,
Duke mathematical journal, vol. 2 (1936), pp. 340-353, and A. M. Turing, On computable
numbers, with an application to the Entscheidungsproblem, Proceedings of the London
Mathematical Society, vol. 42 (1936-7), pp. 230-265, and Computability and N-definability,
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(general) recursive function ¢(z;, ---,z,) is given by means of a system of
equations E. The process of computing the value of the function for a particular
n-tuple of numbers k,, ---, k., as arguments consists in performing certain
operations of substitution on the equations. After a finite number of these
operations, a unique equation of the form ¢(k;, --- , k,)=k, where k is a
number, is obtained. The number k is the desired value.

If we omit the requirement that the computation process always terminate,
we obtain a more general class of functions, each function of which is defined
over a subset (possibly null or total) of the n-tuples of natural numbers, and
possesses the property of effectiveness when defined. These functions we call
partial recursive.

If f(x, .-,z is any function defined over a subset of the n-tuples of
natural numbers, with natural numbers as values, a condition for effectiveness
is that there exist a partial recursive function ¢(z;, - -, zs) such that the
equality f(z,, -+, 2n)=¢(21, - -+ , ) holds on the range of definition of f
(which may be less extensive than that of ¢).}

Let F(X,, ---, X,) be any operation on n-tuples of objects of certain cate-
gories, yielding objects of a certain category. If for each category, a natural
number can be assigned to each object (distinct numbers to distinct objects) in a
particular manner, which is acknowledged to be reciprocally effective, then the
criterion that F be effective is reduced to the preceding case.

When the objects are formulas, consisting of finite sequences of symbols
from a given list, the assignment of numbers can be effected by Godel’s method.
Assuming this possibility for the systems of notations for ordinals, we simplify
the discussion by treating the notations themselves as being natural numbers.

The conditions for a representation of ordinals by natural numbers, to be
called here an r-system, are the following. (1) No number represents two
distinct ordinals. (2) There is a partial recursive function K such that, if X
is zero (X is the successor of an ordinal, X is the limit of an increasing sequence
of ordinals), then for each number z which represents X, K(z)=0 (K(z)=1,
K(z)=2). (3) There is a partial recursive function P such that, if X is the
successor of the ordinal Y, then for each number z which represents X, P(z) is a
number which represents Y. (4) There is a partial recursive function Q such

this JournaAL, vol. 2 (1937), pp. 153-163. Functions determined by algorithms and by the
derivation in symbolic logics of equations giving their values (provided the individual
steps have an effectiveness property which may be expressed in terms of recursiveness)
are recursive. See Alonzo Church, An unsolvable problem of elementary number theory,
American journal of mathematics, vol. 58 (1936), pp. 345-363, where it was first proposed to
identify effectiveness with recursiveness. Church’s remarks should be generalized in one
particular, as will appear in Footnote 3.

3 This condition is more general than potential recursiveness (An unsolvable problem of
elementary number theory, p. 352). For there are functionsf(z, , - - - , Z») not equal through-
out their range of definition to any recursive function, e.g., uyT1(z, z, y), where x is defined
below, it being noted that the number f in General recursive functions of natural numbers,
proof of Theorem XIV, belongs to the range of definition of uyT:(z, z, y). The condition
is more general than partial recursiveness, since a partial recursive function has a range of
definition of a special form, (Ey)Ta(e, Z1, -+« , Za , ¥).
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that, if X is the limit of an increasing sequence of ordinals, then for each number
z which represents X, there is an increasing sequence of ordinals {Y,} of order
type o which has X as limit such that, for each natural number », Q(z, n) is a
number which represents Y, .

It follows from the conditions that for some ordinal £, at least one number z
represents each ordinal X < ¢, and no number represents any ordinal = &.

2. Partial recursive functions may be constructed by methods which have
been considered in relation to general recursive functions, and other devices.
We outline this theory.*

The equations of E are expressed in a particular formalism, with a particular
functional variable p., representing ¢ (as we now assume for definiteness). A
given function ¢(z, , - - - , z.) is partial recursive if there is a system of equations
E in p., and possibly other functional variables such that for each n-tuple of
numerals k;, --- , k, there exists at most one numeral k for which E |,
pa (b1, - - -, k) =k, specifically k exists when and only when ¢ is defined for the
arguments represented by k , - - - , k., and has then the value represented by k.
We say that E defines ¢ recursively.

We abbreviate z;, --- ,z, to £. The equality of two functions ¢(z) and
¥(r) in range of definition and in value throughout that range is written
¢(x)>¢(x). A composite function written in the form ¢(¥(z)) is to be inter-
preted as undefined for values of ¢ which make ¥ undefined, unless the contrary
is stated (likewise when ¢ has several arguments).

The notions are extended to propositional functions of natural numbers,
called relations, under the correspondence between a relation and the function
which takes the value 0 or 1, or is undefined, according as the relation is true or
false, oris undefined. If R(z, y) is a relation, then uyR(z, y) denotes the function
of ¢ which, for each fixed , takes as value the least y such that R(z, ) is true,
provided such a y exists and R(zx, y) is defined for the preceding values of y,
and is undefined otherwise.

A primitive recursive function is one which can be generated from the functions
C(z)=0, S(z)=z+1 and Uj(z1, -, Z»)=2; by zero or more applications of
the schemata ¢(I)QO(X1(I)) R Xm(!» and ¢(0) I)Q-’¢(I); ¢(y+1) E)QX(y’
¢(y, ©), r). Let applications of a third schema ¢(r)~uyR(z, y) be admitted,
together with applications of the other two. The functions obtained are partial
recursive. [For the proof that a system E defines one of these functions re-
cursively, it is required that E yield formally only the desired values. When
E is chosen suitably, this is inferred from a verifiability property of the equa-
tions, relative to certain interpretations of the functional variables, which is
preserved under the operations R, and Rs.]

Employing a particular primitive recursive function S(z, ¥) [=Val(H(z, ¥))]
and for each n a particular primitive recursive relation T.(z, £, ¥), we set ®,(z,
1)>~8(z, uyTn(2, t,9)). Then ®,isa partial recursive function of n+1 variables,

¢ For details, see General recursive functions of natural numbers. Dr. Barkley Rosser
has called my attention to an error in No. 17, p. 733, which is corrected by reading

(B 20 )21 ) ingen of “(*F1)” st two places.
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with the range of definition (Ey)Ta(z, &, ¥), i.e., the range consists of the n+1-
tuples (2, r) satisfying this relation. Every partial recursive function ¢(r) of n
variables is expressible thus, ¢(r)~®a(e, r), where ¢ is a number, which is said to
define ¢ recursively. Among the numbers which define ¢ recursively are the
Godel numbers of the systems of equations which define ¢ recursively. The
range of definition of ¢ is (Ey) T'a(e, 1, ¥).

For any partial recursive functions ¢(z) and ¢(r) and partial recursive rela-
tion R(z), the function ¢(¥(xr)) and the relation R(y(r)) are partial recursive
(likewise when ¢ or R has several arguments). Thus, ¢(z) =¢(r) and ¢(x) <¢(x)
are partial recursive relations, ¢(z)+¥(z), ¢(z)-¥(zr) and ¢(r)*® are partial
recursive functions, etc. For any partial recursive relation R(g, ), the function
wyR(z, y) is partial recursive.’ [The preceding result ensures that ¢(z), ¥(z)
and the functions correspondmg to R(x) and R(%, y) can be generated using the
three schemata.)

Given relations A () and B(x), which may be undefined for some values of ¢,
we shall interpret 4(x), A()vB(x), A()&B(x), A(r)—B(x) and A(r)=B(z)
as follows.

y.| AvB A&B A—B A=B
Atfu Atfu Atfu Atfu A tfu u:undefined

ftu Bt|ttt Bt|tfu Bt|ttt Bt|tfu t: true
fltfu flfff flftu f|ftu f:false
tuu ujufu ujutu ujuuu

(Not all equivalences of the classical calculus of propositions hold.) When
A(x) and B(y) are partial recursive, the composite relations are partial recursive.
[Let «(z), B(z) and ¥(r) correspond to A(x), B(r) and A(r)vB(r), respectively.
Let a and b define « and B recursively. Then y(z) &~ 1 Gl uw{[Tx(a, r, 2Glw) &
8(@,2Glw) =0&1Glw=0]v[T.(b,£,3Glw) &S}, 3Glw) =0&1Glw
=0]v[Ta(a, £, 2Glw) & S(a,2Glw) =1 & Ta(b, £,3Glw) & S(b, 3 Gl w) =
1&1C' w=1]}.]

There is a primitive recursive function S3(z, 31, - -+, y¥m) such that, if e
defines recursively ¢(¥1, ---,¥m, ) a8 a function of m-+n variables, and
ki, ... ,kn are fixed numbers, then S7(e, ki, - -, km) defines recursively
¢(kr, - -+, km, £) as a function of the » remaining variables. [The construction
of S is based on the relation ¢(ky, -+ , km, &) = ®Pminle, k1, -+, km, £).]
If Y(z, r) is any partial recursive function, there is a number f which defines
¥(f, ©) recursively. [Let e define ¢(Si(y, ¥), r) recursively, and set f= Sk (e, ¢).]

3. We now exhibit an r-system S, , for which ¢ has a greatest possible value.
S, is the representation of ordinals by natural numbers in which a number
represents an ordinal as required by the following rules and only then. (1)
1 represents 0. (2) If y represents Y, then 2" represents Y+41. (3) If {¥.}

§ There is also a partial recursive function »yHR(z, y) of ¢ which, for each fixed g, takes
as value a y such that R(z, y) is true, provided such a y exists (whether or not R(, y)
is defined for all the preceding values of y), and is undefined otherwise. For let r be a
number defining recursively the function corresponding to R(, y), and set »y)RB(E, ¥)
=~ 1Gl pw{Ta(r, £, 1 Gl w, 2 Gl w) & S(r, 2 Gl w) = 0}.
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is an increasing sequence of ordinals of order type w, if for each n y,. represents
Y., and if y defines recursively y» as a function of n,, where n, represents n
as a finite ordinal, then 3.5 represents lim, {Y,}.

S, is an rsystem. [K(z) = eyfy = 2 &y Gl z = 0}. P(z) =1 Gl z.
Q(z, n) ~ ®(3 Gl z, n,), where 0,=1, (n+1),=2".] Given any r-system S,
there is a partial recursive function F such that, for any number z which repre-
sents an ordinal in S, F(z) represents the same ordinal in S;. The function F
is given the following properties. If K(z)=0, then F(z)=1. If K(z)=1, then
F(z)=2""", If K(z)=2, then F(z)=3.5"", where ay. defines recursively
F(Q(z, n)) as a function of n,. [To obtain F as a partial recursive function,
set ¢(z, 2, y) >~ ¥z, Q(z, 3())), where J(y) = ex{fz S y &y = z.}. Let p
define ¢ recursively. Set ¥(z, z) >~ uy{(K(z) =0 & y = 1) v (K(z) =
y =229 FMyy (K(z) = 2 &y = 3-551"*)}. There is a number f defining
¥(f, z) recursively. Set F(z)~y(f, z).] Hence S, is an r-system with ¢ a
maximum.

The system S, is modeled after the system of formulas in the A-notation
assigned to represent ordinals by Church and Kleene.® The treatment of the
two systems is analogous. Moreover, if the formulas in principal normal form
which represent ordinals are replaced by their Godel numbers, the resulting
system S; is an r-system. Given any r-system S, there is a partial recursive
function G such that, if z represents an ordinal in S, G(x) represents the same
ordinal in S;. Hence S; is also an r-system with the maximum possible
value of £.

The ordinal obtained (non-constructively) as the maximum value of { was
designated as w; by Church and Kleene. Arguing non-constructively, the
notations are enumerable. The second number class is not enumerable. There-
fore w; is in the second number class.

Church and Kleene have considered functions of ordinals which are \-defin-
able, i.e. expressible in the A-notation as operations on the formulas representing
the ordinals. This class of functions is identical with the class of functions
which correspond to partial recursive functions of the notations in S (likewise
for functions with some variables in the domain of ordinals and others in the
domain of natural numbers).” Partial recursive functions applying to the

notations in S, , such as z 4+, y and z;, ¢(m) where ¢ is recursive and ¢(n) for
each natural number 7 represents an ordinal, are distinguished here from like
functions applying to the natural numbers as such by the subscript o.

4. One might expect to obtain systems extending to greater ordinals by
employing conditions like those for r-systems but with {Y,} allowed to be a

¢ Loc. cit. Proof of some remarks which follow may be based on \-definability and
recursiveness.
7 At this point, the analogy between the two systems is improved by writing {2} (2 ,
<, &) or 2(z1, -+- , Z») 88 an abbreviation for ®(z, 1, -+, za). Then ¢(z1, --- , Za)
is expressible as e(z1 , - - , Za), where e i8 a number defining ¢ recursively. The use of the
numbers e rather than the functions ¢ conforms to the finitary standpoint. For only the
numbers e (or the systems of equations E) are given directly, and there is no effective
decision in general whether two ¢’s (or two E’s) define the same function.
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sequence of ordinals of order type w(not necessarily increasing) which contains
no greatest and has X as least upper bound.

However it is seen non-constructively that the ordinal w, is still a maximum ¢&.
For given any system S of this sort, there is a partial recursive function H such
that, for any number z which represents an ordinal in S, H(z) represents an
equal or greater ordinalin S;. The function H is given the following properties.
If K(z)=0, then H(z)=1. If K(z)=1, then H(z)=2"""". If K(z)=2,

then H(z)=3-5"%*, where ba . defines recursively Zo., 1, +, H{Q(z, m)) as a
function of 7, .

5. Following Church, a modification is now made in the system S, , which is
regarded from the finitary viewpoint as a correction, in that it eliminates the
presupposition of the classical (non-constructive) second number class." The
modification consists in replacing the ordering relation < between ordinals by a
partially ordering relation <, between the notations. The modified system is
designated as S;.

Let numbers belong to a class O, and stand in a relation <,, as required by
the following rules and only then. (1) 1 ¢ O. (2) If y ¢ O, then 2" ¢ O and
Yy <,2'. (3) Using n, as above, if the sequence of numbers {y.} of order type
has the property that, for each n, . € O and ya <o ¥as1, and if y defines recur-
sively y, as a function of n,, then 3-5" ¢ O and, for each n, y, <,3-5". (4) If
z,y,2e0andz <,yand y <.z, thenz <,z.

S is the system determined by the first two conditions for S, and the following
condition. If {y.} is an increasing sequence, in terms of the relation <,, of
numbers which ¢ O, of order type v, and if, for each n, y, represents an ordinal
Y., and if y defines recursively y. as a function of n,, then 3.5" represents
lim, {Ya.}.

Sz is a subsystem of S, , and is an r-system. We see non-constructively that
the least ordinal not represented in S; is w;. For the function H, when con-
structed with S, itself as S, has the property that, for any number z which
represents an ordinal in S, , H(z) represents an equal or greater ordinal in S .

Following Church, if z is a number representing an ordinal X in S;, the
subsystem of S; consisting of z and the numbers which precede z in terms of the
relation <, is an r-system in which a unique number is assigned to each ordinal
< X+1. Given any univalent r-system S, the numbers F(z), for the values of z
which represent ordinals in S, constitute an r-subsystem of S; simply ordered

by the relation <,.
Thus w, is the least ordinal not representable in any univalent r-system.’

THE UNIVERSITY OF WISCONSIN

8 The constructive second number class. Stated by Church for the system of formulas
in the A-notation.

9 The writer does not know whether any one univalent r-system contains notations for
all the ordinals < w, , a8 is the case for multivalent r-systems. It is possible to describe
non-constructively an r-subsystem of S; simply ordered by the relation <,, which assigns
a number to each ordinal < «? and which does not admit of extension to w? preserving the

simple ordering.
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