: NOTICE
HISTORY AND PHILOSOPHY OF LOGIC, 2 (1981), 87-112 This material may be
protected by copyright
law (Title 17 U.S. Code.)

On a Three-valued Logical Calculus
and Its Application to the Analysis
of the Paradoxes of
the Classical Extended Functional Calculus

D.A. BOCHVAR
translated by
* MERRIE BERGMANN
Dartmouth College, Hanover, New Hampshire 03755, U.S.A.

Received 23 December 1980

Translator’s Summary

A three-valued propositional logic is presented, within which the three values are read as ‘true’, *false’ and
‘nonsense’. A three-valued extended functional calculus, unrestricted by the theory of types, is then
developed. Within the latter system, Bochvar analyzes the Russell paradox and the Grelling-Weyl paradox,
formally demonstrating the meaninglessness of both.

1. Translator’s introduction

Dmitri Anotolevich Bochvar was born on 7 August 1903 in Moscow. He grad-
vated from the Moscow Higher Technical School in 1924, received his doctorate in
chemistry in 1950, and since 1953 has been working in mathematical logic and
foundations of mathematics in the All-Union Institute of Scientific and Technical
Information in Moscow. The article published in translation here first appeared in
Mathematicheskii sbornik, 4 (46) (1937), 287—308.

Bochvar was one of the pioneers of many-valued logic; and in that field heis best
known for two systems of three-values propositional cornectives, the ‘internal’ and
‘external’ systems, which have their foundation in a distinction between two modes
of statement assertion. The ‘internal’ system is functionally equivalent to Kleene's
system of ‘weak’ commectives,’ and the ‘external’ assertion connective is similar to
Frege’s ‘horizontal’—in so far as both uniformly yield true or false assertions.2
Bochvar develops the two systems as the basis for a three-valued extended functional
calculus in which certain logical and semantic paradoxes may be resolved through a
formal proof of their ‘meaninglessness’.

Proof that Bochvar was successful in this project awaited articles appearing in

I S$.C. Kleene, Introduction to metamathematics {New York: D. van Nostrand, 1952).
2 Sec H.G. Herzberger, ‘Truth and modality in semantically closed languages’, in R.L. Martin (ed.) The
paradox of the iiar (New Haven: Yale, 1970}, 25-46).
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1944 and afterward, in which he worked on the problem of the consistency of this
functional calculus and closely related systems.’ He later investigated extensions of
his functional calculi, thus addressing the question which Alonzo Church raised in
review of the present article:

.. .the suggested alternative to the theory of types is far from devoid of interest.
The major question, it would seem, is ... whether it is possible to obtain along
these lines a system adequate to the purposes for which the extended functional
calculus is usually employed, e.g., to the theory of finite cardinal numbers or to
analysis—Bochvar does not address this point.*

Eoghvar’s recent published work has been in the areas of set theory and logic, includ-
ing investigations of systems of many-valued logic.

Beyond application to paradoxes, many-valued logics have also been used to
analyze other recalcitrant linguistic and logical phenomena. Bochvar’s three-valued
propositional systems have found their place in the literature on future contingent
statements, on presuppositions, and on sortal incorrectness—as well as in the litera-

" ture on the paradoxes.®

2. Notes on the translation and editing

In Bochvar’s English résumé which follows his article, the Russian word
vyskazyvaniye was rendered ‘outsaying’. In conformity with one established usage in
English-language logical writings, ‘statement’ is used consistently in place of
vyskazyvaniye; and predlozheniye is translated as ‘proposition’. ‘

Bochvar used three distinct expressions to characterize nonsensical or meaning-
less statements: bessmyslennoye vyskazyvaniye, bessoderzhatelnoye vyskazyvaniye,
.and vyskazyvaniye, ne imeyushcheye smysla. Since he regarded the expressions as
interchangeable, only the cognates of two expressions (‘nonsense’ and ‘meaningless’)
are used in the translation, and choices between the two have been guided solely by
considerations of English sentence construction:

Bochvar, like some of the authors whose works he cites, was not always careful to
distinguish between talk of expressions and talk of their semantic interpretations. In
several places, the distinction has been drawn in the translation where it was not made
in the original.

For ease of reading, all the footnotes, both original and editorial, have been
combined into one system. All editorial comments are enclosed within square

3 ‘K voprosu o neprotivorechivosti odnovo trexznachnovo ischislenia’ {*On the consistency of a three-
valued c:f\lculus'). Matematicheskii sbornik, 12 (54) {1943), 353~369; and ‘K voprosu o parodoksa
matematicheskoi logiki i teorii mnozhestva’ (‘On the paradoxes of mathematical logic and set
theory®), Matematicheskii sbornik, 15 (57) (1944), 369—384.

4 The journal of symbolic logic, 5 (1940}, 119. .

S See the surveys in S. Haack, Deviant logic (Cambridge: Cambridge University Press, 1974) and N
Rescher, Mfmy-valued logic (New York: McGraw Hill, 1969). Rescher’s book also contains a;
thoroug.h discussion of the expressive powers of Bochvar’s propositional systems, as well as
comparisons with other many-valued systems. ‘
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brackets, except that the references have been silently converted to the house style of
this publication (and also completed in those cases where Bochvar’s references were

only partial).

ON A THREE-VALUED LOGICAL CALCULUS AND ITS APPLICATION TO THE ANALYSIS
OF THE PARADOXES OF THE CLASSICAL EXTENDED FUNCTIONAL CALCULUS
) D.A. Bochvar (Moscow)

The three-valued system which is the subject of this essay is of interest as a logical
calculus for two reasons. First, it is developed through the formalization of a series of
fundamental and self-evident relations between the statement predicates truth, false-
hood, and nonsense, thus allowing a clear interpretation of an entirely logical charac- -
ter. Second, in this system the specifically logical problem of the analysis of the para-
doxes of classical mathematical logic is solved by the method of formally proving the
meaninglessness of certain statements.

The work has three parts. In the first, on the basis of certain semantic considera-
tions, the elementary part of the system is developed—the statement calculus. In the
second, a “restricted’’ functional calculus which corresponds to the statement
calculus is briefly developed. Finally, in the third part, an analysis of the paradoxes
of classical mathematical logic is given on the basis of a certain *‘extended’” func-
tional calculus.

I deeply acknowledge here my debt to Prof. V.E. Glivyenko for a number of
valuable comments and suggestions. In particular, he suggested the most expedient

form of the definition of @ (1, §2, #1).

1
THE STATEMENT CALCULUS
§1. ELUCIDATION OF THE FUNDAMENTAL FEATURES OF THE STATEMENT CALCULUS
ON THE BASIS OF CERTAIN SEMANTIC CONSIDERATIONS

In order to understand the fundamental features of the statement calculus, we
submit the properties of fundamental types of statements to semantic analysis.

First, however, we define exactly the relation of the concepts ‘‘statement’’
{vyskazyvaniye] and ‘‘proposition” [predlozheniye]. We will say {in accordance
with accepted usage) that a statement is meaningful if it is true or false. Further, we
will call a statement a proposition if, and only if, it is meaningful. Statements which
are not meaningful will be called meaningless or simply nonsensical. It is obvious that
a proposition is a particular kind of statement. Every statement is either meaningless,
true, or false. If a given statement A is meaningless, then the statements ““A is false®’
and “A is true” are meaningful and false. The predicates truth, falsehood, and
nonsense can be meaningfully applied to any statement.

Let A and B be arbitrary statements. Consider the following types of statements:

i I
“A", uA is true",
“not-4"", “A is false”,

“A and B, ““A is true and B is true’’,
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““A is true or Bis true’’,
““if A is true, then B is true’’.

“A or B”,
“if A, then B,

Let us agree to call type I and type II, respectively, internal and external forms of
assertion,  denial, logical sum, logical product and implication. Obviously, the form
‘“A is meaningless’’, which does not correspond to any internal form, is also associa-
ted with the group of external forms. .

The semantic difference between any internal and corresponding external form is
clear. It is easy to illustrate the principal difference between internal and external
forms through the substitution of a meaningless statement for 4 (or B) in each. We
turn first to the internal forms. It is obvious, that if A is a meaningless statement,
then “‘not-A4” is also meaningless; it is also clear that each combination of a
meaningless statement 4 with any statement B by means of the operations *‘____and
e or___",and “‘if ___, then ___ " will only result in a new meaning-
less statement.

Things stand quite differently with the external forms. Again let A be a meaning-

- less statement. Then, obviously, its external assertion ‘A is true’” is false and not

meaningless. Similarly, an external denial—*‘A4 is false’’—is false and not meaning-
less, if the statement A is meaningless. It is easy to see, that the remaining external
forms likewise never result in meaningless statements whz 5 meaningless statement
foutniiiiid fun A in them.

Indeed, these external forms (logical sum, logical product, and. implication)
represent nothing other than the corresponding internal forms, in which 4 and B
have been replaced by their external assertions. But as the external assertions never
result in meaningless statements, the same must hold also of external logical sums,
external logical products, and external implication.

It is obvious that for propositions the external forms are formally equivalent to
the corresponding internal forms. This means that for propositions the corres-
ponding internal and external forms are either simultaneously true or simultaneously
false.

From this follows, in part, an explanation of the duality of the semantic interpre-
tation of elementary functions of propositional variables in the classical calculus,
which is common in the literature on mathematical logic.” Namely, together with the
internal forms, external forms (for denial, logical sum, logical product, and implica-
tion) are also employed. (See, for example, Principia mathematica, Vol, 1, Part 1,
Section A.) This duality of semantic interpretation, however, does not correspond to
the actual nature of the formal classical propositional calculus. For the classical pro-
positional calculus does not treat assertion as a function of propositional variables-—
in other words, it introduces only internal assertion—and thus its semantic interpre-
tations are formulated on the basis of the system of internal forms.

6 An internal assertion is regarded as identical with the statement itself.

7 In this work ‘classical propasitional caleulus’ is understood specifically to mean 2 matrix calculus
adequate to the propositional calculus of Hilbert and Ackermann (Grundzige der theoretischen Logik
{1928, Berlin: Springer-Verlag)) and the propositional calculus of Whitehead and Russell (Principia
mathematica (1910, Cambridge: Cambridge University Press)).
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In addition, it follows in principle that the system of internal forms is absolutely
adequate for the semantic interpretation of the formalizations of classical logic and
mathematics, as far as expressions of the propasitional calculus are concerned.
Although it is somewhat difficult (because of the imperfections of ordinary language)
to concisely and conveniently express the internal denial of a proposition of the form
“A and B", for example, the existence in principle of such an internal deniai is
nevertheless absolutely clear; and it can easily be expressed in ordinary language if we
use several definitions, the introduction of which should be unobjectionable.

In accordance with what was said above we shall call internal and external forms,
respectively, classical and nonclassical semantic functions of statement variables.

§2. MATRIX FORM OF THE STATEMENT CALCULUS

1. BASIC CONCEPTS AND DEFINITIONS. Let @, b, ¢, d, .. . be statement variables.
The range of values of each of these variables has three members—7"(read “‘true), F
(read “‘false™), and N (read ‘‘meaningless’’)—and no others.

We now introduce the basic functions of statement variables. Each function is
defined by a table (matrix), where all the possible combinations of values for the
arguments are arranged to the left ot the double lines in a fixed order, and the corres-
ponding values of the functions are arranged to the right.

We introduce, as basic classical functions, formal internal denial ~a (read “‘not-
@'’} and formal internal logical sum aNb (read “g and b’), defined by the matrices:

anb

2
N
®
o>

ZﬁﬁLa[

ZNT

ZzMmzZzNMm NN
ZMZNZTTMNTN
2Z2Z2ZmmmN

Asbasicnonclassical functions we introduce formal external assertion |- a(read “*a
is true”’) and formal external denial | a (read “‘ais false’’), defined by the matrices:

4

,3' %_a . a ja

zm~N | s

T
F
F

2z
mN T
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The following definitions serve exclusively to simplify the writing of formulas and
do not require any explanation (the symbol p signifies equivalence by definition):

g E ~ (v g),
~-a D ~(t-a),
F e 3 F(]a
171 D T,

etc. for any uninterrupted sequence of a finite number of the symbols ~, |, 7| and

{, which wilf be introduced below.
We now define several classical functions in terms of classical denial and logical

sum:

@V b) D ~ (ug N ), (D)
(adb) D ~ (@ N~ D), D)
(@ OC b) b [taDb)N (b Da)}. (Dy)

The function a U b—formal internal or classical logical product—is read as “‘aor &”’.
The function g O b—formal internal or classical implication—is read as ‘‘if @, then
b*’. Using the definitions given above, it is easy to construct matrices for the func-
tionsalU b,a D b,and a DC b.

Using formal external assertion and formal external denial, we define the follow-
ing functions:

(aAb) E (Fan | b), Dy
@ve) 5 (FauU | b), . ®))
@5 5 (Fad k&), (D9
(@ — b) .D fa—=&)N (b~ a)l, (D7)
= b) D [(@ <= b)N (va — ~ b)), Dy
- ~(FaU ] a), (D)

a D ~ - at Dy)

. - .4
The function ¢ A b—formal external or nonclassical logical sum~—is read as “‘ais true
and bis true’’. The function @ vV b—formal external or nonclassical logical product—
is read as ‘‘a is true or b is true”’. The function a = b—formal external or non-
classical implication—is read as *‘if g is true, then b is true’” or “‘from the statement a
follows the statement &°*. The function @ <~ & is read as “*a is of the same strength
as b”’. The function @ = bisread as ‘‘ais equivalent to 8" or “‘a has the same value
as b".

It is interesting to compare the concept of equal strength with the concept of
equivalence. If @ < b, then from the truth of one of @ or b the truth of the other
follows. However, this along does not mean that logically a and & have the same

8 Thesymbols~, {~ , ], and ! operate only on the letters and parentheses which stand immediately to
their right.
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value. If one of them is false, then the other need not be false, but may be meaning-
Jess. From

a<—p

alone we cannot conclude that

mammb

or that

ta«~—1ib.

On the other hand, every statement which follows from a follows from & also, and
vice versa. In this particular sense, @ and b are of equal strength to one another.
if .

a=b,

il

then not only does the truth of each of the statements ¢ and & follow from the truth of
the other, but in addition the falsehood of one follows from the falsehood of the
other and the meaninglessness of one follows from the meaninglessness of the other.
The equivalence of two propositions entails their equal strength, but the converse
does not in general hold. We note that the matrices of equivalent functions are identi-
cal. Thus equivalence in the statement calculus plays the role of “‘mathematical
equality’’. The function ¥ a is read as “‘a is nonsensical’’ or ‘‘g is meaningless’’.
Finally, the function a is read as “‘a is not trug”’

For the functions ¢ 2 and 4, on the basis of their definitions, we obtain the
matrices:

5. a [ta 6. a a
T F T G F
F | F FT
NIWT NIT

It is easy to construct the matrices for the functions e A b, aV b, @ = &, and

b.
We now define precisely the concept of a formula. This definition is constructed

inductively as follows:

a

it

1) every statement symbol is a formula,
2) if Ais a formula, then ~ 4, - A4, and 7] A are also formulas,
3) if A and B are formulas, then 4 (Y Bis a formula.
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In order to make the writing of formulas less cumbersome, we will use the dot
convention.

The symbols O, DC, =, <, =, and p are considered to be of one rank, and
this rank is higher than that of the symbols N, U, A, and v. The latter bind more
strongly than the former. ,

The symbols ~, -, ], and | operate only on the letters and parentheses which
occur immediately to their right. .

The symbol ~always applies to the entire expression over which it stands.

Thus, the formula

avb—bva

" signifies the same as the formula

@avb)—bVa)
The formula
a=>b.N.ga=>n~bvVib. ~~vavia
signifies the same as the formula
{@=b)Nla=>(bvibj}—=(vavia).
The deﬁnitiqn of the function  <— b can now be written as
a<—+b.p.a>b.Nb~—a,

and so on. .
A formula is called valid in the matrix statement logic if it has the value 7*for all

possible values of its arguments. Valid formulas are also called tautologies. Proof of

validity amounts to verification, which is carried out most systematically and simply
by the method of constructing matrices for the given formulas.

A formula which does not have the value 7 for any values of its arguments is
called a contradiction. If 4 is 2 contradiction, then A4 is a tautology. And if one of the
formulas ~A, 7] 4, VA, or A is valid, then A is a contradiction.

A formula which contains, besides statement variables, only classical function
symbols, is called classical. Let $(a;, a,, .. .,a,) be an arbitrary formula and let its
matrix be given. This matrix has 3" rows. We will call the collection of rows in which
none of the arguments has the value N the TF-submatrix for the given formula.
Obviously, the TF-submatrix has 2 rows. The collection of the remaining rows will
be called the N-submatrix. The N-submatrix has 37—2" rows.

2. FORMULAS WHICH ARE NOT VALID IN THE STATEMENT CALCULLUS.

THEOREM 1. No classical formula is valid in the statement calculus.

PROOF. The truth of this assertion is obvious, for every classical formula receives
the value N whenever at least one argument receives this value.

e

On a Three-valued Logical Calculus 95

THEOREM 1I. No formula which is a contradiction is valid in the statement
calculus. )
PROOF. This theorem follows directly from the definitions of valid formula and

contradiction in #1 of this section.
The following formulas are examples of contradictions:

ad a,
a= Tla,

a+<a.

THEOREM I11. No formula which is constructed from only nonclassical functions
can be equivalent to any classical formula.

THEOREM 1v. The formula {@ (and consequently, also @) cannot even be merely
equal in strength to any classical formula.

The truth of Theorems I1I and IV follows directly from the structure of matrices
1—-6in #1 of this section.

3. IMPORTANT FORMULAS WHICH ARE VALID IN THE STATEMENT CALCULUS:

THEOREM V. Every formula which is valid in the classical propositional calculus
and which is of the form 4 D B,” where 4 and B contain exactly the same variables,
remains valid in the statement calculus, if the sign O which occurs between A and Bis
replaced by the sign —= and the variables are considered to be statement variables.

Similarly, every formula which is valid in the classical propositional calculus and
which is of the form A DC B, where A4 and B contain exactly the same variables,
remains valid in the statement calculus, if the sign DC which occurs between A and
Bis replaced by the sign = and the variables are considered to be statement variables.

We prove the first part of the theorem. It is evident that if a formula 4 D Bis
valid in the classical propositional calculus, then in each row in its TF-submatrix the
formula A — B has the value T.

Now let some variable a; have the value N. Since the formulas A and B are
classical and both, by hypothesis, contain the variable a;, both receive the value Nin
this case. But, by the definition of the function a — b, we have

N—=N=T.

Consequently, in each row of its N-submatrix the formula A — B also has the
value 7. But then it always has the value T, and the theorem is proved.

THEOREM Vi. The matrix statement calculus contains a part which is isomorphic
to the classical matrix propositional calculus, where the formulas of this part of the
statement calculus are obtained from the formulas of the classical propositional
calculus through the following transformations' (the letters ¢.p.c. below signify the
classical propositional calculus and the letters s.c. the statement calculus):

9 Here and below we will suppose that the symbols used in the classical propositional calculus are the
same as those used in the classical formulas (in the sense defined above) of the present work.
10 See footnote 9.
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1) every propositional variable becomes a statement variable with the same nota-
tion,

2) the sign ~ of the c.p.c. becomes the sign ~ of the s.c.,

3) the sign N of the c.p.c. becomes the sign N of the s.c.,

4) the sign U of the c.p.c. becomes the sign Vv of the s.c.,

§) the sign 3 of the ¢.p.c. becomes the sign — of the s.c.,

6) the sign DC of the c.p.c. becomes the sign < of the s.c.

PROCF. It is easy to verify by constructing matrices that the following formulas
are tautologies:

a—~ana, 'y
afN b—~>bnNa, @)
a=b. > aNc—>bNeg, 3)
a=>b.N.b—>c.—~ a—>c, )
b= .a- 4, (%)
an.a=b.— b, : )
a—>avb, 7
avh—-bva, 8
a=c.0N.b—~c~aVb—~c, G
a—.a—=b (10
a=+*b.N.a—~b.~a 1y
ava (12)

The system of formulas (1)—~(12) is an isomorphic image of the following system of
formulas of the classical propositional calculus:

aldala,

anNnbObNa,
aDb.D.aNcDbNec,
adb.N.6Dc. D.ale,
b2D.alb,
anN.a>b.Db,
aDaUb,

alUbDbUag,
aldc.N.bDe.D.aUb De,
~agD.adb,
al)b.N.adnvp, vaa,
alUnra,

But this system, as is weil known, ' can be used as the formal axiom system for classi-
cal propositional logic, if the following are introduced:

11 A. Heyting, ‘Die formalen Regeln der intuitionistischen Logik’, Sitzungsberichte der Preussischen
Akademie der Wissenschaften, physikalisch-mathematische Klasse, (1930), 42—56; A. Kolmogoroff,
*Zur Deutung der intuitionistischen Logik®, Mathematische Zeitschrift, 35 (1932), 58—65.

ik
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1) principle of detachment:

if . and @ D b are valid formulas, then b is a valid formula,

2) rule of conjunction:

if @ and & are valid formulas, then 2 N b is a valid formula.

3) principle of substitution in the usual form.

Now we can see from the matrix of the function ¢ — b that in the matrix state-
ment calculus the principle of detachment holds in the form:

if @ and @ — b are valid formulas, then & is a valid formula.

Further, from the matrix of the function ¢ A b, we can see that in the matric state-
ment calculus the rule

if @ and b are valid formulas, then a2 A b is a valid formula
also holds.

Finally, it is obvious that the principle of substitution holds for the matrix state-
ment calculus. These claims establish Theorem VI.

The isomorphic image of classical propositional logic whose existence has just
been established is called the K;-system. It would be easy to show that the statement
calculus contains another isomorphic image of propositional logic, obtained from
the K,-system by replacing the symbol N with the symbol A and the symbol «— with
the symbol =. This second isomorphic image of the classical propositional calculusis
called the K-system. 2
Theorems ¥V and VI permit us easily to specify a large class of formulas which are

“valid in the statement calculus. Thus, the following formulas serve to illustrate

Theorem V:
a=r~nrg, {13)
~s@nNb)y=r~valnvp, (14)
~n@Uby=rvaninvp, (15)
~n@db)=an~vb, (16)
aldnng.rvag, a7n

However, we should not overestimate the operative strength of these formulas; it is
necessary to remember that classical formulas stand to the left and right of the signs
= and - in these formulas, and to keep Theorem I in #2 of this section in mind.

We now consider a further series of important formulas of the statement calculus.
First we display the fundamental formulas signifying thc connections between classi-
cal and nonclassical functions:

a <~ a, ) (18)
~ g~ | a, (19)
anNb+—+ahb, (20)
aUb—aVb, (v2))]
aDb.~>.a—~b. (22)

It is very important to stress that the last two formulas contain only one-directional
nonclassical implication, while the first three contain the equal-strength connective.

12 We note that the symbol M may be replaced in the K} -system by the symbol A without simultaneously
replacing the symbol <— by the symbol =; this, however, is not of independent interest.
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Two formulas which connect meaninglessness with classical and nonclassical
denials are:

ta=i~vag, 23)
ta—= " Ja (24)

Formula (25) shows that the external assertion of a meaningless statement is false:
ta— ] Fa (25)

Some interesting formulas are:

~ (@l v oa), 26)
Tl @Una), @n
4@V ] a), .(28)
t@un~a)s ) @V ] a), 29
Y@un~a)=ia. ‘ 30

From formula (26) we can see that the classical denial of the classical form
“‘tertium non datur”’ is always false or meaningless. Formula (27) asserts that the
nonclassical denial of the classical form ‘‘tertium non datur’ is always false.

Formula (28) asserts that the nonclassical form ‘‘tertium non datur’” cannot be
meaningless, and, particularly, that it is always false that it is meaningless.

Formula (29) shows that for ‘‘tertium non datur’’ the meaninglessness of the
classical form is equivalent to the falsehood of the nonclassical. Finally, formula (30)
asserts that the classical form ‘“tertium non datur’’ is meaningless if and only if the
given statement is meaningless. .

Now we note formulas which are especially important for the analysis of para-
doxes: )

a=~g. =ia, an
a+~—r~a. =lg, (32)
~ta—+ g =—n~agi=la, 33)
aUng—~> . g «—~rg: =la, ’ (34)
a «— |a. =}a, (35)
Fa=la =la ‘ (36)

However, the formula
a= |la. =la
does not hold. If @ is meaningless, then | a is true, but @ = 7| ais always a false

formula.
Consider further, for comparison, the formulas
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a=ia. = a : 37)
a=sila. ~—>na (38)

The following formulas are important:

~g—.a-+b, 39)
Na—=.a—>b, (40)
ta—+.a—~b, (41)
a=b.—~.va=~p, (42)
a=b.—~.ta=1{b. 43)

i
THE RESTRICTED FUNCTIONAL CALCULUS
§1. BASIC CONCEPTS, NOTATION, AND DEFINITIONS
The variables of the functional calculus are divided into three groups:

1) statement variables: a, b, ¢, ...,

2) individual variables: x, y, 2, ...,
3) functional variables of any finite number of individual variables:

SO g()e s d () w( ).

To these three groups of variables correspond three groups of constants, the nota-
tion for which is specially introduced as needed.

The expression f(x) is read: *'x has the property f*. The expression f(x, y}is read
as: “xstands in the relation fto »"’. The symbol (x), the basic quantifier, is cailed the
universal quantifier. The expression (x)f{x) is read as: ‘‘every x has the property /.

The concept ““formula’ is defined inductively by the following rules (we will
sometimes call a formula a ‘‘statement’”): :

1) Each statement symbol is a formula.

2) A function symbol whose argument places have been filled with individual
constants or individual variables is a formula.

3) If Aisaformulaand 4 contains a free variable x (depends on x), then (x) 4 is
is a formula. .

4) If Aisa formula, then ~A4, | A, and |- A are formulas.

5) If A is a formula and B is a formula, then 4 N B is a formula.

6) If any part of a-formula is covered by a universal quantifier binding some
variable, then no other universal quantifier which binds the same variable -
can cover that part of the formula. -

Further, in the functional calculus definitions (D,)~(D,y) are introduced, from I,
§2, #1. Hence, if A is a formula, then $4 and A are both formulas, and if 4 and B
are formulas, then A U B, A DB, ADCB, AAB, AVB, A~ B, A ~ B,and
A = B are also formulas. '

Using the basic quantifier (x), we now introduce three new ones: (ex), x, and
vx. These quantifiers are defined as:
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(ex)f (x) B ~x) ~fix), (Dy)
qxf(x) §(ex) - f(x), (D,,;)
Vxf(x) § ) - ). (Dy;)

Thus if A4 is a formula which contains the free variable x, then (ex) 4, x4 and Vx4
are formulas. V

{ex) f(x) is read as: ‘‘there exists at least one x with the property f*’,
Axf(x) is read as: ‘‘for at least one x, the statement f{x) is true”’,
YV xf(x) is read as: ““the statement f(x) is true for all x”’.

Because of their properties specified in the axiom system below, the quantifiers
(x) and (ex) are called, respectively, the classical universal quantifier and the classical
existential quantifier.

The quantifiers ¥x and Ix are called, respectively, the nonclassical universal
quantifier and the nonclassical existential quantifier.

Let us now agree that, in the grouping of formulas with dots, the signs 2C, D,
~, <, =, p, U, N, V, and A have priority over quantifiers; and the signs v, }-, 7},
and 4, when placed before quantifiers, cover the whole formula consisting of the
quantifier together with its scope. In the remaining cases the dot rules have priority.

Thus, the statement

).f(x) > gx)
signifies the same as

) (flx) = glx)),
the formula .

). fx) N gx).~ x)Ax)
signifies the same as
’ M) N gl) = (x)hx),
and the formula

T 0).flx) > glx)

T T ) = gl
Finally, instead of {x}f{x), (ex)f(x), VXf(x), and Fxf(x) we shall write, respect-

ively,
(X)) S (x), @)V (x), Vxf(x), Txf (x).
§2. AXIOMS OF THE RESTRICTED FUNCTIONAL CALCULUS

We use the following three groups of axioms:

I. Every tautological formula of the statement calculus is a valid formula.
1:
) &f&E)—=1(»n."
1) SO~ Fxf(x).
IL,) Y f)—~ Tx i f(x).
1I,) Jxife)—=ix)fix).

signifies the same as

13 The variable y does not occur bound in f(x).
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[I1:

ITII,) All the axioms of 1T are valid formulas.

111,) If 4 and B are valid formulas, then 4 M B is a valid formula.

III;) If A and A — Bare valid formulas, then Bis a valid formula (principle of
external detachment). Schematically:

]

B,

L

A

¢

&

II1,) Principle of substitution: in a valid formula, the following substitutions
may be made to obtain another true formula:

1) a single formula may be substituted for every occurrence of some
statement variable in the given formula,

2) a single formula which depends on the variables x, y,..., « (and
possibly on other variables) may be substituted for every occurrence
of some function variable with arguments x, y, ..., u.

3) anindividual variable may be everywhere replaced by another individ-
ual variable or an individual constant which names an individual
belonging to the range of values of the given variable.

1t goes without saying that

1) the principle of substitution applies only to free variables and

2) inplace of a variable which stands in the scope of some quantifier, it is
not permissible to substitute an expression which depends on the
variable which this quantifier binds.

In the restricted functional calculus, we understand individuals to be objects
belonging to a definite, limited, and previously defined range.
III;) Schema for quantifiers:

1) If B(x)is an expression depending on x, A4 is an expression which does
not depend on x, and 4 — B(x) is a valid formula, then A — (x) B(x) s
also a valid formula,

2) if B(x) is an expression depending on x, 4 is an expression not
depending on x, and B(x) = A is a valid formula, then FxB(x) ~ A is

- also a valid formula. '

§3. SOME VALID RULES AND FORMULAS OF THE RESTRICTED
FUNCTIONAL CALCULUS
- THEOREM VIL. In the restricted functional calculus of the system under consid-
eration the following rule holds: if A and 4 D B are valid formulas, then Bis a valid
formula (principle of internal detachment). Schematically:

AD B,

B.



102 D.A. Bochvar
PROOF. Let A and 4 D B be valid formulas; applying the principle of external
detachment II1,) to the formula 4 DO B and the valid formula
ADB.—».A—B
(see formula {28), I, §2, #3), it follows that

A DB,
ADB.—~.A—*B,

A~ B,

i.e., A — Bis avalid formula. Now, by virtue of the assumption of the validity of the
formula A, again applying the principle of external detachment, we have

A,
A~B,
B,

i.e., Bis a valid formula, and the theorem is proveu.

THEOREM VHIL. The restricted functional calculus of the system under considera-
tion contains a part which is isomorphic to the classical restricted functional calculus.

PROOF. The restricted functional calculus contains the formulas (1)—(12), 1, §2,
#3. Adding to these formulas the axioms of group Il and groups 111, itisevident that we
obtain in our restricted functional calculus an isomorphic image of the classical func-
tional calculus, where the universal quantifier of the classical calculus corresponds to
the quantifier (x) of our calculus, and the existential quantifier of the classical calculus
corresponds to the symbol x of our calculus. The theorem is proved.

The isomorphic image of the classical restricted functional calculus whose exist-
ence has just been proved will again be called the K,-system. Now it is easy to find a
whole class of formulas which are valid in the restricted functional calculus of the
system under consideration.

We note:

1) The principle of generalization: let the formula A4 (x) which contains the free

variable x be valid; then the formula

() A x)

is also valid.
2) The formulas:

fln)y = Txf(x) : (44)

(here nis an individual constant which nemes an individual belonging to the range of
values of the variable x), and

x).f(x) = gx).~ . () (x) = () glx). ' 45)
We note also some formulas which are not contained in the K \~system:

(ex)f(x) = Txf(x), (46)

~ (8x)flx) = (x) ~ fx), 47N

i
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~ (X)) f(x) = (ex) ~ f(x), (48)
Txf(x) N~ b (ex)fx) = (ex)f (x). (49)

Finally, note that the following holds:
THEOREM IX. If f(x) = g(x)is a valid formuia, then (x)f{x) = ) g(x)isalsoa

valid formula.

I
THE EXTENDED FUNCTIONAL CALCULUS AND THE ANALYSIS OF PARADOXES
§1. THE EXTENDED FUNCTIONAL CALCULUS

The analysis of the paradoxes of the classical system through the formal appara-
tus of our calculus depends on the possibility of constructing in our system each
formula examined in the classical system. It is evident that the apparatus of the
restricted functional calculus is inadequate for this. Therefore some extension of the
calculus is necessary. Such an extension is the aim of this section.

First, using only some of the elements of the system considered above, we
construct a new system which we call system Z,. We begin by constructing the state-
ment calculus of the system 2, introducing just two functions of statement variables,
~gand a N b, defined as in I, §2. We include the definitions (D;)—(D;). In other
words, we introduce classical functions, but no nonclassical ones. Obviously, the
concepts of formula and statement are now correspondingly narrower than those in
1, §2. The definitions of the concepts tautology and contradiction remain as earlier.

It is easy to see that in the statement calculus of system Z, there are no valid
formulas.

Now we turn to the construction of the restricted functional calculus of Z,. We
will proceed as we did in II, §1, right up to the definition of the concept of formula.
The latter is defined through the following rules:

1) each statement symbol (in the sense of 25} is a formula,

2) each function symbol whose argument places have been filled with individual
constant or individual variables is a formula,

3) if A is a formula containing the free variable x, then (x)A is a formula,

4) if Ais a formula, then ~A4 is a formula,

5) if A and B are formulas, then AN Bisa formula,

6) if some part of a formula is covered by a universal quantifier binding some
variable, then this part of the formula cannot be covered by another unjversal
quantifier which binds the same variable. : '

Further we introduce, once again, definitions (D, )}—(D;) and (D,,). Thus if A and
Bare formulas, 4 U B, A D B,and A DC Bare also formulas; and if 4 is a formula
which contains a free variable x, then (¢x)A4 is also a formula.

The rules for writing formulas remain the same.

Of the axioms we keep only 1, I11,, and II1,, i.e., only those which concern classi-
cal formulas.

It is evident that the restricted functional calculus of X, contains no valid
formulas.
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Now we extend the functional calculus of ¥, to include under the concept of
individuals not only the original objects but also all possible functions and statements
of system Z,. Thus in axiom 111, the concept of individual is interpreted in this exten-
ded sense. Thus functions of functions and functions of statements are introduced
for consideration. Nevertheless, the argument place of each function has a fixed
range of individuals. Examples of such ranges are the collection of all statements in
the sense of X, or, say, the collection of functions in the sense of X,. We will call the
systern thus obtained the full system X,.

It is completely evident that in the full system X, we have exactly the same collec-
tion of formulas as are considered in the extended functional calculus of Hilbert and
Ackermann, unrestricted by the theory of types, " so that if the range of objects is the
same in both systems then the variables are the same in both systems.

It is also evident that the full system ¥, contains no valid formulas. Formulas may
only be examined in the system.

We now expand system Z, as follows:

1) We introduce nonclassical assertion and denial as functions of statement var-
iables, with the same properties as in I, §2, and we also introduce all of the defini-
tous (0, ) — MY and (DY and (D)),

2) Wecorrespondingly expand the concepts of statement and function. For this, of
course, we expand also the concept of formula, but with one restriction which it
is necessary to emphasize: except for objects, only functions and statements in
the sense of the full system X, fall under the concept of individual. In other
words, the range of individuals remains identical with that of the full system Z,.

In axioms I, I11,, and I1I, we will understand the words ‘statement”’, “‘function’
and “formula’’ in the new broadened sense. However, we will interpret the concept
of individual in part 3 of axiom 111, in accordance with the aforementioned restric-
tion.

3) We note that the axioms of groups II, and also axioms III,, III, and III; use the

words “function’, “‘statement’’, and ‘‘formula’ in the new sense, correspond-
ing to part 2 above.

We call the system now obtained system Z. It is evident that in system X we can,
and must, distinguish function and statement variables in the sense of system X, from
function and statement variables in the broader sense of system Z. We will call func-
tions (respectively, statements) in the sense of system X, simpy functions (respect-
ively, statements) of classical logic, which is evidently entirely legitimate in view of
the correspondence between system X, and the extended functional calculus of
Hilbert and Ackermann. For function variables of classical logic we introduce the
notation:

fc( jvgc( )9--~!¢c( )y wc( )....

14 See Hilbert and Ackermann (footnote 7), 82—115.

i
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For statement variables of classical logic we introduce the notation:
Gcy by Cov - - -

For function and statement variables in the sense of system X we retain the notation
of IIIt’ i§sléasy to prove that in system Z there can be no expression of classica} log.lc
which is of the same strength as ‘a.. We first note that becal{se of the c.lalms in
Theorem IV of I, §2, #2, itis sufficient to show that each expression of cl.assu:_al log{c
of the form (b.)F (ac, bc)is meaningless if $a, is true. I-But this is .clear, since if ¢qc is
true then g, is meaningless; and thus F(a., b.) is certainly meaningless as well, i.e.,

the formula

iFac, be)

holds. Consequently, by axiom II,,

b} Fla., be)
acd further, by axiom 11, we have:

HbIF (ac, be)s

which required proof. .
All this reasoning, of course, presupposes the consistency of system X. The

consistency of the latter remains for the time being unproved, bx{t .all the author’s
attempts to obtain a contradiction in it were vain, so that the cmpllsncal grounds for
holding system X to be consistent appear to be important enough. )

And system X is the extension of the functional calculus necessary for the analysis
of the paradoxes. So we turn to the analysis.

§2. ANALYSIS OF THE PARADOXES OF CLASSICAL MATHEMATICAL LOGIC

. SOME GENERAL REMARKS. The paradoxes of the classical extended functional
calculus can be divided into two groups. The paradoxes of the first group hav? a
purely logical nature and do not require for their construction any assumptions .lym.g
outside the range of purely logical formulas. An example of a paradox of this lsmd is
Russell’s paradox. The paradoxes of the second group cannot be constructed wnho_ut
augmenting the apparatus of the logical calculus with well-kr.xqwn formulas contain-
ing symbols for particular individuals—functions or propos:txons;6M example of a
paradox of this second group is Weyl’s “‘heterologisch’’ paradox.

15 (Bochvar worked on proofs of the consistency of system ¥ in the works cited in footnote 3 above ]

16 On the difference between these two groups of paradoxes see: Hilbert and Ackermar{n (footx_\otc N,
115; F. Ramsey, ‘The foundations of mathematics’, Proceedings, London Ma!hem(zmjal Soc::ety. .(2)
25 (1926), 338—384; R. Carnap, Abriss der Logistik (Vienna, 1929), 21; R. Camap. ng Antinomien
und die Unvollstiandigkeit der Mathematik®, Monatschefte fiir Mathematik und Physik, 41 (1934),
263284 {in English in Logical syntax of language (New York and London, 1937)].
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While in the case of the paradoxes of the first type the apparatus of system X
allows us to show directly the meaninglessness of certain statements, in the case of
paradoxes of the second type the results of analysis are based upon assumptions of
the sort mentioned, as the construction of these paradoxes in the classical system is

based upon them.
The analysis of Russell’s and Wey!’s paradoxes is presented below. In this section

functions of one variable are sometimes called properties. And we will, for brevity, '

sometimes write simply ¢ instead of the symbol $( ).
2. ANALYSIS OF RUSSELL'S PARADOX. In the extended functional calculus of
Hilbert and Ackermann, Russell’s paradox is obtained by considering the function

¢4,
which expresses the second-order property of applying to itself. We define
Pd ) b ¢4).
In virtue of the validity in classical logic of the formula
a>Ca
we may write
$($) OC $(9),
or, using the definition of the function Pd,
$(¢) DC Pd ($).

The function ~Pd belongs to the range of values of the variable ¢. Substituting
~Pd for ¢ in the last formula, we obtain:

~Pd(~vPd) OC Pd(~Pd).

And this is Russell’s contradiction.
Now we shall see how things stand in system £. We consider the function

$c($e)
and we define
Pd(d,) D e ($o)-
We note that the range of values of the variable ¢, coincides with the range of the

variable §, introduced earlier for the examination of Russeli’s paradox in the classical
extended functional calculus. The formula :
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a OC a

however, cannot be used in system X since here it is not valid.
On the other hand we have the valid formula

Q@=a
We substitute $.(¢.) for g in this formula and obtain
$clbe) = bel$e)-
Now, using the definition of the function Pd, we may write

Pd($;) = (4.

The function ~Pd belongs to the range of values of the variable ¢... Substituting ~ Pd
for ¢ in the last formula, we obtain:

Pd(~ Pd) = ~Pd{vPd). (o)
Because of the validity in system X of the formula
a=~a =ia,"
it follows that
Pd(~Pd) = ~Pd(~Pd}. = | Pd(~Pd)
and, from (a),
1Pd(~Pd).

Further, from the validity of the formula

g =tn g

it follows that

{ v Pd(~Pd).

Thus, the statement Pd(~Pd) is meaningless, as is its internal denial. The external
denial of the statement Pd(~PQ4) is false; and so is its external assertion.

17 Seel, §2, #3, Theorem V.
18 See I, §2, #3, formula (31).
19 Seel, §2, #3, formula (23).
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(3.] ANALYSIS OF WEYL'S PARADOX. We first present the formal construction of
Weyl’s paradox in the classical extended functional calculus. That the symbol z is
heterological is expressed by the function H(z), defined as follows:

H@) D. (). Rz, )N~ & ().
Here R(z, ¢) is read as: ‘‘z designates $°. The range of values of the variable z is the
collection of symbols designating properties, and the range of values of ¢ is the collec-
tion of those properties. We take it as an axiom that the symbol ‘‘H"’ designates only
the function H. Symbolically this axiom may be expressed by the formulas:

1) R(“H”, H),
2) R(“H”,$) Oy - H.

Identity is defined in classical mathematica: 12~ic in accordance with the formula
x =y 5.UNSE)Df(."
Therefore formula 2 mav be rewritten as:
2) R(“H”,$)D.(f).f($) D f(H).
Now from the definition of the function H we have:
H{(H) D.(e4). R(“H”, ) N~ § (“H™). (a)
From 2 and the valid formula
().F@ DSEH).D.g@) DgtH)
we obtain
R(“H”,$) D.g (§) Dg(H).
Substituting the function ~¢é(*“H’’") for g(¢) in this formula we obtain
RCH", §) DV (“H”) D~ H(“H").
Further, from this we have
RUH”, PN~ (“H”) Do C“HYN .~ ¢ (“H') D~ H(“H™).
Since the formula

20 Sec Ramsey (footnote 16). :
21  Sece, for example, Carnap, Abriss der Logistik (footnote 16), 15; also Hilbert and Ackermann (foot-
note 7), 83.
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A~ G (CHTYN g (CHY D v HCH). D~ H(YH?)
holds, we have
R("H”, YN (“H) DY H(EHT).

Applying a well-known rule of Hilbert and Ackermann’s functiopal calculus to the
jast formula, we may write

ED).RECH”, N~ b (“H').D~ H(CH).
Taking (o) into consideration, we have
HMH”Y D~ HCH”). (A)
On the other hand, from the valid formula
f(n) D (ex)f(x),

where nis an individual constant which names an individual belonging to the range of
values of the variable x, we may write:

RMH”, )N~ HEH™ D.€$).RECH”, H N~ ¢ (“H™),
or, by the definition of the function H,
R(C‘H”,HYN~ H(“H”) D H("H").
But since R(““H"’, H)is adopted as an axiom, it follows that
~ H(“H”) DHCH™). | ®)

Formulas (A) and (B) togethcr.yield Weyl’s paradox:
H(‘(H‘”) DC s H(llH?!)‘

We will investigate now what may be obtained in system Z. Since the calculations
here are considerably long, for the sake of brevity we shall not in general refer to the
formulas of the statement calculus used in the proof. It is easy to see in each case
which formula is used, and it is also easy to verify this formula, perhaps with thehelp -
of its corresponding matrix.

First of all we define in system X the function H(z):

H@) ——[5 (b)) Rz, 3N ~ $.(2).

R(z, $.)is read as: *‘z designates ¢.”".
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The range of values of the variable z is the collection of symbols of classical logic
which designate properties, and the range of values of ¢, is the collection of those
properties which are considered in classical logic. Thus the ranges of values of the
variables z and ¢, are the same as the ranges of z and ¢ used to construct Weyl’s para-
dox in classical logic.

Formulas 1 and 2 correspond now to the formulas

1) R(“H", H),
2°) RCH”, $) = . (fe) Selbe) > S (H).2

By the definition of the function H, we have
HOH™) = (ede) REH" 4N b (“H). @
From 2’ with the help of axiom II, (i1, §2), follows
RCH”, ¢c) = .gc($c) ™ g (H). ®)
Substituting ~v ¢C(“H”)bfor g.($.)in this formula, we obtain
R(“H”, )~ .~ o (“H) >~ H(“H"). : )
From this we obtain, further,
RCH, 4) N $(H™) =~ 4 (CH™) N~ 4o (“H™) = ~HH™). (@)
Since the formula
N H N L e (“HP) e HH™). ~ ~ HH”)
is valid, we obtain
R(“H”, ¢ )N~ ¢ (“H”) =~ H(“H™). (&)

The application of axiom II1; from 11, §2 (schema for the quantifiers) to formula (e)
yields

H4.R(“H”, )N~ $(“H).~>~ H(“H"). @
Using formula (46), 11, §3, we obtax:n now

(e$0) - RCH”, $)N ™~ $(“H”"). >~ H(“H”), ®
or, by the definition of the function A,

22 This condition is even weaker than the identity of the functions designated by the symbol “H’".
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H(‘(H’Y) — ~n H(l‘H’)).

On the other hand, on the basis of formula (44), I1, §3, we have

RCH", H)N ~ HEH") = T4 ROH”, ) O~ §.(“H").

But by formula (49), II, §3 and from the definition of the function A:
[a¥] l H(“H”) n . 3¢C'R(14H’!, #C) n s ¢C(IKH,’)' — H((‘H").

From formula (i) follows

T4 ROH 4 N~ b (“H™). = .~ HEH) > HEH™).

From formulas (h) and (k) we have
R(“H”, HYN~ HOH?) =~V HCH?) =~ H(“H™),
or
R(*“H”,HY—~>:~H“H”")~ .~ H('H”)~ H(H").
Since the formula R (“‘H"’, H) has been adopted as an axiom, we obtain
~HEHY > v HEHE?) = H(CH),
or, changing the positions of the antecedents,
~YH(OCH Y= .~ HEH) =~ HC'H™).
On the other hand, l;y the validity of formuia (A’) the formula
~NEH(ECH?Y >  CHOH?)Y =~ H(YH)
is also valid. From (A'') and (B') we have
~NYH(H™ = HCH™) =~ HEH),
from which, by formula (33), I, §2, #3, the formula
VH(“H™)
follows, and, further, by formula (23), I, §2, #3,

e H(“H").
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Resume .

wms"{t'}}:;s ;:égg_i was published in English in Matematicheskii sbornik; it appeared

In th? present paper a three-valued logical calculus is investigated in which sense-
lessness is introduced as the third possible truth-value of an outsaying® and which
allowshan exact analysis of the contradictions of the classical mathematical logic. This
fmalysxs proceeds in the form of a formal proof and results in each investigateci case

- ina formula stating that a quite definite expression introduced by the classical logic

the corresponding case is meaningless. sem

23 An outsaying is said to be a

v propasition, if it is true i ich is nei
false Is o0 1o by s or false. An outsaying which is neither true nor
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From Categoricity to Completeness
Received 14 June 1981

1. Categoricity of postulate sets and equivalence of mathematical systems

Current study of axiomatic method presupposes concepts and results of string
theory and set theory. But axiomatic method was vigorously pursued in the last half
of the nineteenth century without explicit reference to the theory of strings, which
was not axiomatized until the 1930s (independently by Tarski 1934 and by Hermes
1938). For historical remarks on string theory see Corcoran, Frank and Maloney
1974. Moreover, although it is natural to read modern set-theoretic ideas in early
methodological work, it is clear that early postulate theorists such as Dedekind,
Peano, Hilbert, Huntington and Veblen were not working in any formal set-theoretic
framework. Indeed, close correspondence between modern precise explications of
methodological concepts and imprecise formulations found in the writings of early
postulate theorists suggests that the creators of modern mathematical logic, partic-
ularly Carnap, Tarski and Church, may have been guided by the goal of putting the
early ideas on a more mathematically precise basis. '

In the following discussion the term ‘system’ is used loosely as in Dedekind 1888
for a complex of objects, functions, relations, etc. and not for a complex of proposi-
tions, symbols, etc. Such constructions as ‘axiom system’ which violate this conven-
ton are avoided.

By the late 1880s mathematicians had distinguished mathematical systems from
propositions referring to the contents of the systems. Dedekind /888 considered sys-

. tems <D, f>, where D is a class and fis a function from D into itself, and he had

isolated the idea of an isomorphism between two such systems. He apparently



