Philosophy 240: Symbolic Logic Fall 2008 Mondays, Wednesdays, Fridays: 9am - 9:50am Hamilton College Russell Marcus rmarcus1@hamilton.edu

Class 31: Changing Quantifiers (§8.3)

I. Four sets of equivalences

Note that the two statements in each of the following pairs are equivalent.

- 1a. Everything is made of atoms.
- 1b. It's not the case that something is not made of atoms.
- 2a. Something is fishy.
- 2b. It's wrong to say that nothing is fishy.
- 3a. Nothing is perfect.3b. It's false that something is perfect.
- 4a. At least one thing isn't blue.4b. Not everything is blue.

Now look at the predicate logic regimentations of each.

1a. (x)Ax
1b. ~(∃x)~Ax
2a. (∃x)Fx
2b ~(x)~Fx
3a. (x)~Px
3b. ~(∃x)Px
4a. (∃x)~Bx
4b. ~(x)Bx

The rule of **Changing Quantifiers (CQ)**: Any place where you have an expression of one of the above forms, you may replace it with a statement of its logically equivalent form.

Like rules of replacement, CQ is based on logical equivalence, rather than validity, and thus may be used on part of a line.

Another way to look at these four rules. There are three spaces around each quantifier:

- 1. Directly before the quantifier
- 2. The quantifier itself
- 3. Directly following the quantifier

CQ says that to change a quantifier, you change each of the three spaces.

Add or remove a negation directly before the quantifier. Switch quantifiers: existential to universal or vice versa. Add or remove a negation directly after the quantifier.

II. Some transformations permitted by CQ

'It's not the case that every P is Q' is equivalent to 'something is P and not Q'.

\sim (x)(Px \supset Qx)	
$(\exists x) \sim (Px \supset Qx)$	CQ
$(\exists x) \sim (\sim Px \lor Qx)$	Impl
$(\exists x)(Px \cdot \sim Qx)$	Dm, DN

'It's not the case that something is both P and Q' is equivalent to 'everything that's P is not Q,' and to 'everything that's Q is not P'.

$\sim (\exists x)(Px \cdot Qx)$	
$(\mathbf{x}) \sim (\mathbf{P}\mathbf{x} \cdot \mathbf{Q}\mathbf{x})$	CQ
$(\mathbf{x})(\sim \mathbf{P}\mathbf{x} \lor \sim \mathbf{Q}\mathbf{x})$	DM
$(\mathbf{x})(\mathbf{P}\mathbf{x} \supset \sim \mathbf{Q}\mathbf{x})$	Impl
$(\mathbf{x})(\mathbf{Q}\mathbf{x} \supset \sim \mathbf{P}\mathbf{x})$	Trans, DN

III. Sample derivations using CQ

1.	1. $(\exists x)Lx \supset (\exists y)My$		
	2. (y)~My	/~La	
	3. ~(∃y)My	2, CQ	
	4. $\sim (\exists x) Lx$	1, 3, MT	
	5. (x)~Lx	4, CQ	
	6. ~La	5, UI	
OED		·	

Note: You may not use EI to get this conclusion!

```
QED
```

Philosophy 240: Symbolic Logic, November 10, Prof. Marcus, page 3

2.	1. $(\mathbf{x})[(\mathbf{A}\mathbf{x} \cdot \mathbf{B}\mathbf{x}) \supset \mathbf{E}\mathbf{x}]$	
	2. \sim (x)(Ax \supset Ex)	/ ~(x)Bx
	3. $(\exists x) \sim (Ax \supset Ex)$	2, CQ
	4. $(\exists x) \sim (\sim Ax \lor Ex)$	3, Impl
	5. $(\exists x)(Ax \cdot \neg Ex)$	4, DM, DN
	6. Aa · ~Ea	5, EI
	7. (Aa · Ba) ⊃ Ea	1, UI
	8. ~Ea	6, Com, Simp
	9. ~(Aa · Ba)	7, 8, MT
	10. ~Aa ∨ ~Ba	9, DM
	11. Aa	6, Simp
	12. ~Ba	10, 11, DN, DS
	13. (∃x)~Ba	12, EG
	14. ~(x)Bx	13, CQ
OED		-

QED

3.	1. (x)~ $Dx \supset (x)$	k)Ex	
	2. (∃x)~Ex	/(∃x)Dx	
	3. ~(x)Ex	2, CQ	
	4. ∼(x)~Dx	1, 3, MT	
	5. (∃x)Dx	4, CQ	
QED			Note: No instantiation!
QED			Note: No instantiation!

IV. Exercises. Derive the conclusions of each of the following arguments.

- 1. 1. $\sim(\exists x)Hx$ 2. $(x)\sim Hx \supset (z)Iz$ /Ia
- 2. 1. $(\exists x)(Hx \cdot Gx) \supset (x)Ix$ 2. $\neg Ia$ /(x)(Hx $\supset \neg Gx)$
- 3. 1. $(\exists x)(Ax \lor Bx) \supset (x)Dx$ 2. $(\exists x) \sim Dx$ /~ $(\exists x)Ax$
- 4. 1. $(x) \sim Fx \supset (x) \sim Gx$ / $(\exists x)Gx \supset (\exists x)Fx$
- 5. 1. $(\exists x) \sim Ax \supset (x) \sim Bx$ 2. $(\exists x) \sim Ax \supset (\exists x)Bx$ 3. $(x)(Ax \supset Fx)$ / (x)Fx

Solutions may vary.