Philosophy 240: Symbolic Logic Fall 2008 Mondays, Wednesdays, Fridays: 9am - 9:50am Hamilton College Russell Marcus rmarcus1@hamilton.edu

Class 20: Conditional Proof (§7.5)

I. Conditional Proof: A New Method of Derivation

When you want to derive a conditional conclusion, you can assume the antecedent of the conditional, for the purposes of the derivation, taking care to indicate the presence of that assumption later. Procedure for conditional proof:

1. Indent, assuming the antecedent of your desired conditional.

Write 'ACP', for 'assumption for conditional proof'.

- Use a vertical line to set off the assumption from the rest of your derivation.
- 2. Derive the consequent of desired conditional.

Continue the vertical line.

Proceed otherwise as before, using any lines already established.

- 3. Discharge (un-indent).
 - Write the first line of your assumption, a horseshoe, and the last line of the indented sequence.

Justify the un-indented line with CP, and indicate the indented line numbers.

So, consider:

	1. $\mathbf{A} \lor \mathbf{B}$		
2. B \supset (E \cdot D)		$/ \sim A \supset D$	Note the conditional conclusion.
	3. ~A	ACP	What if ~A were true (i.e. A were false)?
	4. B	1, 3, DS	
	5. E · D	2, 4, MP	
	6. D	5, Com, Simp	Then D would be true.
7. ~A \supset D		3-6, CP	So, if A were true, then D would be.

QED

QED

Note that once you've discharged your assumption, you may *never* use statements within the scope of that assumption later in the proof.

You can use CP repeatedly within the same proof, whether nested or sequentially. This is a nested CP:

1.
$$P \supset (Q \lor R)$$

2. $(S \cdot P) \supset \sim Q$ / $(S \supset P) \supset (S \supset R)$
3. $S \supset P$ ACP
4. S ACP
5. P 3, 4, MP
6. $Q \lor R$ 1, 5, MP
7. $S \cdot P$ 4, 5, Conj
8. $\sim Q$ 2, 7, MP
9. R 6, 8, DS
10. $S \supset R$ 4-9, CP
11. $(S \supset P) \supset (S \supset R)$ 3-10, CP

Now we want $S \supset R$. Now we want R. The following derivation demonstrates how CP is useful for proving biconditionals, in sequential uses of conditional proof.

1.
$$(B \lor A) \supseteq D$$

2. $A \supseteq \neg D$
3. $\neg A \supseteq B$ / $B \equiv D$
4. B ACP
5. $B \lor A$ 4, Add
6. D 1, 5, MP
7. $B \supseteq D$ 4-6 CP
8. D 4-6 CP
8. D ACP Note: We can't use the B from the previous assumption.
9. $\neg A$ 2, 8, DN, MT
10. B 3, 9, MP
11. $D \supseteq B$ 8-10 CP
12. $(B \supseteq D) \cdot (D \supseteq B)$ 7, 11, Conj
13. $B \equiv D$ 12, Equiv
QED

This should always be your first thought when proving biconditionals: You want: 'P = Q', which is logically equivalent to '(P \supset Q) · (Q \supset P)'. Assume P, Derive Q, Discharge. Assume Q, Derive P, Discharge. Conjoin the two conditionals. Use Material Equivalence to yield the biconditional. This method does not always work, but it's usually a good first thought.

You may use CP along the way to prove statements which are not your main conclusion:

	1. P ⊃ (Q	Q·R)	
	2. $(P \supset R) \supset (S \cdot T)$		/ T
		3. P	ACP
		4. Q · R	1, 3, MP
		5. R	4, Com, Simp
	6. P ⊃ R		3-5, CP
	7. S · T		2, 6, MP
	8. T		7, Com, Simp
QED			

II. **Exercises**. Derive the conclusions of each of the following arguments using the 18 rules, and the method of conditional proof.

1.	1. $A \supset B$ 2. $(A \cdot B) \supset D$	$/ A \supset D$
2.	1. $H \supset (E \supset F)$ 2. $H \supset (G \supset F)$ 3. $\sim F$	$/ H$ ⊃ ~(E \lor G)
3.	1. ~L ⊃ M 2. ~(L · M)	$/ \sim M \equiv L$
4.	1. $K \supset (G \lor \neg I)$ 2. $I \supset (G \supset J)$	$/ K \supset (I \supset J)$
5.	1. $A \supset (B \lor D)$ 2. $E \supset (\sim D \supset P)$ 3. $\sim D$	/ ~(B ∨ P) ⊃ ~(A ∨ E)

Solutions may vary.