Philosophy 240: Symbolic Logic

Fall 2008

Mondays, Wednesdays, Fridays: 9am - 9:50am

Hamilton College Russell Marcus rmarcus1@hamilton.edu

Sample Solutions to Homework Handout 2: Translating from Predicate Logic

Instructions: Use the given interpretations to translate the following arguments written in predicate logic into natural, English sentences.

Ax: "x is an athlete"

Bx: "x is brawny"

Cx: "x is a champion"

m: "Mary"

g: "Gail"

n: "Ned"

1. $(x)(Ax \supset Bx)$

2. Am • An

/ Bm • Bn

1. All athletes are brawny. Mary and Ned are athletes. So, Mary and Ned are brawny.

2. $1. (x)(Ax \supset Bx)$

2. $(x)(Bx \supset Cx)$

 $/(x)(Ax \supset Cx)$

2. All athletes are brawny. Therefore, all athletes are champions.

3. $1. (x)(Bx \supset Cx)$

2. $(\exists x)(Ax \bullet Bx)$

 $/(\exists x)(Ax \cdot Cx)$

3. Everything that's brawny is a champion.

There are some brawny athletes. So, there are

some brawny champions.

4. $1. (x)(Ax \supset Bx)$

2. ~Bm

 $/(\exists x) \sim Ax$

4. All athletes are brawny. Mary isn't brawny.

So, something isn't an athlete.

5. 1. $(x)[Ax \supset (Bx \lor Cx)]$

2. Ag • ∼Bg / Cg

5. All athletes are either brawny or champions. Gail is an athlete, but she isn't brawny. So, Gail

is a champion.

6. $1. (x)[(Ax \bullet Bx) \supset Cx]$

2. $(\exists x)(Bx \bullet \neg Cx)$ / $(\exists x) \neg Ax$

6. All brawny athletes are champions. Some brawny things aren't champions. So, something

isn't an athlete.

7. $1. (\exists x) Ax \supset (x) (Cx \supset Bx)$

2. $(\exists x)(Ax \lor Bx)$

3. $(x)(Bx \supset Ax)$ / $(x)(Cx \supset Ax)$

7. If something is an athlete, then all champions are brawny. Something is either an athlete or brawny. All brawny things are athletes. So, all

Champions are athletes.