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"4 ~ Criteria of Confirmation and Acceptability

would equal the sum of their credibilities: ¢(H, or H,, K) = c¢(H,,K)

, K).
* ca\J/':riozxs theories for such probabilities have indeed been proposed.'

They proceed from certain axioms like those just mentioned to a variety
of more or less complex theorems that make it possible to determine
certain probabilities provided that others are dlready known; but they
offer no general definition of the probability of a hypothesis relative to
given information. '

And if the definition of the concept ¢(H, K) is to take account of
all the different factors we have surveyed, then the task is very difficult,
to say the least; for as we saw, it is not even clear how such factors as the
simplicity of a hypothesis, or the variety of its supporting .evxdence, are
to be precisely characterized, let alone expressed in numerical terms.

However, certain illuminating and quite farreaching results have
recently been obtained by Carnap, who has studied the prqb]em by ref-
erence to rigorously formalized model languages whose logical structure
is considerably simpler than that required for the purpose of science.
Carnap has developed a general method of defining what he calls the
degree of confirmation for any hypothesis expressed in such a language
with respect to any body of information expressed in the same language.
The concept thus defined does satisfy all the principles of probability

theory, and Carnap accordingly refers to it as the logical or inductive

probability of the hypothesis relative to the given information.**

10 One of them by the economist John Maynard Keynes, in his book, A Treatise
on Probability (London: Macmillan & Company, Ltd., 1921). o

11 Carnap has given a brief and elementary account of the basic ideas in his article
“Statistical and Inductive Probability,” reprinted in E. H. Madden, ed., The Struc-
ture of Scientific Thought (Boston: Houghton Miflin Company, 1960), pp. 269-79.
A more recent, very illuminating statement is given in Carnap’s article, “The Aim of
Inductive Logic” in E. Nagel, P. Suppes, and A. Tarski, eds., Logic, Methodology
and Philosophy of Science. Proceedings of the 1960 Intemational Congress (Stan-
ford: Stanford University Press, 1962), pp. 303-18.

LAWS AND THEIR ROLE

IN SCIENTIFIC EXPLANATION

5.1 Two basic
requirements
for sclentific
explanations

To explain the phenomena of the physical world is one of the
primary objectives of the natural sciences. Indeed, almost all of the
scientific investigations that served as illustrations in the preceding
chapters were aimed not at ascertaining some particular fact but at

achieving some explanatory insight; they were concerned with
questions such as how puerperal fever is contracted, why the water-lifting
capacity of pumps has its characteristic limitation, why the transmission
of light conforms to the laws of geometrical optics, and so forth. In this
chapter and the next one, we will examine in some detail the character
of scientific explanations and the kind of insight they afford.

That man has long and persistently been concerned to achieve
some understanding of the enormously diverse, often perplexing, and
sometimes threatening occurrences in the world around him is shown by
the manifold myths and metaphors he has devised in an effort to account
for the very existence of the world and of himself, for life and death, for
the motions of the heavenly bodies, for the regular sequence of day and
night, for the changing seasons, for thunder and lightning, sunshine
and rain. Some of these explanatory ideas are based on anthropomorphic
conceptions of the forces of nature, others invoke hidden powers or
agents, still others refer to God’s inscrutable plans or to fate.

Accounts of this kind undeniably may give the questioner a sense
of having attained some understanding; they may resolve his perplexity
and in this sense “answer” his question. But however satisfactory these
answers may be psychologically, they are not adequate for the purposes
of science, which, after all, is concerned to develop a conception_of the
world that has a clear, logical bearing on our experience and is thus

a7
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capable of objective test. Scientific ezfplana_tions must, for this'reason,
meet two systematic requirements, Wh}ch will be called Fhe requirement
of explanatory relevance and the requirement of testability.

The astronomer Francesco Sizi offered the following argument to
show why, contrary to what his contemporary, Galileo, claimed to have

seen through his telescope, there could be no satellites circling around

Jupiter:
There are seven windows in the head, two nostrils, two ears, two eyes
and a mouth; so in the heavens there are two favorable stars, two un-
propitious, two luminaries, and Mercury alone undecided and indiffer-
ent. From which and many other similar phenomena of nature such
as the seven metals, etc., which it were tedious to enumerate, we gather
that the number of planets is necessarily seven. . . . Moreover, the
satellites are invisible to the naked eye and therefore can have no influ-
ence on the earth and therefore would be useless and therefore do
not exist.!

The crucial defect of this argument is evident: the “facts” it ad-
duces, even if accepted without question, are entirely irrelevant to the
point at issue; they do not afford the slightest reason for the assumption
that Jupiter has no satellites; the claim of relevance suggested by the
barrage of words like ‘therefore’, ‘it follows’, and ‘necessarily’ is entirely
spurious.

Consider by contrast the physical explanation of a rainbow. It
shows that the phenomenon comes about as a result of the reflection and
refraction of the white light of the sun in spherical droplets of water
such as those that occur in a cloud. By reference to the relevant optical
laws, this account shows that the appearance of a rainbow is to be ex-
pected whenever a spray or mist of water droplets is illuminated by a
strong white light behind the observer. Thus, even if we happened never
to have seen a rainbow, the explanatory information provided by the
physical account would constitute good grounds for expecting or believ-
ing that a rainbow will appear under the specified circumstances. We
will refer to this characteristic by saying that the physical explanation
meets the requirement of explanatory relevance: the explanatory infor-
mation adduced affords good grounds for believing that the phenomenon
to be explained did, or does, indeed occur. This condition must be met
if we are to be entitled to say: “That explains it—the phenomenon in
question was il}dced to be expected under the circumstances!”

Th? Trequirement represents a necessary condition for an adequate
explanation, but not a sufficient one. For example, a large body of data

! From Holton and ROEF?» Foundations of Modern Physical Science, p. 160.
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showing a red-shift in the spectra of distant galaxies provides Strong
grounds for believing that those galaxies recede from our local one at
enormous speeds, yet it does not explain why.

To introduce the second basic requirement for scientific explana-
tions, let us consider once more the conception of gravitational attraction
as manifesting a natural tendency akin to love. As we noted earlier, this
conception has no test implications whatever. Hence, no empirical find-
ing could possibly bear it out or disconfirm it. Being thus devoid of
empirical content, the conception surely affords no grounds for expecting
the characteristic phenomena of gravitational attraction: it lacks objec-
tive explanatory power. Similar comments apply to explanations in terms
of an inscrutable fate: to invoke such an idea is not to achieve an espe-
cially profound insight, but to give up the attempt at explanation alto-
gether. By contrast, the statements on which the physical explanation of
a rainbow is based do have various test implications; these concern, for
example, the conditions under which a rainbow will be seen in the sky,
and the order of the colors in it; the appearance of rainbow phenomena
in the spray of a wave breaking on the rocks and in the mist of a lawn
sprinkler; and so forth. These examples illustrate a second condition for
scientific explanations, which we will call the requirement of testability:
the statements constituting a scientific explanation must be capable of-
empirical test.

It has already been suggested that since the conception of gravita-
tion in terms of an underlying universal affinity has no test implications,

_ it can have no explanatory power: it cannot provide grounds for expect-

ing that universal gravitation will occur, nor that gravitational attraction
will show such and such characteristic features; for if it did imply such
consequences either deductively or even in a weaker, inductive-proba-
bilistic sense, then it would be testable by reference to those conse-
quences. As this example shows, the two requirements just considered
are interrelated: a proposed explanation that meets the requirement of
relevance also meets the requirement of testability. (The converse clearly
does not hold.)

Now let us see what forms scientific explanations take, and how
they meet the two basic requirements.

5.2 Deductive- Consider once more Périer’s finding in the Puy-de-Déme experi-
nomologieal ment, that the length of the mercury column in a Torricelli barom-
explanation eter decreased with increasing altitude. Torricelli’s and Pascal’s

ideas on atmospheric pressure provided an explanation for this
phenomenon; somewhat pedantically, it can be spelled out as follows:
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At any location, the pressure that the mercury column in the closed
branch of the Torricelli apparatus exerts upon the mercury below
equals the pressure exerted on the: surface of the mercury in the open
vessel by the column of air above it.

p]  The pressures exerted by the columns of mercury and of air are propor-
tional to their weights; and the shorter the columns, the smaller their
weights.

As Périer carried the apparatus to the top of the mountain, the column

c] -
of air above the open vessel became steadily shorter.

d] (Therefore,) the mercury column in the closed vessel grew steadily
shorter during the ascent.

Thus formulated, the explanation is an argument to the effect that
the phenomenon to be explained, as described by the sentence (d), is
just what is to be expected in view of the explanatory facts cited in (),
(b), and (c); and that, indeed, (d) follows deductively from the ex-
planatory statements. The latter are of two kinds; () and (b) have the
character of general laws expressing uniform empirical connections;
whereas (c¢) describes certain particular facts. Thus, the shortening of
the mercury column is here explained by showing that it occurred in
accordance with certain laws of nature, as a result of certain particular
circumstances. The explanation fits the phenomenon to be explained
into a pattern of uniformities and shows that its occurrence was to be
expected, given the specified laws and the pertinent particular circum-
stances.

: The phenomenon to be accounted for by an explanation will

henceforth also be referred to as the explanandum phenomenon; the
sentence describing it, as the explanandum sentence. When the context
shows which is meant, either of them will simply be called the ex-
planandum. The sentences specifying the explanatory information—(a),
(b), (c) in our example—will be called the explanans sentences; jointly
they will be said to form the explanans.

As a second example, consider the explanation of a characteristic
of image formation by reflection in a spherical mirror; namely, that gen-

erally 1/u + 1/v = 2/r, where u and v are the distances of object-point’

and image-point from the mirror, and r is the mirror’s radius of curvature.
In geometrical optics, this uniformity is explained with the help of the
basic law of reflection in a plane mirror, by treating the reflection of a
!)eam of light at any one point of a spherical mirror as a case of reflection
in a plane tangential to the spherical surface. The resulting explanation
can be formulated as a deductive argument whose conclusion is the
explanandum sentence, and whoge premisses include the basic laws of
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reflection and of rectilinear propagation, as well as the statement that
the surface of the mirror forms a segment of a sphere 2

A similar argument, whose premisses again include the law for
reflection in a plane mirror, offers an explanation of why the light of a
small light source placed at the focus of a paraboloidal mirror is reflected
in a beam parallel to the axis of the paraboloid (a principle technologi-
cally applied in the construction of automobile headlights, searchlights,
and other devices).

The explanations just considered may be conceived, then, as de-
ductive arguments whose conclusion is the explanandum sentence, E,
and whose premiss-set, the explanans, consists of general laws, L., L,,
.. -, Ly and of other statements, C,, C,, . .., C;, which make assertions
about particular facts. The form of such arguments, which thus con-
stitute one type of scientific explanation, can be represented by the
following schema:

L,L,...,L,
D-N] Explanans sentences

01,02,...,Ck
E Explanandum sentence

Explanatory accounts of this kind will be called explanations by {
deductive subsumption under general laws, or deductive-nomological
explanations. (The root of the term ‘nomological’ is the Greek word
‘nomos’, for law.) The laws invoked in a scientific explanation will also |
be called covering laws for the explanandum phenomenon, and the ex- |
planatory argument will be said to subsume the explanandum under
those laws.

The explanandum phenomenon in a deductive-nomological expla-
nation may be an event occurring at a particular place and time, such as
the outcome of Périer’s experiment. Or it may be some regularity found
in nature, such as certain characteristics generally displayed by rainbows;
or a uniformity expressed by an empirical law such as Galileo’s or Kep-
ler’s laws. Deductive explanations of such uniformities will then invoke
laws of broader scope, such as the laws of reflection and refraction, or
Newton’s laws of motion and of gravitation. As this use of Newton’s
laws illustrates, empirical laws are often explained by means of theoreti-
cal principles that refer to structures and processes underlying the uni-
formities in question. We will return to such explanations in the next
chapter.

2 The derivation of the laws of refiection for the curved surfaces referred to in this
example and in the next one is simply and lucidly set forth in Chap. 17 of Morris

Kline, Mathematics and the Physical World (New York: Thomas Y. Crowell Com-
pany, 1959). '
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. Deductive-nomological explanations satisfy the requiremént of ex-
planatory relevance in the strongest possible sense: the explangtory
information they provide imp11e§ the explanandum sentence deductively
~and thus offers logically conclusive grounds why the explanandum phe-
nomenon is to be expected. (We will soon encounter other scientific
explanations, which fulfill the requirement only in a weaker, inductive,
sense.) And the testability requirement is met as well, since .t}_le explanans
implies among other things that under the specified conditions, the ex-
planandum phenomenon occurs. ‘

Some scientific explanations conform to the pattern (D-N) quite
closely. This is so, particularly, when certain quantitative features o_f a
phenomenon are explained by mathematical derivation from covering
general laws, as In the case of reflection in spherical and paraboloidal

mirrors. Or take the celebrated explanation, propounded by Leverrier -

(and independently by Adams), of peculiar irregularities in the motion
of the planet Uranus, which on the current Newtonian theory could not
be accounted for by the gravitational attraction of the other planets then
known. Levérrier conjectured that they resulted from the gravitational
pull of an as yet undetected outer planet, and he computed the position,
mass, and other characteristics which that planet would have to possess
to account in quantitative detail for the observed irregularities. His
explanation was strikingly confirmed by the discovery, at the predicted
location, of a new planet, Neptune, which had the quantitative charac-
teristics attributed to it by Leverrier. Here again, the explanation has the
character of a deductive argument whose premisses include general laws
—specifically, Newton’s laws of gravitation and of motion—as well as
statements specifying various quantitative particulars about the disturb-
ing planet.

Not infrequently, however, deductive-nomological explanations are
stated in an elliptical form: they omit mention of certain assumptions
that are presupposed by the explanation but are simply taken for granted
in the given context. Such explanations are sometimes expressed in the
form ‘E because C’, where E is the event to be explained and C is some
antecedent or concomitant event or state of affairs. Take, for example,
the statement: ‘“The slush on the sidewalk remained liquid during the
frost because it had been sprinkled with salt’. This explanation does not
explicitly mention any laws, but it tacitly presupposes at least one: that
the freezing point of water is lowered whenever salt is dissolved in it.
Indeed, it is precisely by virtue of this law that the sprinkling of salt
acquires the explanatory, and specifically causative, role that the elliptical
because-statement aseribes to it. That statement, incidentally, is elliptical
also in other respects; for example, it tacitly takes for granted, and
leaves unmentioned,’ certain assumptions about the prevailing physical

»
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conditions, such as the temperature’s not dropping to a very low point.
And if nomic and other assumptions thus omitted are added to the
statement that salt had been sprinkled on the slush, we obtain the
premisses for a deductive-nomological explanation of the fact that the
slush remained liquid.

Similar comments apply to Semmelweis’s explanation that childbed
fever was caused by decomposed animal matter introduced into the
bloodstream through open wound surfaces. Thus formulated, the expla-
nation makes no mention of general laws; but it presupposes that such
contamination of the bloodstream generally leads to blood poisoning
attended by the characteristic symptoms of childbed fever, for this is
implied by the assertion that the contamination causes puerperal fever.
The generalization was no doubt taken for granted by Semmelweis, to
whom the cause of Kolletschka’s fatal illness presented no etiological
problem: given that infectious matter was introduced into the blood-
stream, blood poisoning would result. (Kolletschka was by no means the
first one to die of blood poisoning resulting from a cut with an infected
scalpel. And by a tragic irony, Semmelweis himself was to suffer the same
fate.) But once the tacit premiss is made explicit, the explanation is
seen to involve reference to general laws.

As the preceding examples illustrate, corresponding general laws
are always presupposed by an explanatory statement to the effect that a
particular event of a certain kind G (e.g., expansion of a gas under con-
stant pressure; flow of a current in a wire loop) was caused by an event
of another kind, F (e.g., heating of the gas; motion of the loop across a
magnetic field). To see this, we need not enter into the complex ramifi-
cations of the notion of cause; it suffices to note that the general maxim
“Same cause, same effect”, when applied to such explanatory statements,
yields the implied claim that whenever an event of kind F oceurs, it is
accompanied by an event of kind G.

To say that an explanation rests on general laws is not to say that
its discovery required the discovery of the laws. The crucial new insight
achieved by an explanation will sometimes lie in the discovery of some
particular fact (eg, the presence of an undetected outer planet; infec-
tious matter adhering to the hands of examining physicians) which, by
virtue of antecedently accepted general laws, accounts for the explan-
andum phenomenon. In other cases, such as that of the lines in the
hydrogen spectrum, the explanatory achievermnent does lie in the discovery
of a covering law (Balmer’s) and eventually of an explanatory theory

‘(such as Bohr’s); in yet other cases, the major accomplishment of an

explanation may lie in showing that, and exactly how, the explanandum
phenomenon can be accounted for by reference to laws and data about
particular facts that are already available: this is illustrated by the ex-
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planatory derivation of the reflection lavys for sp.heri'cal am'i parellboloic.ial
mirrors from the basic law of geometncal. oPhcs in con_]unctxon with
statements about the geometncal character_lstlcs of the 'mlrrors. .

An explanatory problem doe§ not by itself determine what kind _of
discovery is required for its solution. Thus, Leverrier discovered devia-
tions from the theoretically expected course also in the motion of the
planet Mercury; and as in the case of Uranus, he tried to explain these
as resulting from the gravitational pull of an as yet undetected plax}et,
Vulean, which would have to be a very dense and very small object
between the sun and Mercury. But no such planet was found, and a satis-
factory explanation was provided only much later by the general theory
of relativity, which accounted for the irregularities not by reference to
some disturbing particular factor, but by means of a new system of laws.
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processes (e.g., between time and distance in free fall in Galileo’s law;
between the period of revolution of a planet and its mean distance from
the sun, in Kepler's third law; between the angles of incidence and
refraction in Snell’s law).

Strictly speaking, a statement asserting some uniform connection
will be considered a law only if there are reasons to assume it is true: we
would not normally speak of false laws of nature. But if this requirement
were rigidly observed, then the statements commonly referred to as
Galileo’s and Kepler’s laws would not qualify as laws; for according to
current physical knowledge, they hold only approximately; and as we
shall see later, physical theory explains why this is so. Analogous remarks
apply to the laws of geometrical optics. For example, even in a homo-
geneous medium, light does not move strictly in straight lines: it can
bend around corners. We shall therefore use the word ‘law’ somewhat

As we have seen, laws play an essential role in deductive-nomologi-
cal explanations. They provide the link by reason of which particu-
lar circumstances (described by C,, C,, . . ., Cx) can serve to
explain the occurrence of a given event. And when the explanan-

liberally, applying the term also to certain statements of the kind here
referred to, which, on theoretical grounds, are known to hold only approx-
imately and with certain qualifications. We shall return to this point

5.3 Universal
laws and
atcidental

generalizations

dum is not a particular event, but a uniformity such as those
represented by characteristics mentioned earlier of spherical and para-
boloidal mirrors, the explanatory laws exhibit a system of more compre-
hensive uniformities, of which the given one is but a special case.

The laws required for deductive-nomological explanations share a
basic characteristic: they are, as we shall say, statements of universal
form. Broadly speaking, a statement of this kind asserts a uniform con-
nection between different empirical phenomena or between different
aspects of an empirical phenomenon. It is a statement to the effect that
whenever and wherever conditions of a specified kind F occur, then so
will, always and without exception, certain conditions of another kind, G.
(Not all scientific laws are of this type. In the sections that follow, we
will encounter laws of probabilistic form, and explanations based on
them.)

Here are some examples of statements of universal form: whenever
the temperature of a gas increases while its pressure remains constant, its
volume increases; whenever a solid is dissolved in a liquid, the boiling
point of the liquid is raised; whenever a ray of light is reflected at a plane
surface, the angle of reflection equals the angle of incidence; whenever
a magnetic iron rod is broken in two, the pieces are magnets again; when-
ever a body falls freely from rest in a vacuum near the surface of the
earth, the distance it covers in t seconds is 16t? feet. Most of the laws of
the natural sciences are quantitative: they assert specific mathematical
connections between different quantitative characteristics of physical sys-

tems (e.g., between volume, temperature, and pressure of a gas) or of

when, in the next chapter, we consider the explanation of laws by
theories.

We saw that the laws invoked in deductive-nomological explana-
tions have the basic form: ‘In all cases when conditions of kind F are
realized, conditions of kind G are realized as well’. But, interestingly, not
all statements of this universal form, even if true, can qualify as laws of
nature. For example, the sentence ‘All rocks in this box contain iron’ is
of universal form (F is the condition of being a rock in the box, G that
of containing iron); yet even if true, it would not be regarded as a law,
but as an assertion of something that “happens to be the case”, as an
“accidental generalization”. Or consider the statement: ‘All bodies con-
sisting of pure gold have a mass of less than 100,000 kilograms’. No doubt
all bodies of gold ever examined by man conform to it; thus, there is
considerable confirmatory evidence for it and no disconfirming instances
are known. Indeed, it is quite possible that never in the history of the
universe has there been or will there be a body of pure gold with a mass
of 100,000 kilograms or more. In this case, the proposed generalization
would not only be well confirmed, but true. And yet, we would presum-
ably regard its truth as accidental, on the ground that nothing in the
basic laws of nature as conceived in contemporary science precludes the
possibility of there being—or even the possibility of our producing—a
solid gold object with a mass exceeding 100,000 kilograms.

Thus, a scientific law cannot be adequately defined as a true state-
ment of universal form: this characterization expresses a necessary, but
not a sufficient, condition for laws of the kind here under discussion.

What distinguishes genuine laws from accidental generalizations?
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iguing problem has been intensively discussed in recent years.

Let us look briefly at some of the principal ideas that have emerged

- from the debate, which is still continuing.

One telling and suggestive difference, noted by' Nelson Goodman,?
is this: a law can, whereas an accidental generalization cannot, serve to
support counterfactual conditiondls, i.e., statements of the form ‘If z;\
were (had been) the case, then B would be (would have been) the cas¢’,
where in fact A is not (has not been) the case. Th'u.s, the assc}'tlon 1f
this paraﬂin candle had been put into a kettle of boiling water, it woulf:l
have melted’ could be supported by adducing the law that parafin is
liquid above 60 degrees centigrade (and the fact that the boiling point of
water is 100 degrees centigrade). But the statement ‘All rocks in this box
contain iron’ could not be used similarly to support the counterfactual

- statement ‘If this pebble had been put into the box, it would contain

iron’. Similarly, a law, in contrast to an accidentally true generalization,
can support subjunctive conditionals, ie., sentences of the type ‘If A
should come to pass, then so weuld B’, where it is left open whether or
not A will in fact come to pass. The statement ‘If this parafin candle
should be put into boiling water then it would melt’ is an example.

Closely related to this difference is another one, which is of special
interest to us: a law can, whereas an accidental generalization cannot,
serve as a basis for an explanation. Thus, the melting of a particular
paraffin candle that was put into boiling water can be explained, in
conformity with the schema (D-N), by reference to the particular facts
just mentioned and to the law that paraffin melts when its temperature
is raised above 60 degrees centigrade. But the fact that a particular rock
in the box contains iron cannot be analogously explained by reference to
the general statement that all rocks in the box contain iron.

It might seem plausible to say, by way of a further distinction, that
the latter statement simply serves as a conveniently brief formulation of
a finite conjunction of this kind: ‘Rock 7, contains iron, and rock 7,
contains iron, . . ., and rock ., contains iron’; whereas the generalization
about paraffin refers to a potentially infinite set of particular cases and
therefore: cannot be paraphrased by a finite conjunction of statements
describing individual instances. This distinction is suggestive, but it is
overstated::For to begin with, the generalization ‘All rocks in this box
does not in fact tell us how many rocks there are in the
1t name any particular rocks r,, 7,, etc. Hence, the general

1 y, “The Problem of Counterfactual Conditionals,” reprinted as the
first chapt:;; “his book, Fact, Fiction, and Forecast, 2nd ed. (Indianapolis: The
Bobbs-Merrdl';Co., Inc., 1965). This work raises fascinating basic problems concern-
ing laws, -counterfactual statements, and inductive reasoning, and examines them
from an advanced analytic point of view.
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sentence is not logically equivalent to a finite coniimos: :
just mentioned. To formulate a suitable conjunc(’:c‘i):ém\i,cetlgzegf ctl}é?til;ﬁﬁ
information, which might be obtained by counting ar’ld labelin Elthe1 rocks
in the box. Besides, our generalization ‘All bodies of pure ggld have a
mass of less than 100,000 kilograms’ would not count as a law even if
there were infinitely many bodies of gold in the world. Thus, the criterion
we have under consideration fails on several grounds.

Finally, let us note that a statement of universal form may qualify
as a law even if it actually has no instances whatever. As an example,
consider the sentence: ‘On any celestial body that has the same radius as
the earth but twice its mass, free fall from rest conforms to the formula
s = 32 *’. There might well be no celestial object in the entire universe
that has the specified size and mass, and yet the statement has the char-
acter of a law. For it (or rather, a close approximation of it, as in the case
of Galileo’s law) follows from the Newtonian theory of gravitation and
of motion in conjunction with the statement that the acceleration of free
fall on the earth is 32 feet per second per second; thus, it has strong
theoretical support, just like our earlier law for free fall on the moon.

A law, we noted, can support subjunctive and counterfactual con-
ditional statements about potential instances, i.e., about particular cases
that might occur, or that might have occurred but did not. In similar
fashion, Newton’s theory supports our general statement in a subjunctive
version that suggests its lawlike status, namely: ‘On any celestial body
that there may be which has the same size as the earth but twice its mass,
free fall would conform to the formula s = 32¢2’. By contrast, the gen-
eralization about the rocks cannot be paraphrased as asserting that any
rock that might be in this box would contain iron, nor of course would
this latter claim have any theoretical support.

Similarly, we would not use our generalization about the mass of
gold bodies—let us call it H—to support statements such as this: “Two
bodies of pure gold whose individual masses add up to more than 100,000
kilograms cannot be fused to form one body; or if fusion should be
possible, then the mass of the resulting body will be less than 100,000
kg’, for the basic physical and chemical theories of matter that are cur-
rently accepted do not preclude the kind of fusion here considered, and
they do not imply that there would be a mass loss of the sort here
referred to. Hence, even if the generalization H should be true, i.e., if no
exceptions to it should ever occur, this would constitute a mere accident
or coincidence as judged by current theory, which permits the occur-
rence of exceptions to H.

Thus, whether a statement of universal form counts as a law will
depend in part upon the scientific theories accepted at the time. This

\

|



[

5.4 Probabilistic
explanation:

fundamentals

“Laws-and Their Role in Scientific Explanation

: ' “ iri izations”—statements of universal
i say that “empirical generaliza o

lfs 1:rcl’tt}:;)t ar}; empiricallljy well confirmed but have no basis in theory—
noerver qualify as laws: Galileo’s, Kepler's, and Boyle's laws, for example,

were accepted as such before they received theoretical grounding. The

' relevance of theory is rather this: a statement of universal form, whether

iri onfirmed or as yet untested, will qualify as a law if it is
(iarrnnll))llir;galll)}}ll (::m accepted theory (statements of this kind are often re-
ferred to as theoretical laws); but even if it is empirically vx‘fel! confirmed
and presumably true in fact, it will not quakhfy as a law if it rules out
certain hypothetical occurrences (such as the fusion of two gold bodies
with a resulting mass of more than 100,000 kilograms, in the case of our
generalization H) which an accepted theory qualifies as possible.!

Not all scientific explanations are based on laws of strictly uni-
versal form. Thus, little Jim’s getting the measles might be
explained by saying that he caught the disease from his brother,
who had a bad case of the measles some days earlier. This account
again links the explanandum event to an earlier occurrence, Jim’s expo-
sure to the measles; the latter is said to provide an explanation because
there is a connection between exposure to the measles and contracting
the disease. That connection cannot be expressed by a law of universal
form, however; for not every case of exposure to the measles produces
contagion. What can be claimed is only that persons exposed to the
measles will contract the disease with high probability, i, in a high
 percentage of all cases. General statements of this type, which we shall
soon examine more closely, will be called laws of probabilistic form or

{1 probabilistic laws, for short.

In our illustration, then, the explanans consists of the probabilistic
law just mentioned and the statement that Jim was exposed to the
measles. In contrast to the case of deductive-nomological explanation,
these explanans statements do not deductively imply the explanandum
statement that Jim got the measles; for in deductive inferences from
true premisses, the conclusion is invariably true, whereas in our example,
it is clearly possible that the explanans statements might be true and

. '] yet the explanandum statement false. We will say, for short, that the
explanans implies the explanandum, not with “deductive certainty”, but

only with near-certainty or with high probability.

The resulting explanatory argument may be schematized as fol-

lows at the top of page 59.

“For a fuller analysis of the concept of law, and for further bibliographic refer-

ences, see E. Nagel, The Structure of Sci . & World
T "1961) . Chap: 4. f Science (New York: Harcourt, Brace orld,

5.5 Statistical
probabifities
and probabilistic
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The probability for persons exposed to the measles
to catch the disease is high.

Jim was exposed to the measles.

[makes highly probable]
Jim caught the measles.

In the customary presentation of a deductive argument, which was
used, for example, in the schema (D-N) above, the conclusion is sep-
arated from the premisses by a single line, which serves to indicate that
the premisses logically imply the conclusion. The double line used in
our latest schema is meant to indicate analogously that the “premisses”
(the explanans) make the “conclusion” (the explanandum sentence)
more or less probable; the degree of probability is suggested by the
notation in brackets.

Arguments of this kind will be called probabilistic explanations. As
our discussion shows, a probabilistic explanation of a particular event
shares certain basic characteristics with the corresponding deductive-
nomological type of explanation. In both cases, the given event is ex-
plained by reference to others, with which the explanandum event is
connected by laws. But in one case, the laws are of universal form; in
the other, of probabilistic form. And while a deductive explanation
shows that, on the information contained in the explanans, the explanan-
dum was to be expected with “deductive certainty”, an inductive expla-
nation shows only that, on the information contained in the explanans,
the explanandum was to be expected with high probability, and perhaps
with “practical certainty”; it is in this manner that the latter argument
meets the requirement of explanatory relevance.

‘We must now consider more closely the two differentiating features
of probabilistic explanation that have just been noted: the probabil-
istic laws they invoke and the peculiar kind of probabilistic implica-
tion that connects the explanans with the explanandum.
Suppose that from an urn containing many balls of the same
size and mass, but not necessarily of the same color, successive drawings
arc made. At each drawing, one ball is removed, and its color is noted.
Then the ball is returned to the urn, whose contents are thoroughly
mixed before the next drawing takes place. This is an example of a
so-called random process or random experiment, a concept that will
soon be characterized in more detail. Let us refer to the procedure just
described as experiment U, to each drawing as one performance of U,
and to the color of the ball produced by a given drawing as the result, or
the outcome, of that performance. )
If all the balls in an urn are white, then a statement of strictly
universal form holds true of the results produced by the performance of
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U: every drawing from the urn yields a white ball, or yields the res_ult
W, for short. If only some of the balls—say, 600 of them—are white,
whereas the others—say 400—are red, then a general statement of prob-
abilistic form holds true of the experiment: the probability for a per-
formance of U to produce a white ball, or outcome W, is .6; in symbols:

Sa] P(W,U) =.6

Similarly, the probability of obtaining heads as a result of the
random experiment C of flipping a fair coin is given by

5] P(HC) = 5

and the probability of obtaining an ace as a result of the random experi-
ment D of rolling a regular die is

5¢] P(AD) = 1/6

What do such probability statements mean? According to one
familiar view, sometimes called the “classical” conception of probability,
the statement (5a) would Have to be interpreted as follows: each per-
formance of the experiment U effects a choice of one from among 1,000
basic possibilities, or basic alternatives, each represented by one of the
balls in the urn; of these possible choices, 600 are “favorable” to the
outcome W; and the probability of drawing a white ball is simply the
ratio of the number of favorable choices available to the number of all
possible choices, ie., 600/1,000. The classical interpretation of the prob-
ability statements (5b) and (5c) follows similar lines.

Yet this characterization is inadequate; for if before each drawing,
the 400 red balls in the urn were placed on top of the white ones, then
in this new kind of urn experiment—let us call it U'—the ratio of
favorable to possible basic alternatives would remain the same, but the
probability of drawing a white ball would be smaller than in the experi-
ment U, in which the balls are thoroughly mixed before each drawing.
'The classical conception takes account of this difficulty by requiring
that the basic alternatives referred to in its definition of probability must
be “equipossible” or “equiprobable”—a requirement presumably violated
in the case of experiment U'.

This added proviso raises the question of how to define equipossi-
bility or equiprobability. We will pass over this notoriously troublesome
and controversial issue, because—even assuming that equiprobability can
be satisfactorily characterized—the classical conception would still be
inadequate, since probabilities are assigned also to the outcomes of
random experiments for which no plausible way is known of marking
off equiprobable basic alternatives. Thus, for the random experiment D
of rolling a regular die, the six faces might be regarded as representing
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such equiprobable alternatives; but we attribute probabilities to such
results as rolling an ace, or an odd number of points, etc., also in the
case of a loaded die, even though no equiprobable basic outcomes can
be marked off here. ,

Similarly—and this is particularly important—science assigns prob-
abilities to the outcomes of certain random experiments or random pro-
cesses encountered in nature, such as the step-by-step decay of the atoms
of radioactive substances, or the transition of atoms from one energy
state to another. Here again, we find no equiprobable basic alternatives
in terms of which such probabilities might be classically defined and
computed.

To arrive at a more satisfactory construal of our probability state-
ments, let us consider how one would ascertain the probability of the
rolling of an ace with a given die that is not known to be regular. This
would obviously be done by making a large number of throws with the
die and ascertaining the relative frequency, i.e., the proportion, of those
cases in which an ace turns up. If, for example, the experiment D' of
rolling the given die is performed 300 times and an ace turns up in 62
cases, then the relative frequency, 62/300, would be regarded as an
approximate value of the probability p(A,D’) of rolling an ace with the
given die. Analogous procedures would be used to estimate the prob-
abilities associated with the flipping of a given coin, the spinning of a
roulette wheel, and so on. Similarly, the probabilities associated with
radioactive decay, with the transitions between different atomic energy
states, with genetic processes, etc., are determined by ascertaining the
corresponding relative frequencies; however, this is often done in highly
indirect ways rather than by simply counting individual atomic or other
events of the relevant kinds.

The interpretation in terms of relative frequencies applies also to
probability statements such as (5b) and (5¢), which concern the
results of flipping a fair (i.e., homogeneous and strictly cylindrical) coin’
or tossing a regular (homogeneous and strictly cubical) die: what the
scientist (or the gambler, for that matter) is concerned with in making
a probability statement is the relative frequency with which a certain
outcome O can be expected in long series of repetitions of some random
experiment R. The counting of “equiprobable” basic alternatives and of
those among them which are “favorable” to O may be regarded as
a heuristic device for guessing at the relative frequency of O. And indeed
when a regular die or a fair coin is tossed a large number of times, the
different faces tend to come up with equal frequency. One might expect
this on the basis of symmetry considerations of the kind frequently used
in forming physical hypotheses, for our empirical knowledge affords no
grounds on which to expect any of the faces to be favored over any
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other. But while such considerations often are heuristically useful, they
must not be regarded as certain or as self—ewdgnt~ truths: some very
plausible symmetry assumptions, §uch as the principle of parity, have
been found not to be generally satisfied at the subaton?lc level. Assurpp-
tions about equiprobabilities are there':fore always sub]cc_t to correctlf)n
in the light of empirical datq concerning Fhe actual relative frequencies
of the phenomena in question. This point is illus’trat'ed also by the.
statistical theories of gases developed by Bose and Einstein and by Fermi
and Dirac, respectively, which rest on different assumptions concerning
what distributions of particles over a phase space are equiprobable.
The probabilities specified in the probabilistic laws, then, represent
relative frequencies. They cannot, however, be strictly defined as relative
frequencies in long series of repetitions of the relevant random experi-
ment. For the proportion, say, of aces obtained in throwing a given die
will change, if perhaps only slightly, as the series of throws is extended;
and even in two series of exactly the same length, the number of aces
will usually differ. We do find, however, that as the number of throws
increases, the relative frequency of each of the different outcomes tends
to change less and less, even though the results of successive throws con-
tinue to vary in an irregular and practically unpredictable fashion. This
is what generally characterizes a random experiment R with outcomes
0,,0,,...0x: successive performances of R yield one or another of those
outcomes in an irregular manner; but the relative frequencies of the out-
comes tend to become stable as the number of performances increases.
And the probabilities of the outcomes, p(O,,R), p(O,,R),...p(Ox,R),
may be regarded as ideal values that the actual frequencies tend to as-
sume as they become increasingly stable. For mathematical convenience,
the probabilities are sometimes defined as the mathematical limits toward
which the relative frequencies converge as the number of performances
increases indefinitely. But this definition has certain conceptual short-
comings, and in some more recent mathematical studies of the subject,
the intended empirical meaning of the concept of probability is delib-
erately, and for good reasons, characterized more vaguely by means of

the following so-called statistical interpretation of probability: 5
The statement

P(OR) =1
means that in a long series of performances of random experiment R,
° Further details on the concept of statistical probability and on the limit-defini-
tion and its shortcomings will be found in E. Nzli)gel's motr};ogmph, Principles of the
Theory of Probability (Chicago: University of Chicago Press, 1939). Our version

of the statistical interpretation follows that given by H. Cramér on pp. 148-49 of his

11)8:13’) Mathematical Methods of Statistics”(Princeton: Princeton University Press,

£Y
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the proportion of cases with outcome O is almost certain to be close to r.

The concept of statistical probability thus characterized must be
carefully distinguished from the concept of inductive or logical prob-
ability, which we considered in section 4.5. Logical probability is a
quantitative logical relation between definite statements; the sentence

¢(HK) =r

asserts that the hypothesis H is supported, or made probable, to degrfae T
by the evidence formulated in statement K. Statistical probability is a
quantitative relation between repeatable kinds of events: a certain kind
of outcome, O, and a certain kind of random process, R; it represents,
roughly speaking, the relative frequency with which the result O tends to
occur in a long series of performances of R.

What the two concepts have in common are their mathematical
characteristics: both satisfy the basic principles of mathematical prob-
ability theory: ‘

a] The possible numerical values of both probabilities range from
0tol:

0=p(OR) =1
0<=c(HK) <1

b] The probability for one of two mutually exclusive outcomes of
R to occur is the sum of the probabilities of the outcomes taken sep-
arately; the probability, on any evidence K, for one or the other of two
mutually exclusive hypotheses to hold-is the sum of their respective
probabilities: ’

If 0, 0, are mutually exclusive, then
p(0, 0r 03, R) = p(04,R) + p(02,R)

If H,, H, are logically exclusive hypotheses, then
C(Hl or Hz, K) = C(Hl,K) + C(Hz,K)

¢] The probability of an outcome that necessarily occurs in all
cases—such as O or not O—is 1; the probability, on any evidence, of a
hypothesis that is logically (and in this sense necessarily) true, such as
HornotH,is 1:

p(0ornot0,R) =1
c(HornotH,K) =1

Scientific hypotheses in the form of statistical probability state-
ments can be, and are, tested by examining the longrun relative fre-
quencies of the outcomes concerned; and the confirmation of sucl;
hypotheses is then judged, broadly speaking, in terms of the closeness o
the agreement between hypothetical probabilities and observed frequen-
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cies. The logic of such tests, however, presents some intriguing special
problems, which call for at least brief examination. _

Consider the hypothesis, H, that the probability of rolling an ace
with a certain die is .15; or briefly, that p(A,D) = .15, where D is the
random experiment of rolling the given die. The hypothesis H does not
deductively imply any test implications Specifying how many aces will
occur in a finite series of throws of the die. It does not imply, for
example, that exactly 75 among the first 500 throws will yield an ace, nor
even that the number of aces will lie between 50 and 100, say. Hence, if
the proportion of aces actually obtained in a large number of throws
differs considerably from .15, this does not refute H in the sense in which
a hypothesis of strictly universal form, such as ‘All swans are white’, can
be refuted, in virtue of the modus tollens argument, by reference to one
counter-instance, such as a black swan. Similarly, if a long run of throws
of the given die yields a proportion of aces very close to .15, this does
not confirm H in the sense in which a hypothesis is confirmed by the
finding that a test sentence I that it logically implies is in fact true. For
in this latter case, the hypothesis asserts I by logical implication, and
the test result is thus confirmatory in the sense of showing that a certain
part of what the hypothesis asserts is indeed true; but nothing strictly
analogous is shown for H by confirmatory frequency data; for H does
not assert by implication that the frequency of aces in some long run
will definitely be very close to .15.

But while H does not logically preclude the possibility that the pro-
portion of aces obtained in a long series of throws of the given die may
depart widely from .15, it does logically imply that such departures are
highly improbable in the statistical sense; i.e., that if the experiment
of performing a long series of throws (say, 1,000 of them per series)
is repeated a large number of times, then only a tiny proportion of those
long series will yield a proportion of aces that differs considerably from
15. For the case of rolling a die, it is usually assumed that the results
of successive throws are “statistically independent”; this means roughly
that the probability of obtaining an ace in a throw of the die does not
depend on the result of the preceding throw. Mathematical analysis
shows that in conjunction with this independence assumption, our
hypoth;ms H deductively determines the statistical probability for the
proportion of aces obtained in n throws to differ from .15 by no more
than a spec1ﬁed:amou_nt. For example, H implies that for a series of
tl},x(i(iot}f:mr‘zs o(:-fthe ?lﬁ he;e. considered, the probability is abc.)ut. 976
ot £ prop gn ot aces will lie between .125 and .175; and similarly,

al tor a run ,°f QfOOO throws the probability is about .995 that the
PrOPO}’twn,"fiaQ l}_l,be between .14 and .16, Thus, we may say that
it H is true, th t 15 practically certain that in a long trial run the
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observed proportion of aces will differ by very little from the hypo-
thetical probability value .15. Hence, if the observed long-run frequency
of an outcome is not close to the probability assigned to it by a given
probabilistic hypothesis, then that hypothesis is very likely to be false.
In this case, the frequency data count as disconfirming the hypothesis,
or as reducing its credibility; and if sufficiently strong disconfirming evi-
dence is found, the hypothesis will be considered as practically, though
not logically, refuted and will accordingly be rejected. Similarly, close
agreement between hypothetical probabilities and observed frequencies
will tend to confirm a probabilistic hypothesis and may lead to its
acceptance.

If probabilistic hypotheses are to be accepted or rejected on the
basis of statistical evidence concerning observed frequencies, then ap-
propriate standards are called for. These will have to determine (a) what
deviations of observed frequencies from the probability stated by a hy-
pothesis are to count as grounds for rejecting the hypothesis, and (b)
how close an agreement between observed frequencies and hypothetical
probability is to be required as a condition for accepting the hypothesis.
The requirements in question can be made more or less strict, and their
specification is a matter of choice. The stringency of the chosen standards
will normally vary with the context and the objectives of the research in
question. Broadly speaking, it will depend on the importance that is
attached, in the given context, to avoiding two kinds of error that might
be made: rejecting the hypothesis under test although it is true, and
accepting it although it is false. The importance of this point is par-
ticularly clear when acceptance or rejection of the hypothesis is to
serve as a basis for practical action. Thus, if the hypothesis concerns the
probable effectiveness and safety of a new vaccine, then the decision
about its acceptance will have to take into account not only how well
the statistical test results accord with the probabilities specified by the
hypothesis, but also how serious would be the consequences of accepting
the hypothesis and acting on it (e.g. by inoculating children with the
vaccine) when in fact it is false, and of rejecting the hypothesis and
acting accordingly (e.g. by destroying the vaccine and modifying or dis-
continuing the process of manufacture) when in fact the hypothesis is
true. The complex problems that arise in this context form the subject
matter of the theory of statistical tests and decisions, which has been
developed in recent decades on the basis of the mathematical theory of
probability and statistics.®

Many important laws and theoretical principles in the natural
sciences are of probabilistic character, though they are often of more

8 On this subject, see R. D. Luce and H. Raiffa, Games and Decisions (New York:
John Wiley & Sons, Inc., 1957).
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' complicated form than the §imple probability statements we have dis-
cussed. For example, according to current physical theory, radpact;ve
decay is a random phenomenon 1n Wth}.l.the atoms of each radlogctlve
element possess a charactenistic probabﬂxty of di§i‘nt§gratlng during a
specified period of time. The .cgrrespond‘fng prpbabxhstlc laws are usually
formulated as statements giving the “halflife” of the element con-
cerned. Thus, the statements that the halflife of radium??® is 1,620 years
and that of polonium?® is 3.05 minutes are laws to the effect that the
probability for a radium®*® atom to decay within 1,620 years, and for an
atom of polonium?!® to decay within 3.05 minutes, are both one-half.
According to the statistical interpretation cited earlier, these laws imply
that of a large number of radium??¢ atoms or of polonium?!® atoms given
at a certain time, very close to one-half will still exist 1,620 years, or 3.05
minutes, later; the others having disintegrated by radioactive decay.

Again, in the kinetic theory various uniformities in the behavior of
gases, including the laws of classical thermodynamics, are explained by
means of certain assumptions about the constituent molecules; and
some of these are probabilistic hypotheses concerning statistical regu-
larities in the motions and collisions of those molecules.

A few additional remarks concerning the notion of a probabilistic
law are indicated. It might seem that all scientific laws should be quali-
fied as probabilistic since the supporting evidence we have for them is
always a finite and logically inconclusive body of findings, which can
confer upon them only a more or less high probability. But this argu-
ment misses the point that the distinction between laws of universal
form and laws of probabilistic form does not refer to the strength of the
evidential support for the two kinds of statements, but to their form,
which reflects the logical character of the claim they make. A law of
universal form is basically a statement to the effect that in all cases where
conditions of kind F are realized, conditions of kind G are realized as
well; a law of probabilistic form asserts, basically, that under certain
conditions, constituting the performance of a random experiment R, a
certain kind of outcome will occur in a specified percentage of cases. No
matter whether true or false, well supported or poorly supported, these
two types of claims are of a logically different character, and it is on
this difference that our distinction is based.

. As we saw earlier, a law of the universal form “Whenever F then
G’ is by no means a brief, telescoped equivalent of a report stating for
each occurrence of F so‘f‘ar.examined that it was associated with an
2;:;“:;1? O:fas?;lsR;il]]fr’ 1t implies assertions also fpr all unexamined
factual am’i I;Iypothéticalazop:ie‘sgnt and fl'lture; also, it implies cou‘xllter~
sible occurrences” of F. nditionals which concern, so to speak “pos-

nees” of F: and it is just this characteristic that gives such
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laws their explanatory power. Laws of probabilistic form have an analo-
gous status. The law stating that the radioactive decay of radium?2® is a
random process with an associated half-life of 1,620 years is plainly not
tantamount to a report about decay rates that have been observed in
certain samples of radium?28. It concerns the decaying process of any
body of radium??6_past, present, or future; and it implies subjunctive
and counterfactual conditionals, such as: if two particular lumps of
radium?®?® were to be combined into one, the decay rates would remain
the same as if the lumps had remained separate. Again, it is this char-
acteristic that gives probabilistic laws their predictive and their explan-
atory force.

5.6 The One of the simplest kinds of probabilistic explanation is illustrated

inductive by our earlier example of Jim’s catching the measles. The general
character of form of that explanatory argument may be stated thus:
probabilistle p(0,R) is close to 1
explanation #isa case of R

[makes highly probable]}

1is a case of 0

Now the high probability which, as indicated in brackets, the
explanans confers upon the explanandum is surely not a statistical prob-
ability, for it characterizes a relation between sentences, not between
(kinds of) events. Using a term introduced in Chapter 4, we might say
that the probability in question represents the rational credibility of the
explanandum, given the information provided by the explanans; and as
we noted earlier, in so far as this notion can be construed as a probability,
it represents a logical or inductive probability.

In some simple cases, there is a natural and obvious way of ex-
pressing that probability in numerical terms. In an argument of the
kind just considered, if the numerical value of p(O,R) is specified,
then it is reasonable to say that the inductive probability that the
explanans confers upon the explanandum has the same numerical value.
The resulting probabilistic explanation has the form:

p(OR) =7
iisa case of R
— [1]
iisacaseof 0

If the explanans is more complex, the determination of corresponding
inductive probabilities for the explanandum raises diﬁim.ﬂt prqblems,
which in part are still unsettled. But whether or not it i possible to
assign definite numerical probabilities to all such explanations, the pre-
ceding considerations show that when an event is explained by reference
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to probabilistic laws, the explanans confers upon the CXPl?n?ndl?m
only more or less strong inductive support. »Thu's, we may'dlstmgmsh
deductive-nomological from probabilistic explanations by saying that the
former effect a deductive subsumption under laws of universal form, the
latter an inductive subsumption under laws of probabilistic form.

It is sometimes said that precisely because of its inductive char-
acter, a probabilistic account does not explain the occurrence of an
event, since the explanans does not logically preclude its nonoccurrence.
But the important, steadily expanding role that probabilistic laws and
theories play in science and its applications, makes it preferable to view
accounts based on such principles as affording explanations as well,
though of a less stringent kind than those of deductive-nomological
form. Take, for example, the radioactive decay of a sample of one
milligram of polonium®8. Suppose that what is left of this initial amount
after 3.05 minutes is found to have a mass that falls within the interval
from 499 to .501 milligrams. This finding can be explained by the prob-
abilistic law of decay for polonium?!8; for that law, in combination with
the principles of mathematical probability, deductively implies that given
the huge number of atoms in a milligram of polonium?!8, the,probabil-
ity of the specified outcome is overwhelmingly large, so that in a
particular case its occurrence may be expected with “practical certainty”.

Or consider the explanation offered by the kinetic theory of gases
for an empirically established generalization called Graham’s law of
diffusion. The law states that at fixed temperature and pressure, the rates
at which different gases in a container escape, or diffuse, through a thin
porous wall are inversely proportional to the square roots of their
molecular weights; so that the amount of a gas that diffuses through
the wall per second will be the greater, the lighter its molecules. The
explanation rests on the consideration that the mass of a given gas that
diffuses through the wall per second will be proportional to the average
velocity of its molecules, and that Graham’s law will therefore have
been explained if it can be shown that the average molecular velocities
of different pure gases are inversely proportional to the square roots of
their molecular weights. To show this, the theory makes certain assump-
tions broadly to the effect that a gas consists of a very large number of
molecules moving in random fashion at different speeds that frequently
change as a result of collisions, and that this random behavior shows
certain proba;bilistic uniformities—in particular, that among the mole-
\cules' 9f a given gas at specified temperature and pressure, different
velocities will occur with definite, and different, probabilities. These as-
sumptions make it possib.le to compute the probabilistically expected
values—or, as we might briefly say, the “most probable” values—that the
average velocities of different gases will possess at equal temperatures and

Laws and Their Role in Scientific Explanation. 69

pressures. These most probable average values, the theory shows, are
indeed inversely proportional to the square roots of the molecular weights
of the gases. But the actual diffusion rates, which are measured experi-
mentally and are the subject of Graham’s law, will depend on the actual
values that the average velocities have in the large but finite swarms of
molecules constituting the given bodies of gas. And the actual average
values are related to the corresponding probabilistically estimated, or
“most probable”, values in a manner that is basically analogous to the
relation between the proportion of aces occurring in a large but finite
series of tossings of a given die and the corresponding probability of roll-
Ing an ace with that die. From the theoretically derived conclusion
concerning the probabilistic estimates, it follows only that in view of the
very large number of molecules involved, it is overwhelmingly probable
that at any given time the actual average speeds will have values very
close to their probability estimates and that, therefore, it is practically
certain that they will be, like the latter, inversely proportional to the
square roots of their molecular masses, thus satisfying Graham’s law.”

It seems reasonable to say that this account affords an explanation,
even though “only” with very high associated probability, of why gases
display the uniformity expressed by Graham’s law; and in physical texts
and treatises, theoretical accounts of this probabilistic kind are indeed
very widely referred to as explanations.

" The “average” velocities here referred to are technically defined as root-mean-
square velocities. Their values do not differ very much from those of average velocities
in the usual sense of the arithmetic mean. A succinct outline of the theoretical
explanation of Graham’s law can be found in Chap. 25 of Holton and Roller,
Foundations of Modern Physical Science. The distinction, not explicitly mentioned
in that presentation, between the average value of a quantity for some finite number
of cases and the probabilistically estimated or expected value of that quantity is
briefly discussed in Chap. 6 (especially section 4) of R. P. Feynman, R. B. Leighton,
and M. Sands, The Feynman Lectures on Physics (Reading, Mass.: Addison-Wesley
Publishing Co., 1963).




