John Carroll- Three Counterexamples to the Humean Tradition

The Big Prize

Complete S1 in a non-circular way, and without a nomic sentence (186-7). Nomic sentences are causal sentences.

(S1) It is a law that all Fs are Gs if and only if...

Humean Supervenience

First stab-Naive Regularity Account

It is a law that all Fs are Gs if and only if (i) all Fs are Gs, and (ii) the generalization that all Fs are Gs is lawlike; that is, (a) it is not necessary that all Fs are Gs, and (b) the generalization is unrestricted (it involves only non-local, empirical predicates apart from logical connectives and quantifiers.)(190)

Troubles:

-Vacuously True Generalizations (191)

-"All unicorns weigh ninety pounds"

-Troublesome Predicates (192)

-"All unicorns or ravens are black"

-"All emeralds are grue"

-Puzzle (192)

-"All gold spheres are less than ten feet in diameter"

Second Stab 1- Epistemological Approach

-Goodman and Skyrms

-Laws are the generalizations we want to hold and confirmed by induction (196)

-Problems with objectivity

Second Stab 2- Systematic Approach (Systems) -MRL

-Laws are the generalizations that fit into the strongest, most simple system (197) -Problems with probability

Counter-examples

1. From Tooly

-U₁-"no particles of type X are subject to fields of type Y though the generalization, L_1 , that all X-particles subject to Y-fields have *spin up*." And L_2 all X-particles subject to Y-fields have *spin down* (202, 212-3).

-First, is L_1 a law for the Humean if there are no instances? (202-3) -Second, if L_1 is true of U_1 and L_2 of U_2 , what is the difference for the Humean between the two universes? (213-4)

2. Probability

 $-U_3 8/9$ X-particles have spun up. (214-5)

-Small enough number that the law could be any probability (8/9, 8/10, 9/10)

-The law could be 9/10 in one universe and 8/10 in the other.

-Like U1 and U2, U3 and U4 need not have nominalistic differences.

-Laws are not vacuous as they were in counterexample 1

3. Laws without Instances

-Two Universes: U_5 and U_6 (215-7)

-At 't₀' W-particles are introduced into the universes, in U₅ they spin up, in U₆ they spin down.

-These "spins" are laws in each Universe respectively.

-All particles in either universe may appear and disappear in an instant.

 $-U_{5*}$ and U_{6*} are two new universes that have all the same laws as U_5 and U_6 except at time 't₀' all particles disappeared.

-Because U_{5*} and U_{6*} are analogous with U_5 and U_6 they carry all the laws of those universes.

-The spin laws of each exist before and after ' t_0 '

-Because they exit in U_{5*} and U_{6*} after there are no particles, it is clear that they are not dependant on the particles for existence.

-These "empty" universes still exist and have different laws from one another.

Others:

-There are many empty possible worlds in which there are many different sets of laws (Newtonian to Aristotelian).

-There are non-nomical worlds Worlds with no laws at all

-Worlds with no laws at all

Conclusion

-All reductive accounts of laws fail

-Accepts Irreducibility Thesis - All reductive laws fail

-Rejects *Supervenience Thesis-* "two possible worlds which agree on *all* non-nomic facts must agree on which laws hold"