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Preface

This booklet deals, in essence, with a branch of mathematics which
may be unfamiliar to many readers, Some of the ideas contained
herein are fairly sophisticated and will require careful reading as well
as a considerable amount of thought. On the other hand, the treat-
ment is deliberately informal, and the explanations are presented with
an abundance of detail and in nontechnical language. Anyone,
therefore, with a lively curiosity and a good background in ele-
mentary high school algebra should be able to cope with the material
quite effectively.

To most of us at one time or another there must have come re-
current, perplexing thoughts about the nature of something called
infinity. What exactly is meant by the term? Is it something to run
away from—or at best to write off as undefinable? Or is it something
which can be scientifically examined and completely explained by
mathematical methods?

Perhaps the truth lies somewhere between the two extremes. At
any rate, mathematicians and philosophers have been tussling with
questions relating to infinity for a considerable span of time. As a
result there has sprung into existence a strange new species of objects
called transfinite numbers. What these are, how they behave, and
how they can be compared one to another will be the principal subject
of this study. When you have finished you may still want to run
away from infinity. But at least you will know more about what
you're running from.

The theory of transfinite numbers, largely the brain child of the
great mathematical genius Georg Cantor, has had a profound in-
fluence on both the mathematical and the philosophical thought of
our day. Cantor’s development of the theory of cardinal and ordinal
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numbers is & work of great sophistication and bold, penetrating in-
sight.

It will not be possible in this small book to encompass the scope
of Cantor’s work nor that of his followers in the field. Moreover, it
has not seemed desirable to strive for the high level of rigor and logical
exactness which the theory is capable of exhibiting.

On the other hand, it is hoped that this brief introduction with its
informal glimpses into the surprising ‘“outer reaches’ of infinity will
start the ball rolling toward further explorations. Much interesting
country lies ahead.

Hanover, Indiana JOHN E. YARNELLE
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The number of grains of sand on the beach at Coney Island is much less
than a googol —
10,000,000,000,000,000,000,000,000,000,000,000,000,000,-
000,000,000,000,000,000,000,000,000,000,000,000,000,000,-
000,000,000,000,000,000. EDWARD KASNER

I could be bounded in a nutshell and count myself a king of infinite
space. SHAKESPEARE

The tnfinite! No other question has ever moved so profoundly the spiril
of man. DAVID HILBERT

CHAPTER 1

CARDINAL NUMBERS

1. THE LARGEST NUMBER

Three very youthful but nonetheless earnest mathematicians were
engaged in a heated discussion, attempting to come to grips with a
very perplexing problem.

“How big,” the first one wanted to know, “is the biggest number
there is?”

“Anybody knows that,” said the second member, who seemed to
be a kind of self-appointed committee chairman. “It’s a zillion!”

“What’s a zillion?” persisted the first speaker.

“A. zillion’s & million million!” the chairman replied with the air of
one delivering the coup de grace.

At this point the number three disputant, who had heretofore
maintained a discreet silence, came forth with the following query:

“What about a zillion plus one?”

* * *

As it has to many a serious seeker after truth since the time when
man first began to probe into the shadowy, recondite mysteries of
number, this question proved to be a real “stumper”!

There was, in fact, a sustained period of silence, after which the
chairman again picked up the ball—but this time in the manner of
one who is manifestly less sure of his ground.

“All right, what about a zillion zillion?”

“You take a zillion zillion,” said number three, “and I’ll take a
zillion zillion plus one!”

‘Whereupon the chairman opened his mouth as if to make a telling
reply, then bit back his words. For he was a fair-minded, thoughtful
boy, who undoubtedly became in later years one of the nation’s
outstanding scientists!




Following a few moments of soul-searching reflection, he made this
remarkable utterance:

“I guess, then, there isn’t any biggest number.”

“Why not?” said the first boy.

“Because no matter how big a number you have, you can always
add one more.”

A profound observation, and one which can well serve to keynote
this introduction to a fascinating area of mathematics, namely, the
study of the infinite, or, more precisely, the study of transfinite
numbers.

2. SETS

In putting the seal of approval on the final comment of our youthful
chairman it might be well to adjust the language a bit. Suppose we
replace the word number by positive integer, the set of positive in-
tegers (sometimes called counting numbers) being the set

{1,2,3,4,...}.

The statement, “There is no biggest number,” in more formal dress
becomes, “The set of positive integers has no largest element.” Note
here, in particular, the word set. Sets are to play a major role in this
story. Hence it seems appropriate at this point to comment briefly
on the general theory of sets, taking the inevitable risk that much
of what immediately follows may be “old hat” to some of our readers.

We regard a set as merely a collection of objects, any objects at
all, not necessarily numbers. This is a very flexible concept. It is also
quite basic. The only general restriction placed on the elements of
any specified set is that they have some identifying property which
makes completely clear the fact of their belonging to this particular
set. In other words, given a set S and a general class of objects, we
must always be able to tell whether or not a selected object belongs
to the set S.

For example, suppose the set S is assumed to be'all human beings
presently living in Boston. Then, if one chooses any human being at
random, there should be no uncertainty : it is either an element in the
set S, or it isn’t. Asa simpler example, let S be the set of all numbers
larger than 100. Acting on this assumption, we can confidently state
that 105 belongs to S, 50 does not.

The general theory of sets is one of compelling interest and im-
portance. It can, in fact, be regarded as the foundation stone upon
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which all of mathematics may be erccted. The reader is therefore
strongly urged to delve deeper into this topic which has been called
“one of the boldest creations of the human mind.”

For the purposes of the present study we shall confine ourselves to
only a few aspects of the subject, generating thereby, we hope, an
insatiable appetite for more.

3. CARDINAL NUMBERS

Our chief concern, as indicated above, is with so-called transfinite
numbers. We shall, to put it somewhat more glamorously, be “ex-
ploring the infinite.” What, then, has this to do with the theory of
sets, or, vice versa, what do sets have to do with infinity? As we
shall shortly be led to observe, a great deal!

Let’s begin by considering one specific property which we shall call
the cardinal number (or cardinality) of a set.

Initially this property may seem rather trivial and scarcely worth
making & major production over. The plot, however, thickens as we
move along. Loosely speaking, the cardinal number of a set is the
number of elements it contains. A set consisting of a baseball team
(not necessarily from St. Louis) would have the cardinal number nine.
If a set is defined as the vertices of a square, its cardinality is four. A
twelve-volume set of books has cardinality twelve. Accordingly, two
sets with the same number of elements have the same cardinality.

As indicated above, there doesn’t seem to be very mueh to this idea.
at first. If one can actually count the number of clements in a set, or
arrive at this number through some other avenue of knowledge, as in
the case, for example, of the set of all persons in the United States
according to the 1960 Census, then the cardinal number is relatively
easy to determine.

But what if it is not possible to count all of the elements? Can one,
for instance, define the cardinal number of a set whose elements
cannot all be counted? If so, would all such sets have the same cardi-
nal number? These and other questions like them lie at the very heart
of the matter. We shall seek to provide some, at least, of the answers.

4. COUNTING

Before making a sortie into this relatively unknown and possibly
dangerous new territory, let’s examine more earefully what we
actually mean by counting. Everyone knows in general what the
word signifies. Hardly a day goes by without our having to engage

3




in the process in one way or another. Even at night we occasionally
count sheep!

What is needed, however, is a slightly more precise notion which
can be phrased in mathematical terms in such a way as to provide a
means for forming ideas about infinity.

Let’s begin with a general set of, say, 10 elements. Suppose, then,
that these elements are arranged in & certain way and each element
labeled according to this particular arrangement as follows:

{81, 82, 83, 84, * * *, 810} *

If we then consider the set of positive integers from 1 to 10 inclusive,
ie.,
{1) 2,3,4,:- 10}1

it should be clear that we can match elements in our general set with
elements in the integer set so that each general element corresponds
to exactly one integer, and vice versa. This type of pairing is an
important mathematical phenomenon called (quite understandably)
a one-lo-one correspondence. In the above instance the correspondence
is readily achieved by matching each subscript with its “fellow in-
teger.”

It may be interesting to observe that we do form a one-to-one
correspondence of this sort, though perhaps unconsciously, whenever
we go through the ordinary business of counting. We look, for ex-
ample, at a crowd of people in a room. Wanting to know how many
there are, we first work out some kind of ordering process, often start-
ing at the back (or front) of the room and attempting to form, if
possible, a pattern of rows. Then, beginning with the first (or last)
row and (if we happen to be a product of Western culture) proceeding
from left to right, we say:

“One, two, three, four, et cetera”
But this is precisely the act of forming a one-to-one correspondence

between, on the one hand, a set of people and, on the other, a set of
positive integers.

1 The conventional technique for listing the elements of a set is to enclose them

in braces, [ }. Throughout this study we shall, in general, use capital letters to
denote sets and small letters to denote elements of sets.
4

Suppose we are counting the cards in a bridge deck. This is again
the formation of a one-to-one correspondence in which the top card
“corresponds” to the integer 1, the second from the top corresponds
to the integer 2, and so forth.

With this idea in mind we are now in a position to construct a more
precise definition of what is meant by the cardinal number of a set.

Definition: A set S is said to have cardinal number n if and only if

the elements of S can be put into a one-lo-one correspondence with the
sel of tnlegers

{1: 2,3, n}'l

Here n is assumed to be any positive integer. The symbol {1, 2,
3, ..., n} denotes the set of all positive integers from 1, in ascending
order, up to and including n. We shall use the notation N(S) =
n to mean “The cardinal number of the set S is n.”

Sets that have the same cardinal number are said to be equivalent.
1t follows that:

Two sets are equivalent if and only if their elements can be put in 1-1
correspondence with each other.

Thus it is evident that the concepts of cardinality, equivalence, and
1-1 correspondence are intimately associated one with another.

You have probably at one time or another encountered comments
about the so-called empty set, or set devoid of elements, usually sig-
nified by the symbol @. This set has considerable significance in the
general theory. We shall not, however, in this discussion consider
the cardinality of @ as zero, though this is sometimes done. In
assigning a cardinal number to any set we shall always assume that
the set in question is non-empty.

5. INFINITY

We can now form a connecting link between the concept of cardinal
number and the general notion of infinity. Though the words finite
and infinite have a certain popular meaning, we shall pin things down
a bit by means of the following definition.

! A question may arise in the minds of skeptical readers (and these are the best!)
as to the possibility of arriving at two different cardinal numbers for the same set
by merely rearranging the order. It can be proved, however, that such is not the
case. For a discussion of this proof, see Chapter X1I of A Survey of Modern Algebra
by Birkhoff and MacLane. Macmillan, 1953.
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Definition: A sef S is finite if and only if ils cardinal number is a
postlive integer. A non-emply sel which 1s not finile is called infinite.!

Though finite sets have their established place in the general scheme
of things, it is on the infinite sets that we shall direct our most
penetrating gaze. As indicated earlier, the major questions compelling
our attention are: 1) Can these sets be assigned a cardinal number? 2)
Would the cardinal number of all infinite sets be the same?

The second question, by far the more intriguing, is equivalent to
inquiring whether or not there are different kinds of infinity. No
doubt to many people there is an “obvious” reply to this: “How could
there be different kinds! Infinity is infinity!”

Those, on the other hand, who are privileged to read through these
pages may have cause to disagree!

6. SUBSETS

Before we can deal with the question of comparative sizes of infinite
sets, we shall need to sharpen up a few notions about comparing sets in
general. To do this we shall lean heavily on the concept of subset.
Many readers are probably familiar with this idea, but perhaps a
formal definition may not be amiss as a refresher.

We say that

Definition: A set S is a subset of a sel T if every element in S ts also
an element in T'.

In symbols, “S is a subset of 7'” is written S C 7'.

In general, the notion is a simple one. The set of vowels is clearly a
subset of the set of all letters in the alphabet. The set of “even”
positive integers is a subset of the set of all positive integers. The set
of all blondes is a subset of the set of all human beings.

A slightly more subtle question arises, however, which we shall
need to deal with, and that is the question of whether or not a set is a
subset of itself.

Study the definition! Now ask yourself, “Is every element of S an
element of S?”

! A word of caution! There may be a temptation to regard as infinite all sets for
which an exact count cannot be made in a literal or physical sense. For example,
the set of grains of sand on a beach might seem to be infinite. However, such a set
is finile even though one might never be able to determine its precise cardinal num-
ber. If by a prodigious feat of engineering one were gradually to remove all of the
sand from a beach, one would ultimately come to the last grain. Not so with
infinite sets, as we shall see!
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As a further consideration we define a proper subset as follows:

Definition: If S is a subset of T and there exists at least one element
of T which is not in S, then S is a proper subset of T.

For this situation we write S C 7.

Armed with these ideas we can begin our attack on the comparison
of sets by establishing a connection between cardinal numbers and the
subset concept. For the finite sets such a connection is fairly obvious.
The following statements can be formally proved using mathematical
induction. We shall grant them intuitive acceptance.

Let a set S have cardinal number m and let a set T have cardinal
number n. Then m < n if and only if there is @ 1-1 correspon-
dence between S and a subset of T. (Here and in the future the
symbol 1-1 designates “one-to-one.”)

Though we have encountered so far only cardinal numbers which
are positive integers, the above statement can and will apply to all
cardinalities, including the transfinite.

If we were to confine ourselves to a consideration of finite sets, a
stronger statement would also hold:

Let m and n be positive inlegers, and let N(S) = m and N(T) = n.
If there exists a 1-1 correspondence between S and a proper subset of
T, then m < n.

On the other hand, we shall soon see (and perchance marvel at the
fact) that the latter situation does not hold with infinite sets. For
these one needs additional evidence to determine whether m < n
in the infinite case. But of this, more later.

Meanwhile, as an opening thrust, let us reexamine an old friend,
the set of all positive integers, i.e.,

{172)37”'}'

We have already agreed that such a set has no largest element. Can
we now assert that

“The set of positive integers is infinite™?
The answer is almost obvious, to be sure! The assertion, however,

does need a bit of verification in the light of our definition. This
verification involves a procedure we shall find useful later on.
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To show that the set of positive integers, call it P, is infinite, we
need merely establish that its cardinal number cannot be a positive
integer. Assume, then, for the sake of argument that P is finite, i.e.,
that its cardinal number is & positive integer n. By definition this
implies a 1-1 correspondence between P and a set of positive integers
{1,2,3,...,n}. Now suppose we denote the first n integers in the
set P as {p1, P2, P3, - - . , Pn} Where p; = 1, p2 = 2, ete. Certainly
the 1-1 correspondence between this set and the set {1, 2, 3,...,n}
is obvious. v

However, no matter what p, is, the integer p,4; = n + 1 is also
an element in P, as our young friends discovered. But the element
Dn41 i8 Dot in the set {p1, P2, P3, ..., Pn}. Hence we have a 1-1
correspondence between {1, 2, 3,...,n} and a proper subset of P,
Thus if P has a finite cardinal number, this number must be greater
than n. But n was assumed to be any positive integer whatsoever!
What, then, does this compel us to conclude with respect to the set P?

CHAPTER II

COUNTABLE INFINITIES

1. THE CARDINAL NUMBER N,

Since the set of positive integers is infinite, it cannot have a finite
cardinal number. We shall therefore be obliged to assign to it a
cardinal number which is not an integer. This necessitates a new
symbol. Though a number of candidates have been suggested for the
job, the most widely used is the symbol Ny, called aleph zero.!

Thus N(P) = Ry, and we have made a brave start in answering
the first question in regard to the cardinal number of infinite sets.
The answer may strike one as being somewhat arbitrary, to be sure,
but this is not untypical in the realm of mathematics and mathemati-
cians, where one frequently encounters the following type pronounce-
ment: “You say there is no such number! Behold, I shall create one!”
(Modest fellows, these!)

Once the cardinal number of the set of all positive integers has been
designated, it is reasonable to come up with the following:

Definition: A set S has cardinal number W, if and only if the elements
of S can be put into a 1-1 correspondence with the set of positive
integers {1,2, 3, -+ }.

Do you see that the above is entirely consistent with an earlier
statement about finite sets?

We might, then, consider the set P and all others having the same
cardinal number to be “Charter Members” in the “Infinity Club.”
Such sets are commonly called couniable,® a surprising name since

1 This symbol is sometimes called aleph null or aleph naught.
2 Other synonyms for couniable which are frequently used in mathematical
literature are enumerable and denumerable.
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one is not able actually to “count” all of the elements. However, the
name does make sense in the following context.

If aset S is to have cardinal number N, then the assumed one-to-
one correspondence with P implies that the elements of S may be
labeled in & manner such™as

{31, 82, 83, 8, - '}

where every element s, has exactly one “mate,” the number n, among
the positive integers, and every positive integer & has exactly one
partner, s;, among the elements of S.

In this sense there is an implicit “counting” process even though
it is never completed.

We may look upon Ry, then, as our first acquaintance among the
lransfinile numbers. Is it the only transfinite number? If not, is it
the largest? or possibly the smallest? We shall, in due course, find
all this out! In the process of determination there will come to light
some strange and wonderful discoveries.

2. HOW SMALL IS Ny?

We shall now embark upon the search for other transfinite numbers
which, while still not finite, may be smaller than 8,. How would one
go about this? 'Recalling that the idea of “smallér” eardinal number
has been associated with the notion of subset and, in particular,
proper subset, we may have a cluc. Let’s examine a subset of PP
which, though proper, is still infinite. Perhaps the simplest one to
come to mind is the set S of all positive integers except the number 1.
This is a proper subset. It cah also be shown to be infinite. (One may
bypass the formalities in this connection, noting merely that the
elements of S cannot be matched 1-1 with a finite set of integers.)

Suppose, then, we label the elements of S as

{sh 82, 83, 8y *° '}

where s, = 2, s = 3, s3 = 4, and in general s, = n + 1. The
question is, “Can we match each element of S with exactly one ele-
ment of P, and vice versa?” How about letting subscripts of each s
pair up with corresponding integers of P?

Since this notion of the existence of a one-to-one correspondence is
basic to our entire discussion, it might be well, perhaps, to “labor”
the point & bif more before we reach a final conclusion. Because we
arc dealing with infinite sets, we cannot exhibit the correspondence
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in toto. What, then, can be used as a clinching argument? Evidently
we must forge some sort of connecting link between a general element,
of S, the set being tested, and a corresponding integer of P which
would enable one to always make the association. Since the corre-
spondence must be 1-1, the rule must work in both directions. That
is, given any element of S we should know which integer in P to
mateh it with, and given any element of P we should know which
element of S must correspond to it.

A convenient way of doing this is as follows: If the set S to be ex-
amined is written in the form

S = {81, 82,83, 8y * ¢ '};

then a 1-1 correspondence between S and P is implicit. (Match
subscript with integer!) Therefore the task at hand is to devise a
scheme for labeling the s's. Given, in other words, a set S, what
element are we going to call s), what element s;, and in particular
what element will be called s,? This last is the key to the matter
since it furnishes the general rule of association.

For the above example the job has aiready been done. The given
set S was the set of all positive integers from 2 on. We let s; = 2,
s3 = 3,8, = n + 1. Clearly, then, the element 2 in S is to be labeled
;. It will therefore correspond to the integer 1 in P. The element 7
in S will be labeled s, which associates it with the integer 6 in P,

It should now be evident (perhaps by this time painfully so) that
there is then a 1-1 correspondence between S and P. This assures us
of the fact that the set S has the cardinal number R,.

But hold on! The set S is a proper subset of . Should it not, then,
have a “smaller” eardinal number? Have we run into a contradiction?
The answer is “No,” since the connection between proper subset and
“smaller” cardinal number was established for finite sets only. Like
the “Twilight Zone,” we might say that in the mysterious realm of
infinity almost anything can happen. We have seen a 1-1 corre-
spondence between the set P and a proper subset of itself.

Suppose for a set S we choose the positive integers with the first
ten left out, i.c., let

S = {11,12, 13, -- }.

By letting s; = 11, s = 12, and s, = n + 10, we have a 1-1
correspondence between P and an apparently even smaller subset. The
correspondence, however, tells us that the two sets have the same
cardinal number NR,.
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The reader can readily discern that the choice of how many initial
numbers to omit does not materially alter the situation. One can let
8 be the set of positive integers with the first thousand left out, and
still come up with a similar result. Or, for that matter, leave out the
first “zillion,” or any finite number.

Let’s consider now a different type of subset. Assume that S is the
set of all even numbers beginning with 2, i.e.,

S=1{246,--.

If we let 5, = 2, s, = 4, and in general s, = 2, it should again be
clear that a 1-1 correspondence exists between the set of positive
integers and the set of even positive integers. The surprising thing
about this is that the latter, superficially at least, would appear to

have only half as many elements as the former, and yet they have the-

same cardinal number R,

Once again we are witness to the unconventional behavior of
infinite sets and of transfinite numbers. The foregoing examples
inevitably lead us to the conclusion that a certain infinite set can be
put into 1-1 correspondence with a proper subset of itself. Asa matter
of fact, this turns out to be a characteristic property of infinite sets.
The great mathematician Richard Dedekind is credited with the
assertion that:

A set is infinite if and only if it can be put into @ 1-1 correspondence
with a proper subset of ilself.

We have already seen examples of this with respect to the set of
positive integers. It should also be clear to the reader that the same
is true for all sets with cardinal number N, that is, for all sets which
are countably infinite. To affirm the latter we need only realize that
any pattern of correspondence between the set P and subsets of itself
can be duplicated by all other sets which are countable. Take, for
example, the very general countable set

S = {8], 82, 83, 84, * ) 8, ** ‘}-
We can form a 1-1 correspondence between S and the proper subset
{32; 84, 8¢, " - }

which perfectly imitates the correspondence between P and the even
positive integers.
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We also know that the property under consideration does not apply
to finite sets. This leaves one question to be settled before we can
fully accept the Dedekind definition. The answer will also solve an-
other important problem, namely, the relative “size” of N,.

The key question is this: “Does every infinite set contain a count-
able subset?” An answer to the question can be formally proved.
We shall be content with a very plausible justification. Suppose we
let T be any infinite set at all. Furthermore, suppose we begin to list
the elements as {¢;, {5, 3, + - -}. We can continue listing elements with-
out having the list come to an end. (Otherwise T would be finite.)
Must there then be a countable subset {¢;, 2, 83, -+, tn, -} ?

We have verified the Dedekind assertion. We can also conclude
that a countably infinite set, or set with cardinal number N, is the
smallest infinite set.

Perhaps some of you would like to challenge this statement. (And
we hope many will do so, at least temporarily.) Let him produce an
infinite set, say @, with the claim that N(Q) < N,. To which we reply
that since Q is infinite, it has a countable subset B where R has
cardinal number N, But since R is a subset of Q, it follows from an
earlier statement (see page 7) that

N(R) < N@

which contradicts the claim that @ has a cardinal number smaller
than RQ.

Aleph zero having been recognized as the “smallest” transfinite
cardinal number, the question now virtually demands to be an-
swered, “Are there larger ones about, and if so, how do we find them?”

3. HOW LARGE IS N,?

We must now swing the pendulum over to the other side. In other
words, instead of seeking out proper subsets of P, we must look for
“larger” sets of which P itself is a proper subset. Let the reader be
warned that there are frustrations ahead! In fact, one is led almost
to despair of ever finding a “larger” infinity. However, these very
frustrations offer much illuminating insight. Also, to the persevering
searcher, there is a pot of gold at the end!

As an opening gambit, let’s consider the set I of all integers.
Certainly this seems to be a larger set, including, as it does, all the
negatives of the counting numbers, and zero. One might look upon
it as a bit more than twice as large as P. Therefore, since P is a proper
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subget of I, we can infer that
N(P) £ N(I).

But now comes the moment of truth! Suppose we consider the
following designations:

I = {il: 12, isy g,y in; *e '}
where

51 =0,5p = —1,i3 = 1,4, = —2, 75 = 2, et cetera.
To describe the general scheme we can let

i =0, z',,=—g for n=24,6,---

and ip =

5 for n=3,57,---.

This assures us a 1-1 correspondence between all the elements of I
and the positive integers. As a test, suppose we choose, for example,
elements 13 and 24 from P. Isit clear that the corresponding elements
in I are 6 and —12 respectively? To go the other way we merely
need to reverse the formula. For instance, suppose we select the
number —5 from the set I and seek its correspondent in P. Since —5
is negative we choose

(S

in= — 1o

ie., -5 = —

(1R

whence —10= —n  and 10 = n.

Thus for the integer —5 in I the corresponding positive integer in P
is 10,

From all of this we are obliged to conclude (with a twinge of disap-
pointment) that the set of all integers is countable, That is,

N({I) = N,.

What next? This time we shall take on a vastly larger set (in ap-
pearance, that is), namely, the set of all rational numbers. You may
recall that this is the set of all numbers which can be expressed as the
quotient of two integers, with the customary proviso that division by
zero is excluded. This set includes a staggering multitude of fractions
in addition to all of the integers previously considered!

14

For convenience we shall begin with the positive rational numbers.
The extension to include all negative numbers and zero will follow
shortly. .

Suppose we call the set of positive rational numbers R,, and let us

assume a listing which begins in the usual way as

Rp = {Tl,rg,Ta,"',Tﬂ,"'}.

Now we can construct an array of the positive rational numbers, as
follows. Along the first row we list, in the usual order, the positive
integers:

1,2,3,4,---

To be consistent with the definition of rational number, we should
perhaps consider each of these as having a number 1 denominator,
ie.,

» — et cetera.

2
17

-
y— | P

1
I’

In the second row we place all fractions having the denominator 2,
in the third row all fractions having the denominator 3, and so forth.
The numerators in each case will still be the positive integers in the
conventional order.

Actually we are talking about an infinite number of rows, each
containing an infinite number of elements—a pretty formidable array,
and one which could obviously never be completed. It will only be
necessary, however, to exhibit a small fragment of the upper left-
hand corner to illustrate the general scheme which we are about to
deseribe. The pattern should look somewhat as follows:

1 2 3 4 5 6 7
1 2 3 4 5 6
22232322
12345

3 3 3 3 3
1234

4 4 4 4
123

5 &6 5
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Even from this small beginning it is evident that some duplication
is involved. However, this needn’t pose a problem. We may simply
assume that all fractions which have not been reduced to lowest terms,
i.e., fractions whose numerator and denominator are not relatively
prime,! are to be eliminated. In the long run, no harm will be done
to the great plan.

Now suppose we construct a broken-line path beginning at the num-
ber 1 and consisting of horizontals, verticals, and diagonals, as indi-
cated in the sketch below. Note the direction of the line. Note also
that elements to be disregarded have been marked with an asterisk.

1 2 3 4 5 6 7 +-¢- .
1 223 45 67

2 32 2 2 2 3 )
1 2 34 5 67
3333131313 °°
1 203 45 ¢ 7

4 4 4 4 4 14 & °
1.2 3 4 5°6 7

5 55 35 5 5 5 °
1 2% 3 45 6°7

6 6 6 6 8 6 8

Listing the numbers in the order determined by the broken line
(with appropriate omissions), we have 1,2, %, , $* (omit), 3,4, %, - - -.
Thus ry = 1,10 = 2,73 = 3,7y = 4,75 = 3,rs = 4,r; = 3, and
so forth.

From this it should be clear that each positive rational number will
appear once and only once in the list, and will have as its corre-
spondent exactly one positive integer. For example, it is evident
(after some careful counting) that the rational number } corresponds
to the positive integer 9, and that the rational number 6 corresponds
to the integer 12, i.e., } is ninth on the list and 6 is twelfth.

Because of the necessary deletion of unreduced fractions, the
problem of devising & formula for », which would indicate the general
correspondence is a knotty one. It will not be attempted here. For
an alternative approach see footnote reference on page 5.

! Two numbers are called relatively prime (i.e., one is prime to the other) if their
only common divisors are 1 and —1. For example: 8 and 25. Neither 8 nor 25
is prime, but they are relatively prime.
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The array, however, of numbers and lines should be sufficient
evidence to support the conclusion that a 1-1'correspondence does in
fact exist. For additional affirmation the reader is encouraged to do
the following exercises.

EXERrcIsEs. Tind the missing partners in the following table:

Positive Rationals Positive Integers

le > 1
%z — 9
6+ »12
%( y ?
?¢ — 20
2¢ _— ?
% !
?¢ »30
B 7

One may go on with further matchings if the game is interesting.
For cxample, what integer corresponds to the rational number §?
What rational number corresponds to the integer 50?7

Assured that a 1-1 correspondence does exist between the positive
rationals and our basic set PP, we need only adjoin the negative ra-
tionals and zero to make our task complete.

This can be done without extravagance of detail by merely indicat-
ing the following arranged listing. Suppose we call R the set of all
rationals. Using r,, as before, to indicate a positive rational number,
we can form a counting arrangement as follows:

R = {0; —Try, Ty, —r2, T2, —T3, 73, }

The countability of the set of all rationals can thus be derived from
the countability of positive rationals in somewhat the same manner as
the cardinal number of all integers was derived from that of the
positive integers. Thus, it follows, mirabile dictu!, that

t A double arrow (—), as in the table, is frequently used to show that the
correspondence is 1-1,
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4. SUMS AND PRODUCTS OF CARDINAL NUMBERS

The time has now arrived for forming a few conjectures about the
inner nature of cardinal numbers and especially about the character
of our new-found but peculiar friend NR,.

In first presenting the notion of cardinal number as applied to sets,
it was pointed out that cardinal numbers of finite sets could be
thought of in much the same way as one views the positive integers
themselves, That is, a determination of the cardinal number of a
given finite set could be made by the simple process of counting the
elements.

TUp to now, however, we have said nothing concerning the arith-
melic of cardinal numbers. In particular, we have not confronted the

-question of what is meant by the sum or product of two cardinal

numbers. We have, it is true, made certain observations concerning
the comparative “sizes” of various sets, but have not as yet been very
systematic about it.

We shall now remedy the situation by attempting to set up a care-
fully defined system of arithmetic for cardinal numbers. Any such
system must fulfill three major objectives:

1. It must of necessity involve a relationship to sets and to
certain established operations on sets.

2. It must, for finite cardinal numbers, be consistent with the
conventional arithmetic of positive integers.

3. It must include (and this of course is the feature attraction
of the whole show) the transfinite cardinal numbers as well.

The word arithmetic has several connotations. It is used, generally,
and often misleadingly, to describe the diverse mathematical activities
engaged in by young students in the elementary grades. It may also
have a strict technical meaning. We use the term here somewhat
informally to include primarily three basic concepts with respect to
cardinal numbers, namely, for any two cardinal numbers their sum,
product, and order (which one is larger than which). We shall also con-
sider at a later time the notion of exponentiation, i.e., taking powers.
Other properties will periodically enter the stage in what may be
thought of as “supporting” roles.

The reader may or may not be familiar with the idea of what is
meant by the union (sometimes called the logical sum) of two sets.
Very briefly, given two sets S and 7, the union of these two sets is a
third set containing all elements which are in at least one of the sets
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S or T. Calling this third set B, we write in symbols

SuT=R.
EXAMPLES
1) IfS= {a,bc,d and T={g0¢/ g},
thenSUT = R = {a,b,¢,4d,/ g}
) - Ii8={a,bc and T = {d¢,

thenSU T =R = {a,b,¢,4d,¢}.

The foregoing examples furnish a key to the situation. In the first
case the two sets do have elements in common, to wit, @ and ¢. In
the second case there are no common elements. With respect to the
latter we say that the two sets are disjoint.

With this in mind we can readily establish a connection between
set union and the sum of cardinal numbers. To begin with, if we
look at the first example, we note that N(S) = 4 and N(T) = 4,
but that N(R) in this instance is 6. Obviously in this case the
cardinal number of R is not the sum of the cardinal numbers of §
and T. The reason, which must be equally self-evident, is that S
and T contain common elements, 1.e., are not disjoint. On the other
hand, in the second example we observe that

N(S) = 3, N(T) = 2 and that N(R) = 5.

Whence we can now assert that if X has cardinal number m and
Y has cardinal number n, where X and Y are disjoint sets, then the
sum of the cardinal numbers (i.e., m -+ n) is equal to the cardinal
number of the union X U Y.

In symbols, if X and Y are disjoint, then

NX) + NJ) = NXuUY).

At this point it should be emphasized that the cardinal number of a
set does not in any sense depend on the special nature of the con-
stituent elements but only on how many there are. For instance

{a,b,c}, {1,2,3}, {red, white, blue}, {do, re, mi}

all have the cardinal number 3. Thus we may from this standpoint
regard all of these sets as mutually equivalent. We shall want to
emphasize this abstract quality of cardinal numbers by regarding, for
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example, the cardinal number n as the number of elements in any
arbitrary representative of the general class of all sets having n ele-
ments. Accordingly, we have regarded all countable sets, i.e., sets with
the cardinal number 8¢, as mutually equivalent. Thus when we think
of X, as an abstract cardinal number, we would be quite justified in
choosing as an “arbitrary representative” the set of all rational
numbers or the set of all even positive integers, or the set of all posi-
tive integers larger than 1000, to mention a few.

Our explorations will lead us eventually to many more countable
sets. There may also arise some amazement over the fact that all
of these should be thought of as mutually equivalent.

But first let’s take a look at multiplication. Question: “How shall
the product of two cardinal numbers be defined?” Recall an earlier
example where

S= {a,bc and T = {d,¢}.

Suppose one is asked to form all possible pairs, partnerships, com-
mittees of two, et cetera, where each pair consists of exactly one
element from each set. Such pairs would be

(a,d), (a,0), (b, d), (b, 0), (c,d), (c,0).

How many pairs in all? The set consisting of all of these pairs is
known as the Cartesian product of S and 7. Note that the elements in
the product set are pairs and not individual numbers. Symbolically
the Cartesian product set is written S X T. To form a Cartesian
product it is not essential that the sets be disjoint.

More precisely, the Cartesian product is a set of ordered pairs,
implying that the position within the parentheses is to be considered
significant. For example, the pairs (a, ¢) and (c, a) are treated as dis-

[

=t Ta des]
y=2__ 2 (4,2)
1
-4 -2 0 " ' 14 x

T2 oy -

- 1] [

L_gls H

tinct elements. The graph (p. 20) points up such a distinction. The
ordered pair (4, 2) is the point of intersection of the lines x = 4 and
y = 2, whereas the ordered pair (2, 4) is the point of intersection of
thelinesz = 2and y = 4.

Returning to the example where S = {a,b,¢,d} and T = {q, ¢, f, g},
each having cardinal number 4, we may form the p}*oduct S X Tas

{(a, 0), (8, 0), (a, ), (3, 9), (b, ), (b, ¢), (0, 1), (b, 9), (¢, a), (¢, €),
(c,)), (¢, 9), (d, 0}, (d, ¢}, (d,f), d, )}

How many pairs in this set?

What do these examples suggest? With compelling reasonable-
ness it seems that the product of two cardinal numbers can be based
on the Cartesian product of associated sets. We can summarize the
foregoing results by means of the following definitions: '

Definitions:

(1) The sum m + n is the cardinal number of any sel which is the
union of any two disjoint sets having cardinal numbers m and n
respeclively.

(2) The product m - n is the cardinal number of any set which is the
Carlesian product of any two sets having cardinal numbers m and n
respectively.

5. THE UNCONVENTIONAL BEHAVIOR OF N,

In establishing ecriteria for any proposed definition of sums and
products we were motivated by the need for preserving the governing
regulations for addition and multiplication of positive integers when-
ever the cardinal numbers under consideration were themselves finite.

Among these are properties with which you are no doubt familiar,
namely, the associative and commutative laws for addition and
multiplication, and the distributive property of multiplication over
addition. Succinctly summarized, these are, respectively, for any 3
cardinal numbers q, b, and c:

(a+bd)+c=e+ (b4 ¢ and (ab)e = a{be)
at+b=b+a and ab = ba
a(b -+ ¢) = ab + ac, b + ¢)a = ba + be
With respect to addition, the commutative and associative proper-

ties are carried over from the operation of set union. (Old hat to any-
one familiar with the rudiments of set theory and/or Boolean algebra!)
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On the matter of multiplication it is evident that the number of
possible pairs is independent of the order of selection. For example, if
S = {z,y,2} and T = {v, w}, we note that

SXT= {(x: v); (:E, w), (yy v), (v, w)’ (z: v); (z; ‘UJ)}
while TX 8= {(, ), (v, ¥), (v, 2), (w, z), (w, y), (w, 3)}

Each set of pairs contains 6 elements.

To verify the associative law, you should experiment with three
small sets, say § = {z,y,2}, T = {v,w}, and W = {1,2}. First,
form the set of all triples such as

{((z,2), 1), (4, w), 2), (z,v), 2),...}.

Then examine a second set of the form

{(xy (vy 1))! (yr (wr 2))1 (Z, (v, 2))1 e l .

A 1-1 correspondence seems to suggest itself. What does this say
about thé two cardinal numbers?

The conscientious investigator (meaning all of you!) is also urged
to verify the distributive property, using the same three sets—or
any preferred sets of his own devising.

It should also be interesting to note that for finéte cardinal numbers
the familiar relationship between addition and multiplication can be
verified if one employs a special gimmick illustrated by the following
example.

Traditionally the concept of multiplication by a positive integer is
associated with repeated addition. For instance, a number “times
two” is the same as the number “plus” itself. “Set-wise” we can con-
sider an arbitrary set, S = {a, b, ¢}, and form the Cartesian product
of S and any set with two elements, such as 7 = {1,2}. Clearly,

SXT = {(l),(s2),®1),02),),(2)}.

If we wish to add the cardinal number of S to itself, we must recog-
nize that addition of cardinal numbers is only defined for disjoint
sets. However, we can make our sets disjoint by various means, one
of which is to use subscripts. That is, let S; = {a;, by, ¢;} and
Sz = {ag, by, ca}. Now the union S, U S; = {a,, by, c;, ag, b, c2}.
This is equivalent to the set S X T';i.e., each has 6 elements. Lest the
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reader be suspicious of “skulduggery” in the last maneuver, he should
recall that the cardinal number of a set is considered to be independent
of the particular nature of the constituent elements. In dealing with
set S above, we were not concerned with the g, the b, or the ¢, but
merely with the fact of S having 3 elements.

The third and principal criterion for addition and multiplication of
cardinal numbers is applicability to transfinite numbers. Since union
and Cartesian product are defined for infinite sets we can be assured
that this last requirement is satisfied. It now remains to investigate
some of the phenomena which result when sums and products are
formed involving N,

Using the same type of reasoning as applied above, we can infer
that the associative, commutative, and distributive properties do, in
fact, hold. As far as conventional behavior goes, however, this is the
end of it.

The various symptoms of unorthodoxy can best be appreciated by
reexamining a few of the examples of countably infinite sets which
we have already met. As a starter, consider the disjoint sets 7 and S
where 7 = (1,2,38,---,10} and S is the set of all positive integers
from 11 on.

For cardinal numbers

N(T) =10 and N(S) = N,.

Clearly S U T = P, the set of all positive integers. But N(P) = R,.
What does this mean? Is one compelled to conclude that

No‘}' 10 = No?

It is certainly reasonable to extend this idea. Make a few more
experiments similar to the above, including a general case with the
positive integer n. What is the inevitable conclusion? Can one assert
that for any finite cardinal number n

Ro+n=No?

Going a step farther, suppose we now take a second look at the forma-
tion of a 1-1 correspondence between the set of positive integers and
the set of all integers. In this instance we were adjoining to a set with
cardinal number R, a second set which was also countably infinite,
namely, the negative numbers and zero. Clearly the two sets are dis-
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joint. But the set of all integers has cardinal number N,. What does
this say about R + Ng? o

There is no reason to halt the process at this point. Thanks to
the associative law we can infer that

Mo + Ro) + 8o =Ny

and for that matter
N0+30+---+30= xo

for any finite number of terms. .
A corollary question straightway arises. Would the relation

Ro + Ro + -+ + Mo = Ng

hold for an #nfinite number of terms, in particular a countably infinite
number? Let’s first see if you can arrive at an answer on the basis of
an example. Consider the positive rational numbers and recall the
suggested arrangement in rows and columns:

1 2 3 4 5 6
12345
2 2 2 2 2
1234

3 3 3 3
123

4 4 4

After the unreduced fractions have been discarded we have an
infinite number of disjoint sets, i.e. an infinite number of rows.
Moreover, each row itself is an infinite set. Thus the totality of
elements in the above array might be thought of as the union of a
countably infinite number of countably infinite disjoint sets. But we
have already established the fact that the positive rational numbers
have cardinality 8. Conclusion?

Now we must ask whether the above implies that

No'No=No. :

Under the assumption that multiplication is nothing more than
reiterated addition, we might reasonably be tempted to answer
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“Yes.” However, since this has not been cleared in the case of
transfinite numbers (in fact, we do not actually know what it means
to “add” an infinite number of quantities), there should still remain
a margin of uncertainty. We shall have to test our intuition.

But how? By a reexamination of the definition of the product of
two cardinal numbers. Recall that for two cardinal numbers m and #
the product m - » is the cardinal number of any set which is the
Cartesian product of any two sets having cardinal numbers m and =
respectively.

Suppose we first look at a set S with cardinal number N, and a
second set T with cardinal number 8. As the simplest examples let

S =1{,23--} and T={,23,- -}

The Cartesian product is the following set of pairs:

Arranged as above, they present a picture similar to that of the posi-
tive rational numbers, only this time without duplications. Hence no
need for discards. The general situation, however, is theoretically
the same. Can you set up an enumeration scheme which places all of
the above elements in a 1-1 correspondence with the set P of positive
integers? For the sake of variety use the diagonal pattern suggested
in the illustration.

Good old intuition has again proved a reliable witness. We are
now in a position to make a gencral assertion. This will include the
case in which one of the sets may be finite. (You can easily verify
the latter. Note that a diagonal-type pattern, such as the one above,
does not require an infinite number of rows in order to yield a 1-1
correspondence with the set of positive integers.)

Let n be a cardinal number which is finite. Then

n- &0 = xo
and xo . No = No.
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We can take another step. Using the associative property (always
a helper in time of need!), we note that

MR- Ro) - Ry = Ro - Ry = N,
A further extension is also possible. Is it not true that
80‘&0'“0"'“0 = No

for any finite number of factors? What about the case in which the
number of factors is countably infinite?

A perfectly fair question—and one which certainly deserves an
answer. But here lest intuition carry us too far we must definitely
raise & warning signal! We have not set up any apparatus as yet for
determining what is meant by the product of an infinite number of
factors.

To do this we shall have to delve very carefully into the general
concept of exponents and exponentiation. In other words, we know
the meaning of

m"

when m and n are positive integers. But for m and n as cardinal
numbers, and, in particular, transfinite cardinal numbers, there may
be a new and different story. We shall tell this story in the near future.

For now, however, we must resume the quest for transfinite cardinal
numbers other than (i.e., greater than) N,. A quest which up to the
present sitting seems to be leading us nowhere!

We have learned that if one adds any finite cardinal number to N,
the result is still N,. What’s more, one can even add a countably in-
finite cardinal number to N, and still obtain 8y. Do this a countably
infinite number of times and what do you get? N,. Multiply N, by
itself. Repeat the process again and again, even a thousand or a
“zillion” times, and there staring us smugly in the face is still

No.

This probably raises some grave doubts as to whether we can ever
get something larger. Nevertheless we shall continue the fight. It
may be possible to find a set which, while infinite, is not countably so.
If and when such a set is discovered, we can then penetrate more
deeply into the general concept of transfinite arithmetic.
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6. ALGEBRAIC NUMBERS

To look for bigger game we must certainly go beyond the set of
rational numbers, which is the largest set we have thus far examined.
Nearly all of you must already have encountered some numbers which
cannot be expressed as the quotient of two integers. The square root
of 2 (usually written v/2) is a well-known example. That /2 is irra-
tional‘can be proved. The proof can be found in many good algebra
texts.,

It can also be proved that other numbers such as /3, /5, v/10,
V'3, V/3, et cetera, are likewise irrational, but we shall not attempt to
do so here. If you are a bit rusty on the proof concerning the irra-
tionality of v/2, for example, we strongly urge some independent re-
search.

We now wish to adjoin all numbers of the above type to the set of
rationals, thereby creating a truly vast assemblage. To do this con-
veniently we’'ll need to borrow a page from algebra; that is, we want
to consider the set of all so-called real algebraic numbers.

By a real algebraic number is meant any real root of an equation of
the form

@z - ap_ " o+ ax+ay=0
where the a’s are all integers with a, not zero, and where the s are

positive integers. Lest the above notation be a bit bewildering, we
offer some specific examples below:

32 —5x+6=0
28 —7=0
2t — 6222 —2+1=0

and so forth,

In the present situation we are including only real roots, though
similar results can be obtained for all complex roots as well.

It should be evident that the set of real algebraic numbers takes in a
tremendous amount of territory. It contains all rational numbers and
all real roots of these rational numbers. Surely this must be a likely
candidate for an infinite set with cardinal number greater than R,.
But let us look into the matter.

! See Exercise 12, page 8 of Elementary Mathematical Analysis by T. Herberg
and J. Bristol. Published by D. C. Heath and Company, Boston, 1962.
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In considering equations of the type described, we may assume that
the leading coefficient is positive. This is legitimate since any equa-
tion may have all of its terms multiplied by (—1) without any con-
sequent change in roots. The left member of the equation

anz" + a2 azFag=0

under the indicated restrictions is, as most of you know, a polynomial.
With any polynomial of the above type, we can associate a certain
measurement called its height, which we shall designate by the letter k.
This so-called height is a positive integer and is defined as

h=mn+ apn+ |gnz1]| + lGn_2] + -+ 4 |as] + |aol.

Here n is the exponent showing the highest power of z. It is usually
called the degree of the polynomial. We also use the familiar symbol
| | to indicate absolule value. Informally speaking, an absolute
value symbol has the effect of changing all negative numbers to the
corresponding positive ones and leaving unchanged those which are
already positive. Thus, for example,

|—7] = 7 8| = 8.

To clarify the definition of height, a few illustrations are perhaps
in order. For the polynomial

322 — 52+ 2, h=2+4+3+|-5+]2 =12
For 2 — 8, h=5+4+1+4|-8 = 14

As a bit of practice to crystallize understanding, you might try
the following exercises.

exercises. Calculate h for the following polynomials.
1.t —3z+7 2. 32+ 22—z
3. 22 —6z+5 4. 52% — 12
5 25+ 3zt — 28 4 22— 62z — 8
The significant point to be made here is that for any specified height

L there are only a finite number of polynomials having this designated
height. For instance, the only polynomials with height 3 are

%, 2z, z+1, z—1, 3.

There are five in all. You are invited to find others, if possible!
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If we now form equations by setting each of these equal to zero,
we discover that there are exactly 3 different real roots, namely, 0,
1,and —1. The coincidence of having exactly 3 roots for polynomials
of height 3 is not to be considered significant. The vital point is that
the number of roots is finite.

Now see if you can form all possible polynomials for which A = 4.
Once these are determined, you will observe that the only new real
roots contributed are —2, —4, 3, and 2.

As a further exercise, find all the real roots associated with all
possible polynomials of height 5. You should, if all goes well, come
up with 12 new roots, that is, 12 roots not already obtained from
heights 3 and 4. Don’t be discouraged if you ean’t find all 12 im-
mediately. The equations may be a little tricky! You might also wish
to verify the fact that height 2 yields only the root zero.

We are about ready for the punch line. To each height there corre-
sponds a finite number of polynomials, hence a finite number of al-
gebraic numbers. (We assume the reader is familiar with the important
algebraic theorem which says, in effect, that no polynomial equation
of degree n can have more than n distinct roots.) Accordingly, we
can begin our customary listing for the algebraic numbers

{sl) 82,83, 84, 8ny* '}

where the sequence of &'s is formed as follows:

We start with the roots of polynomisals of height 2, which means
that s;, = 0. Then, in order of magnitude, we continue with the
new roots contributed by height 3, then by height 4, and so on. The
sequence, in line with previous findings, would begin to shape up as
sg=—l,83 =18 =2 ¢ = -3, 8 = %1 87 = 2, 8 = —3,
sg = —% — %\/5

Note that the last two entries have not been previously exhibited.
These can be used as a helpful hint for “operation A = 5.”

This sequential listing, even though it represents only the barest
beginning, should set in motion an inescapable train of thought. If
we continue to list only those roots which have not appeared before
as we progress upward to new heights along the scale of positive
integers, we shall have a sequence of distinct algebraic numbers.
Furthermore, since every polynomial must have some positive integer
as height, this procedure guarantees that every algebraic number
must eventually be included.
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Is it now evident that such a listing does, in fact, delineate a 1-1
correspondence between the algebraic numbers and the positive
integers? In other words, is this whopping new set no more than
countably infinite? If so, then it too has cardinal number N,,.

The inclusion of this particular example of a “mammoth” set with
cardinal number N, is not intended merely to discourage you from
further exploration. It will be useful in forming a conclusion about
another surprising set, the set of.so-called {ranscendental numbers,
which we shall meet later on.
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CHAPTER III

UNCOUNTABLE INFINITIES

1. THE UNIT INTERVAL
Our chapter title has undoubtedly given the show away. But the

“outcome is one which you must have long suspected, both because of

the psychological buildup and also in the light of your own excellent
intuition: there must be cardinal numbers greater than 8,. Else why
all the to-do about transfinite arithmetic in the first place?

Up to now our readers must have had numerous sensations similar
to those of a movie-goer who, witnessing a familiar scene, says to his
companion, “This is where we came in!”

Though we have kept encountering “newer and bigger” sets, there
always seems to be an ingenious way of establishing a 1-1 corre-
spondence with the positive integers. There is definite justification
at this stage for forming a conjecture that, given sufficient ingenuity,
perseverance, and time, one could do this for all sets. Perhaps a more
disquieting notion is the following: Even if one couldn’t actually
find a way, how would one ever be able to prove that such a thing
could not be accomplished ?

This is a very significant question in mathematics and one which
has given rise to some of the most highly creative work in the history
of thought, namely, the establishment of definite proof that a certain
type of problem could not have a solution, or that a certain line of
research could not produce fruitful results.

In this connection one often hears attempted arguments on the
other side, such as “They said man could never fly!” or “They said
we could never reach the moon!” The inference being that nothing
is really impossible.

Such assertions to the contrary notwithstanding, there have been
many elegant and valid proofs attesting to the non-existence of solu-
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tions. Such proofs often require a higher level of sophistication than
those which merely exhibit an actual answer. We are about to at-
tempt such a feat. Hence you may regard the foregoing comments as
a friendly warning to be on guard. There may be some heavy weather
ahead!

TFrom the start we shall have to assume a basic familiarity on your
part with the so-called system of real numbers. The set which we shall
be examining to begin with is, in fact, the set of all real numbers be-
tween 0 and 1. We shall wish to include the number 1 itself but not
zero. In this discussion we shall accept, without argument or fuss,
the existence of a 1-1 correspondence between real numbers and
points on a line. This agreement will enable us, when desirable, to
interchange the above set of real numbers with the set of points in the
half-open interval (0, 1], the bracket indicating the inclusion of 1, the
parenthesis indicating the exclusion of zero, In examining this set we
shall not presume on our reader’s part a knowledge of all there is
to know about real numbers. We shall merely agree, and ask you to
do so hkewise, that every number in this set can be written as a
nonterminating decimal

Q1020304 * *

where the a’s may be thought of as any of the digits 0, 1, 2, 3, 4, 5, 6,
7, 8, 9 subject to a single restriction which will be indicated shortly.

No doubt there is cause for concern on the part of some over the
statement that every real number between 0 and 1 may be written as
a nonlerminating decimal. Many of us have been brought up in the
fine old tradition that the rational numbers are distinguishable from
the irrationals by means of their respective decimal expansions. We
have been told that for rationals the expansion takes the form of
either a repeating or a terminating decimal. For example, 4 = .333..-
while 3 = .23.

To overcome this obstacle and at the same time to guarantee that
each number can be expressed in a unique manner, we shall stipulate
that all so-called terminating decimals be expressed with a nontermin-
ating succession of 9’s. Thus % is to be written as 4999 -- -,  as
1999 - .- 3 as.74999 - .-, 1 a5.999 - - -, and so forth.

Assume, then, that each real number in the prescribed set is written
decimally. Furthermore, for the sake of argument, let us first make
the assumption that the set is countable, i.e., that we have some sort
of ordered listing or counting of elements, in our customary pattern,
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as follows:
81 = .G11012@313014 "
S2 = 821022023024 ° * *
83 = .G31032033034 ° * *
834 = .G41042043044 ° " °
Sn = .Gn10n20n30n4

..................

For those accustomed to matriz notation, the double subscripts will
be familiar. To the rest, perhaps a word of explanation is due. The
symbol as3, for example, is to be regarded as having two subscripts,
2 and 3 (not the single number twenty-three). The left subseript 2
shows that this digit belongs to the second real number (subscript 2
relating it to s2). The right subscript 3 locates the digit in the third
decimal place. Accordingly, agz; would represent the digit in the
seventh decimal place of the fifth real number; agg, the digit in the
sixth decimal place of the sixth real number.

Now that the notation is clear, we can examine our assumption
more in detail. We are saying, in fact, that a correspondence can
be thought of as existing between each integer » and a nonterminating
decimal of the form

Sp = .@n1@n2Qn30nq * * *-

This means that one would be theoretically able to count the real
numbers according to some plan. Note specifically that we are not
saying what the plan is. Nor are we attempting to identify any par-
ticular element. We do not say, for example, that

s; = 352178314002 - - -
and 55 = .2598461024 - - .

We are merely supposing that such an arrangement s possible and
that it will include all of the real numbers under consideration. Here,
then, is the hypothetical setup: _

We have, as before, a countably infinite number of rows, each row
consisting of a decimal point followed by a countably infinite number
of digits. As stipulated, each row must be different in at least some
way from every other. The difference can be slight. It might occur in
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only one decimal place. For example,

4357298502649 - - -
and 4357298512649 " 1 ¢

are different real numbers, though it might take a careful eye to detect
the difference. Both would have to be included in any complete listing.

Now recall that the second part of the basic assumption was that
all real numbers in the interval (0, 1] were to be included in the
listing. We propose, then, to demonstrate that no matter what the
arrangement, no matter how the listing is conceived, there will
always be at Jeast one real number belonging in the stated interval
which has been inevitably left out of the listing. A kind of tricky
business, to be sure, but follow if you can!

Let any proposed listing be represented as before:

81 = ApN0G12013014Q15° ° *
§2 = (210%2023024425 " * *
33 = G3,032033034435" * *

83 = Q410420438NA45 ° °

Sp = Qn10n20n3qn4lns* - °

....................

Now form the decimal
-211822033844 ° * " lpn * * *

by selecting from the master list those digits represented with dupli-
cate subscripts. (The selected digits may also be thought of as coming
from a diagonal line illustrated by the arrow.) This is clearly a real
number in (0, 1]. Hence it should appear somewhere on the list, say
in the xth position, as the decimal expansion of the number s,.

Now with reference to s,, construct a new decimal

b11b22baabaabssbes -« - -

with the following stipulations: one, each b,, is different from the
corresponding a,, in s;; and two, no b,, is zero.
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This new number, since it has no zeros, must be a nonterminating
decimal. It is a real number in the prescribed interval. Call it #,.
Now note the following very carefully:

The number t, is different in some respect from every number on the
list. In other words, the real number i, has not been included in
the original list, contrary to the hypothesis which assumed that the
list was complele.

In presenting an argument such as this, one must be prepared to
meet a challenge or two. For instance, it might occur to someone to
ask, “How do we know it is not on the list since we have no actual
list to refer to, nor can such a list be actually exhibited?” We can
deal with this challenge by returning the ball as follows:

“Very well then, concede that it is on the list. It must appear
somewhere in the counting scale, say as the mth number, or decimal
expansion of s,,. But the decimal expansion of s,, must contain a digit
in the mth place, this digit being @mm. On the other hand, we know
that the mth digit of {; is bnm and by construction

bmm 7 @mm.

Hence, though s,, may agree with {; in every other respect, we know
that its mth decimal is different. Consequently it is a different real
number. And, for similar reasons, it is different from any other s
on the proposed list.”

A second question might concern the possibility of constructing an
alternative original list which would include ¢;. But we must recall
that the original notations .a;a;2a,3 - - - were quite arbitrary. They
merely stood for any possible listing.

2. THE CARDINAL NUMBER C
The foregoing arguments lead to a major assertion:

The set of real numbers, or points, in the interval (0, 1] is nol
countable.
Let us call this set J. We are asserting, in other words, that the set J
does not have cardinality ¥,. We do know that the set is infinite.
Now can you construct a 1-1 correspondence between the positive
integers and a subset of J? Try letting

1l e, 2 (___,1, 3 <——+,l» n(———r;lir et cetera.

2 3
Thus R, is less than or equal to the cardinal number of J.
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Turthermore, since Ny has been shown to be unequal to J’s cardinal
number, we may take it that the cardinal number of J is greater than
N,. Following convention, we shall call this new cardinal number C.
Thus it appears that

Ny, <C

The concept of eguivalence has already been examined for finite
and countably infinite sets. This can readily be extended. That is,
any two sets are said to be equivalent if they have the same cardinal
number, ie., if the elements of one set can be put in 1-1 corre-
spondence with the elements of the other.

3. AN EQUIVALENCE THEOREM

Since the ground has been broken for the recognition of infinities of
different sizes, it might be well at this point to state explicitly a
theorem which deals with the question of equivalence. This will be
given without proof. It is a theorem of considerable importance,
known variously as the Bernstein or the Bernstein-Schroeder theorem.
The proof is complicated, but worth investigating.

Theorem: Given two sets S and T, if S is equivalent to a subset of T
and if T is equivalent to a subset of S, then S is equivalent to T.

The converse is clearly true.

As an illustration, consider the twosets S = {1,2,3,4,---} and
T = {2,4,6,8, - }. Wehave already observed that the two sets are
equivalent. Let us then see if each set can be shown to be equivalent
to a subset of the other. To make the picture more vivid, we shall use
proper subsets.

First, there is a fairly obvious 1-1 correspondence between 7 and
a proper subset of S. Let the elements in T be matched with their
exact counterparts in S. Now for the reverse, suppose we match
each number in S with a number in 7" which is 4 times as large, i.c.,
let 1 in S correspond to 4 in 7, 2 in S be matched with 8in 7, 3in S
with 12 in T, and so forth. Do you see that this furnishes s 1-1
correspondence between S and a proper subset of 7'?

With the above theorem and its converse we can deal with the mat-
ter of relative size by means of the following criteria:

If a set S has cardinal number m and a set T has cardinal number n,
then m < n if S is equivalent to a subsel of T, but T 1s not equiva-
lent lo a subset of S.
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The foregoing conditions were clearly met in the case of N, an'd‘ C.
We have already indicated a 1-1 correspondence between the posn.twe
integers and a subset of (0, 1]. The reverse, however, is not possible.

4, OTHER SETS WITH CARDINAL NUMBER C

Having established the fact that the set of all points (real numbers)
in the interval (0, 1) has cardinality C, we shall now track down other
sets with this same cardinal number. Since we will no longer be deal-
ing with countable sets, the business of determining 1-1 correspon-
dences can no longer be accomplished by a simple counting, or enumer-
ating process, as heretofore. We shall need some new machinery.
Samples of this will appear shortly.

As a first move, let’s look at some other intervals, very much,. but
not exactly, like the one just considered. These are (0, l)' with neither
end point, [0, 1) with 0 but not 1, and finally [0, 1] with both end
points in the act. This last interval is often referred to as the con-
tinuum. (You can detect a reason for choosing the letter C.) The
four intervals under consideration ean be pictured as follows: (The
open circle indicates that the point is not included.)

0,0 ) e ﬁ; -
i < —
0,1 ® :
o= ——— —
io,1) o 3
0,1 — —
0 1

To show that (0, 1] is equivalent to (0, 1), we shall need a special
device. For convenience we shall let j stand for any element.in o, 1},
our original set, J. Let & be any element in (0, 1); call this set K.
The crucial idea here is that j can have the value 1, but & cann.ot.

Our correspondence scheme will involve a kind of subtraction
process. We start with the numbers of J which are larger than %
and less than or equal to 1. That is, all j such that

b<i<

=3

Corresponding to any one of these numbers we let for

k
example, let the point 5 = 1 in J correspond to &
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in K. Thus j =  would correspond to k = § — 3 = #, and so
forth. Note that since j does not reach %, k under this correspondence
does not reach § — 4, or 1. Do you see, then, why the choice of
k = § — j was made? So far so good! We have taken care of the
values of j in the interval (3, 1] by setting up a 1-1 correspondence
between these and the values of & in the interval (4, 1). We observe,
in other words, that by letting k = § — j, there will be for every j
where 4 < j < 1, exactly one partner % for every k such that
3 <k <1. Asjgoes from 1 down toward 3, k goes from % up
toward 1.

Now suppose we do the same sort of thing with respect to another
pair of intervals. This time split the rest of J in half by considering
every point in the interval (}, 3}, i.e., every j such that

i1<is4

Note here again j may now have the value  (which it couldn’t before)
but not the value . We now wish to set up a 1-1 correspondence
between these values of 7 and the values of & in a new interval. We can
split the remainder of K in a similar way. This time use the interval
(1, 3). As before, k does take on the lower value but not the upper.
By this time you should have a pretty good hunch as to how the
correspondence can be set up. Suppose we try letting

F=g—j
in this case. Thus when

Jj=4%k=%— 3=} andsoon.

Why, in this instance, did we choose § in the formula & = 3 — ;?
Note again that the new subinterval for J is (3, 4] while for K it is
(1, 4). We might consider the points of J as starting at 4 and going
down to, but never quite reaching, 4. The corresponding points of K
will then start at 4 and go up to, but never quite reach, 4. This
should give a hint as to why we chose .

Having come this far, we can give the next step in more compact
form. For the interval

&3 of J
and 3, 1) of K,
let k=% —3j
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What is the corresponding value of k for j = 3? Do you see that
the number § in this formula does the same job as # in the previous
one? It starts k¥ at the bottom, i.e., 3, when j starts at the top,
ie, }.

This process can be continued indefinitely. To show how it works,
see if you can do the following problems.

EXERCISES

1. Describe the next two pairs of intervals.
2. In each case give the equations which establish the correspon-
dence between the j’s and 's.

If one were to go on like this forever (we can't!), a 1-1 correspon-
dence between J and K would ultimately be established completely.
We shall not labor the point here. Let’s say that we have gathered
enough circumstantial evidence to convince ourselves that such a
correspondence does exist. What, then, does this tell you about the
cardinal number of K? .

In looking back over the demonstration, there may still be some
puzzlement as to just what we were doing and why. Perhaps you are
wondering why the correspondence couldn’t have been constructed
by using one formula for the entire interval. For example, let
k =1 — j for all values of j. Since j is never zero, then k¥ would
never be 1. All right so far! However, the interval (0, 1] for j does
allow j to have the value 1. By the formula ¥k = 1 — j, this would
give & the value 0, which is forbidden. The problem facing us is that
K, or (0, 1), is open at both ends while J, or (0, 1], is not. Hence,
rather than base our correspondence on a single interval, we have
been obliged to use a sequence of half intervals. In each of these
both J and K were the same type of interval, i.e., both were half-open
even though the respective points not included were on opposite ends.

As in many mathematical situations of this sort, one may not catch
the full significance of the maneuver in one quick reading. It is often
necessary to reread perhaps several times and then, what is even
more important, to think about it for a while, What essentially is the
difference between this type of approach and the one used for in-
tegers?

In our first encounter with R, we established a 1-1 correspondence
between the set P of positive integers and a proper subset S where S
contained every element of P except the number 1 itself. In the
argument above we have dealt with a very similar situation where K
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is a proper subset of J, in which the number 1 is the only missing
element. The procedure, however, seems significantly different.
Think about this!

Once we have established the fact that (0, 1] and (0, 1).are equiva-
lent,! we can show that [0, 1) is also equivalent to (0,1). As an
exercise try it, noting this time that the missing element in K is 0.

A final step is the establishment of a 1-1 correspondence between
(0, 1) and [0, 1] where the latter set includes both 0 and 1.

See if you can make this demonstration. Hint: if one agrees to let
0 correspond to 0, the problem looks a lot like the one we started with!

The result of all this (perhaps a small harvest considering the
large-scale planting) is an assurance that the cardinal numbers of
four slightly different intervals (one open, two half-open, and one
closed) are all the same. That is

,1), (0,1}, [0,1), and [0,1]
all have cardinal number C.

5. LONGER INTERVALS

There are some interesting results which follow from this conclusion
regarding intervals of any given length. This again brings out some
of the more surprising aspects of the study of transfinite numbers
and/or infinite sets, although by now we may be prepared for most
anything!

Let us suppose we have an interval from 0 to 1 inclusive, and that
this is represented by a line segment L. Now let S be an interval of
any finite length. In the figure (p. 41) we shall represent S by a
line segment paraliel to and drawn beneath the line segment L. Now
from a selected point? P above L, lines are drawn through the end
points of L and S respectively, and also several other lines from P
which intersect both L and S, as illustrated.®

Without delving too deeply into the geometric implications of this
particular exhibit, which is known as a central projection, it should

! For convenience we are using interval notation to designate sets of real numbers.
Since we have identified, in a sense, the real nurmbers with points, there should be
no confusion.

2 Splect P as the intersection of the Jines through the end points of the two seg-
ments.

3 If the length of segment S is less than that of L, then S should be placed be-
tween L and P.
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b_e clear from certain premises with respect to points and lines that if
lines are drawn from P to S through all points of L, we would have
here a 1-1 correspondence. Conclusion?

The set of all points (real numbers) in any finite interval has
cardinal number C. /

One can go still further and assert that the cardinal number of the
set of all points in a half line is also C. As a suggestion for the demon-
stration, inspect the following illustration.

N
P A
B .
L\
S
(AN T~

Here the curve at the top of line segment L indicates that the upper
end point ! is not included. The arrow on the right of § implies that
the half line S continues indefinitely. Point P is located on a line
through the point at I parallel to S. Lines are drawn from P through
Land S.

As a final gesture, show that a full line has cardinality C. The
device indicated below projects a broken, open finite interval onto a
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full line. Here segments L, and L, are placed so that their open end
points lie on a line through P parallel to S. The lengths of L, and Lo

are immaterial.

4, P \
Ly D A L)
B
S
/7o P\ I

6. MORE ABOUT CARDINAL SUMS

The foregoing considerations give us more ammunition for de-
veloping further the arithmetic of transfinite numbers. We have al-
ready shown that for any finite cardinal number 7

Ro+n=N0 and R0+&0=&0'

1t is natural, then, to raise certain questions about €. In particular
we wish to find answers to the following:

Ct+n="7?
c+80=?
C+C=7?

Suppose we tackle the last one first.

To begin with, recall that the sum m + n of any two cardinal
numbers is the cardinal number of any set which is the union of any
two disjoint sets having cardinal numbers m and n respectively. Now
let’s consider the two disjoint sets S and T where S is the set of all

{1 . points in the interval [0, 1] and T is the set of all points in the interval
i | (1,2). Each of these sets has cardinal number C. (You can readily
| establish this for the second set 7' by an easily formed 1-1 correspon-
i dence between (0, 1] and (1, 2].)

g The union of S and 7 is the set of all points in the interval [0, 2.
| i What is the cardinal number of this set? Remember the central
J| | projection scheme in a previous illustration.
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Tltus the answer to the question € -+ € = ? has now been de-
termined. One concludes inescapably that C 4+ € = C,
For the answers to the other two related questions we can use the

following idea. Suppose that for any cardinal numbers a and b we
are given, that

a<b
and b < a

Thfen b must be equal to a. This is actually a corollary to the Bern-
stein Theorem (p. 36).

Referring to the question of
C+n

where n is any finite cardinal number, we know that € 4+ = is the
car@inal number of any set which is the union of two disjoint sets
having C and n as cardinal numbers. Let T be a set with cardinal
number n. There is a 1-1 correspondence between a disjoint set S
with cardinal number C and a subset of S U T. Hence it follows that

C<LCHn
Likewise it can be shown that
C+n<C-+C
The chain is now forged and we have
c<Cc+n<CH+C
Having just completed the verification that
C=C+¢,

we can now make an assertion about € 4+ n.
In like manner one arrives at a conclusion about

C + N,.
Thus ultimately we establish that
C+n=C+NR,=C+C=C

There is a consequence of these results which may surprise many
of you. In an earlier demonstration we showed that the set of all
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real algebraic numbers is countable. It can be shown that the set of
all algebraic numbers including complex roots is also countable.
Thus the set of real algebraic numbers is not equivalent to the set
of all real numbers There must, then, be some real numbers which
are nol algebraic.

This in itself is not surprising since most of you have already met
some of these. For example, m = 3.14159 - - - is one such number.
_ The base of the natural logarithms ¢ = 2.71828 . - - is another. You
might also think of various trigonometric ratios, such as the sine
of 25°, as possible candidates. Recall, however, that sin 60° = #v/3
is algebraic, while sin 30° = % is rational.

A natural question arises concerning the set of non-algebraic (often
called transcendental) numbers. Is it finite? or even countably
infinite? If finite, then the real numbers (algebraic plus transcenden-
tal) would have cardinal number Ny + n. If countably infinite, the
reals would have cardinal number N, + N,. How large, then, do you
think the set of transcendental numbers must actually be?

7. MORE ABOUT CARDINAL PRODUCTS

If we now turn our attention to multiplication, we can form con-
clusions about the products C-n, C- Ry, and C- C.

Initially we must recall again the definition of product with respect
to cardinal numbers. If S has cardinal number m and 7 has cardinal
number n, then m - n is the cardinal number of the Cartesian product
S X T. Remember, a Cartesian product is the set of all ordered
pairs of elements (s, t); 8 is an element of S, and ¢ is an element of 7'.

Let’s begin the investigation this time by looking at Ny - C. As
defined, the product N - € is the cardinal number of the Cartesian
product of two sets, with cardinalities N and C respectively. For our
two sets we may select P, the set of positive integers, and S, the set of
all points in the inferval [0, 1).

From previous considerations we know that these have the
requisite cardinal numbers.

We must examine, then, the set of all pairs (n, 8) where = is a posi-
tive integer and s is a point in the interval [0, 1), i.e., a real number
less than 1 and greater than or equal to 0.

To find the cardinal number of this set of pairs we need to develop
a 1-1 correspondence between P X S and some other set whose
cardinality we already know. But what are some of these sets with
known cardinal numbers? A quick review tells us that all finite
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intervals (of any length) have cardinality € and that a half line and a
full line have cardinality € also.

How can we use this information to practical advantage in the
above case? Suppose we consider the individual elements in our
Cartesian product. One subset would be all elements of the form
(1, 3), where s runs over the set of points in the interval [0, 1). A
second subset would contain all elements of the form (2, s), elements
in a third subset have the form (3, s), and so forth. This suggests a
possible correspondence. What if, for example, we let each element
in the first subset correspond to the number (or point) 1 + s? In
other words,

(1,0) —— 1
(1, .25) «—— 1.25
(1, .33) «—— 1.33

It should be clear that we would then have a 1-1 correspondence be-
tween the elements in our first subset and the points of the half-open
interval [1, 2).

What about the second subset? Can this be put in 1-1 correspon-
dence with a second interval? The third subset? Can any subset with
elements of the form (n, s), with n a fixed integer, be made to
correspond with an interval [z, n + 1)? But the totality (union) of
all disjoint subsets with elements (n, s) forn = 1,2, 3, - - - is actually
our Cartesian product, while the totality (union) of all the intervals
of the form [n,n 4 1) where n = 1, 2, 3,--- is a half line with
initial point 1. This half line has cardinality C. What, then, is the
cRardinal number of the Cartesian product? What can be said about

0 C?

We can now use the Bernstein corollary encountered before.
Without elaboration of detail it should be clear that a set with
cardinal number = - C, with » a finite cardinal number, is a Cartesian
product with elements of the form (k, s) where k has values 1, 2, 3,
-+ -, n for a finite integer n. This is clearly a subset of the Cartesian
preduct considered above. Consequently we may conclude that

n-CSNo-C.

What about the relationship between € and n - €? Very recently
we established a 1-1 correspondence between the points in the interval
{1, 2) and the set of all pairs of the form (1, s), i.e., subset number
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one in the previous demonstration. Thus a set with cardinal number
C is equivalent to a subset of a set with cardinality » - C.
Now it follows that

CSn-CSRo~C and NO-C=C
whence we conclude that # - € and N, - € are both equal to C.
As Hamlet mournfully inquired, “What ceremony else?” There
remains the question of
c-C

In dealing with this, we shall also uncover another important phe-
nomenon. In other words, the project has a double dividend.

Suppose we begin in a similar manner. Only this time we shall use
as our representative set with cardinality C the set of points (real
numbers) in the interval (0, 1]. A set with cardinal number C- C,
then, is the set of all pairs (z, y) with x any real number between
0 and 1 excluding zero, and y any real number in the same set.

We have already established the fact that each element in either of
our two sets ean be uniquely expressed as a nonterminating decimal.
In the Cartesian product, therefore, any element (z,y) may be
thought of as a pair of nonterminating decimals.

The strategy to be followed should now suggest itself. We wish to
inquire whether or not a 1-1 correspondence can be set up between
our set of pairs and some known set with cardinality C. The question
is, “What known set is most appropriate?” Suppose we try either one
of the two sets already in the act. So as not to confuse things, let
us introduce a different letter for the individual elements, say w.
Let w then also stand for any real number such that

0<w< 1.

The trick, then, is to form a 1-1 correspondence between elements
(z, ¥) and elements w. In short, we shall try to make each pair of
nonterminating decimals correspond to a single nonterminating
decimal, and vice versa.

Actually the task is not too difficult. In all probability you may
have already thought of a way. Suppose we select a pair (z,, 1) at
random with

Xy = .Q;Q2Q3°*°
and Y1 = .b1b2b3 L
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where the previous convention involving repeated 9's is adhered to so
as to guarantee uniqueness.
Now let

w; = .G;blazbzaab:; LA

This is & nonterminating decimal. It belongs in the appropriate set.
To the question, “Is the correspondence actually 1-1?” we suggest
the following counter questions: “Given any pair (z, y), can we al-
ways determine a unique number w? Given a8 number w, can we
always find a unique pair (z, )?"

The first is answered already. For the second, let’s consider an
example. Let w = .350271643 - - -, the dots implying any old con-
tinuing sequence of digits. It should be clear that our pattern gives us

x = .30763 - - -
and y= .5214 - .-,

Omitting a few final details, we see that the conclusion about

C-C
is inevitable.
We shall now proceed to uncover a major consequence of this
result. This is the promised “second dividend.” Recall that the set of
all real numbers has cardinality C. Since we now know that

c.c=¢,

what can be said about the set of all pairs of real numbers?

Those having only the barest nodding acquaintance with analytic
geometry will recognize that this set of pairs corresponds to the set
of all points in the so-called Euclidean plane. Our by-product (no
mean achievement!) has thus been the establishment of a rather
startling fact, namely, that the set of all points on a line is equivalent
to the set of all points in a plane.

There is, possibly, an even more surprising result stemming from
the same conclusion. One can now assert that:

The set of all points in the plane has the same cardinalitly as the
sel of poinis in the interval [0, 1]. '

Returning now to an earlier set of questions concerning the arith-
metic of transfinite numbers, we may summarize the results obtained
thus far as follows:
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Assuming that » is any finite cardinal number, we have

30+n=N0+No=RQ
Ro-n=3o-80=80
and
Ctn=C+Ny=C+C=C
Cc-n=C:-Ry=C-C=¢C

In terms of order, i.e., comparative size, we know that
n<Ny<C

8. IS C THE GREATEST?
The time is now ripe to paraphrase the fabled query:

“Mirror, Mirror, on the wall,
What is the largest cardinal number of all?”

Is it €? If not, how in the world can we find a larger one? Evidently
it can’t be done by multiplying € (the largest thing we've discovered
so far) by itself. Furthermore, by applying the associative law we
could readily conclude that

(€-C)-C=2¢C

and that the same would be true for any finite number of factors. If,
in short, we multiply C by itself a “zillion” times, we shall obtain no
more than C. We appear, in other words, to be confronted with the
same brand of frustration we met before in respect to 8o. That is,
we can’t seem to enlarge a set by reiterated multiplications or addi-
tions.

To find a larger set than one with cardinal number Ro, you recall,
we were obliged to examine a set we already knew something about,
namely, a set of real numbers. It was then possible to show thata 1-1
correspondence could not be established between this and the set of
positive integers.

It seems reasonable to expect, therefore, that we can now pluck
another set out of the blue as it were, and show that this is larger
than a set with cardinality C. Though such a feat is possible, it seems
preferable, at this point, to adopt an alternative procedure, that is,
to “create” a new and larger set by means of one we already have.
This will, indeed, require some doing!
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Let’s begin by looking at a phase of transfinite arithmetic which
we have already alluded to but not as yet come to actual grips with.

9. CARDINAL EXPONENTS

Given any cardinal number m and another cardinal number =,
what shall we mean by the cardinal number

m"?

Recall that we are bound by an agreement to preserve the con-
ventional meaning of such a symbol with regard to positive integers
when dealing with finite cardinal numbers. We would want our
definition to be such that for two finite cardinal numbers, say 2 and 3
for example, the symbol

23

would indicate the cardinal number 8. In addition to this we shall
want a meaning for such symbols as

2““7 Ng’ Rtéo’ cxo! g’ cc

and, in general, a® where a and b are any cardinal numbers whatsoever.

Before we can formulate such a definition we shall need to examine
a basic mathematical concept of considerable importance. In all like-
lihood it is a familiar one. The idea referred to is the general notion
of & funciion on one set with values in another. Upon examination
it will be discovered that a 1-1 correspondence, about which we have
already had so much to say, is an example of such a function. Itisa
special case, however.

Let us consider, then, a set S and a set 7.

Definition: By a function on S with values in T we shall mean some

rule of associalion which matches each element of S with exactly one
element of T.!

It is quite likely that many of you have encountered several alterna-
tive definitions in your introduction to the study of functions. The
general concept of function is not only basic to the entire realm of
mathematies, it is also a subject of considerable controversy in
contemporary text-writing circles. Without wishing to become in-
volved in such a controversy, we shall stick to the above definition as

! In essence a function involves three entities: a rule of association and two sets.
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most appropriate for this particular discussion. This is not intended
to restrain the reader from forming his own opinions as he encounters
other mathematical literature.

To clarify the notion of a function we offer an illustration. Let S
equal the set {1, 2, 3} and let T equal the set {a, b}. Suppose, then,
there is a rule which associates 1 with a, 2 with b, and 3 with b.

Symbolically we could write

1—a i)y =a
2— b or f(2) =10
3——b f8)=5»

Clearly this correspondence is not 1-1 since both 2 and 3 correspond
to the single elemént b. We sometimes refer to such a correspondence
as many-to-one.

With respect to the above notations, the single-headed arrows (in
contrast to the double-headed ones appearing previously) imply that
the correspondence is not necessarily one-to-one. The symbolism is
intended to convey the notion of a one-way street.

The notation on the right is the more conventional method of
representing functional values. As with the arrow device, the expres-
sion f(1) = a may be interpreted as meaning that the function f
associates the element 1 in S with the element a in 7. To represent a
set of different functions, one may use numerical subseripts as

h, f2, fs et cetera

or literal subscripts as :
f L2 ] j ) f ¢

depending on convenience.

One may also use different letters, such as f, g, A, and so forth.
All of these representations will appear in the sequel.

Though our definition of function requires that there be an assign-
ment for every element of S, it is not necessary that all of T be in-
cluded.! A function of the type indicated may match all three ele-
ments of S with a single element of 7. Thus another function is

l~——a 2——a 3—a

! When all of 7 is included, such a function is sometimes referred to as a mapping
of S onto T. When all of T is not included, it is a mapping into T. These niceties of
distinction needn't trouble us in the present study!
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Still another function is

fa(1) = b

f2(2) =0

f2@)=1b
Also

Ja(l) = b

f3(2) = b

fa@) = a

and so forth.

We now asktheimportant question, “How many different functions
are there for our particular sets?”

For notational convenience we could condense the list as follows:

lf —a > a > » | —r af—> b — b — b

2| —ae|—a|— b|—a]|— b|—ra|— b|— b

3 > q » b » q > a » b >» | —ra| — b

From the above one can deduce that the number of possible functions
is 8, which coincidentally is 23.

Though this single example would by no means furnish exhaustive
evidence, it does suggest a plausible definition for exponentiation.
Before making an explicit statement, however, let’s consider a second
example. Take the sets K and L where

K = {a, b} and L = {z,y,2}.

Suppose we now wish to examine all the possible functions on K
with values in L. (We may use the abbreviated expression, “functions
on K to L.") A few of these are:

fi(a) = = fe(a) = y f3(a) =z
Hd) =y o) =2 f3(b) = 2

As an exercise, complete the list! How many functions are there? If
you haven't left any out, the total should be 9. Note also that

9 = 32
For supportive ammunition let -
L= {abcd and M= {1,23}.
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Determine the number of possible functions on L to M. It may be a
little tedious to list them all, but you can, by applying some com-
binatorial know-how, come up with the answer 81.

Now reverse the situation. Determine the number of functions on
M to L. In this case the number should be 64. Here again we observe
(with less surprise) that

81 = 3¢ and 64 = 43,

Two ideas emerge: one, there may be a definite connection between
functions and cxponentiation; two, it may make a significant differ-
ence which set is which.

All of this compellingly suggests the following definition.

Definition: Lel S be a set with cardinal number n and let T be a set
with cardinal number m. Then m® is the cardinal number of the set of
all possible functions on S with values in T.

There are three things to keep in mind: (1) The elements of the new
set under consideration are functions; (2) The exponent is the cardinal
number of the set on which the function is applied; (3) The base is the
cardinal number of the set of possible values which the function
assumes. In more technical language, the exponent represents the
cardinal number of the so-called domain of the function, the base
represents the cardinal number of the range.

Suppose we now let S be the set {a, b, ¢} and let T = {0, 1}. Then
the set of functions on S fo 7' will have cardinal number 23. A sam-
pling of these functions is

a——0 a——0 a—1
b——1 b——0 b——0
¢c—0 c——1 c——1

Without creating any confusion one could also list the above func-
tions as triples in the following way:

0,1,00 (0,01 (1,0,1)

Thus we might consider the function set as the set of all triples formed
with the numbers 0 and 1. As anticipated, there would be 8 of these.

If the set S, on the other hand, contained the five elements
{a, b, ¢, d, €}, the function set could be represented as a set of all
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possible “quintuplets,” one of which might have the form
(ol ll 0’ 1’ 1)

indicating, in this case, that

a >0, b > 1, ¢ »0, d—1, e—1
How many of these would there be? An excellent answer is 32, or 2%,

10. THE CARDINAL NUMBER 2%¢

As you may or may not have suspected, we are in the process of
tooling up for a major thrust. It seems now appropriate to face head
on a question as to the meaning of

Pl

By definition, it is the cardinal number of the set of all functions
on a countably infinite set with values in a set of two elements. For
such sets we might just as well choose the set P of all positive integers
and the set T consisting, as above, of the elements 0 and 1.

In the notation we have just been using, one such function could
be represented, for example, as

(ls 0) 1: lr 0: 07 0, 17 0; lv"')

where the sequence of 0’s and 1’s, in whatever arrangement they hap-
pen to be for this particular function, continues indefinitely. Or, let
us say, the parentheses contain a countably infinite collection of 0's
and 1’s.

Having ascertained the general appearance of our function set, it is
easy to establish a 1-1 correspondence between this set and the set of
all nonterminating decimals, with digits consisting of only 1's and
0’s. In fact, the correspondence can be simply obtained by removing
the commas and inserting a period. Thus the above sample would
correspond to

1011000101 - - -,

which implies that the set of all possible expressions of this form has
the same cardinality as the set of functions on P to {0, 1}.

But every real number in the interval [0, 1} can be expressed in
the base 2 system by means of a different expansion of 0’s and 1's.
If the reader has had limited or no experience with numerical notation
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using a base of 2 (ealled variously the dyadic or binary system of nota-
tion), it is strongly suggested that a bit of research be done in this area.

1t is not feasible to elaborate on the subject in this particular study.
We shall merely give a few illustrative examples to convey the general
idea.

Binary notation uses the number 2 as a base, just as the decimal
system uses the number 10. In decimal notation, for example, the
symbol 534 stands for 5.102+ 3-10 + 4-10% Likewise, the
symbol .534 would indicate

% + fg—; + % or (5-107Y) 4+ (3-107%) 4 (4-107%).
In binary notation, the symbol (111), stands for
1:2241-24+1-2° or 7
As another ‘example,

(1101); = (1-2) + (1-25) + (0-2) + (1-2%, or 13.

For a positive number less than 1, the binary system uses a point
in the same manner as in the decimal system. Thus in binary we have

(11), = -;— + 51-2- or (1-271 4 (1-27% (.75 in decimals)
. 1 0 1 1

while (:1011), = 3 + 35+ 53 + 33

or 274+ ©0-27)+ 27+ a-27%

(.6875 in decimals).
It is clear that the above two quantities could also be written as
(.1160---), and (.101100-:-:),

with the dots signifying a continuation of 0’s.!
Since, as indicated before, every real number in the interval [0, 1)
has a different binary expansion of this type, it is clear that the set of

1 Should the reader be plagued with lingering uncertainties re the binary system
and insufficient time to pursue the matter, he may have to take some parts of the
above development on faith.
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all real numbers in [0, 1) can be put in 1-1 correspondence with a sub-
set of the set of all such binary expansions. Since, furthermore, the
set {0, 1) has cardinality C, we note accordingly that

C < 2%,

On the other hand, each infinite decimal expansion of the form
-101101 - - - represents a different real number in the interval [0, 1).
Thus it follows that a set of cardinality 2% is in 1-1 correspondence
with a subset of a set with cardinality C. Hence

2% < ¢

Therefore, it may be asserted, using the corollary to the Bernstein
Theorem (see page 43), that

2% = ¢,

11. AN ENLARGEMENT PROCESS

We have indeed arrived at a rather momentous conclusion. It has
been, in fact, discovered that a set having cardinality N4 can be, in a
sense, “enlarged” through exponentiation. Since we already know
that Ny < C, it is evident that

Ny < 20,

In words, we have come upon an arithmetic process for obtaining
such an enlargement of the countably infinite cardinal number. The
inescapable query now confronts us. Would the same hold for any
transfinite cardinal number, including our friend C? In brief, is 2€
larger than C itself? If the answer is “Yes,” it should be clear to the
reader that we may have set off & kind of chain reaction.

Something is definitely in the wind! It behooves us, therefore, to
make the essential verification. We shall attempt to do this not only
for C, but for any transfinite number.

Suppose, then, we let k¥ be any cardinal number whatsoever. Con-
sider the cardinal number \

2%,

What is this number? By definition (see page 52) it is the cardinal
number of the set of all functions on a set, say S, having cardinality
k, with values in the set 7 = {0, 1}.
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We shall begin the job by examining a subset of the set of all these
functions. Using functional notation, let us denote by f, a function
on S which matches the single element s with 1 and all other elements
with zero. For example, suppose S were to contain the elements p, g,
7, 8, ¢, 4, v, and perhaps others as well. Then in symbols

J:(p) = 0, i@ =0, fi(r) = 0, fi(8) =1,
fa(®) = 0, fa(u) =0, fs) = 0,

and so forth. Thus f, might look something like (0,0,0,1,0,0,0, - - -).
Another function, f;, for example, matches the element ¢ with 1
and all others with zero. That is,

fi(p) =0, filg) = 0, fr) =0, fi(s) =0,
=1, fiw)=0, fi(v) =0, and so on.

In similar manner we define functions f,, fq, fr, fu, fo With a sub-
script to go with each element in 8. It is evident that this set of
functions does not constitute all possible functions on S to 7. There
is, for example, a function which matches at least two elements of S
with 1. Hence we are considering a subset of the set of all functions,
in fact, a proper one.

But there is an obvious 1-1 correspondence between functions of
the type f, and the set of elements of S. (Match subscript with corre-
sponding element!) Thus we can assert that

k< 2k,

It remains, then, to show that & is not equal to 2%, whence it would
follow that k is actually less than 2%, We shall first assume that there
s & 1-1 correspondence between the set of all possible functions on
S to {0, 1} and the set S itself. We could designate such a correspon-
dence as follows: Let g, be the function which corresponds to the ele-
ment s, let g; correspond to the element ¢, and so forth. If our corre-
spondence is to be 1-1, then the set of g’s must include all possible
functions. We shall try to show that it doesn’t!

How might one do this? By thinking up a function which couldn’t
possibly be any of the ¢’s, but which is still a legitimate function on
S to {0, 1}. Suppose we construct a function » which behaves as
follows: For any element s in S, let h(s) = 0 if g,(s) = 1 (where g,
is the hypothetical correspondent to s). On the other hand, let
h(s) = 1if g,(s) = 0.

In case it isn’t quite clear what the function A actually is from the
above description, it might help to illustrate in terms of a finite
example. Take a set with these elements:

Let S= {z,9,2}.

Now assume (though the assumption looks a bit absurd in this
instance) a 1-1 correspondence between S and the set of all functions
on S to {0, 1}. This implies that there are only three such functlons,
which we may designate as

Gzy Gy 92

How, then, do we construct the function A? We first investigate
the function g. as applied to the element 2. We know that g.(z)
must either equal 1 or 0. We simply, then, let A(z) have the value
which g.(z) does not have. Similarly, for (y) examine the second func-
tion g,.

If g (y) = 1, let h(y) = 0; if g,(y) = 0, let A(y) = 1. Do the
same with respect to 2(z) and ¢.(z). Since we do not presume to know
just what the individual g functions may be, we cannot exhibit &
explicitly. On the other hand, we do know that no matter what the g
functions may be, the k function must be different, in one respect at
least, from any of them.

If there is any lingering doubt, let’s be more specific.

Let’ g‘(x) = 17 g?(x) = 0) g:(x) =1
g:0) =1, g =1 gy =0
g=(2) =0, g4z) =1, g:(2) =0

Now deseribe the function A.
We hope your answer was

hiz) =0, k() =0, k@)=

There is no (0, 0, 1) function among the ¢’s.

It should now be clear that & would also be different from all the
g’s no matter what or how large the original set S might be. I'rom
which it follows that the g set does not contain all functions, contrary
to hypothesis. Since the g set represented any possible 1-1 corre-
spondence, there must not be any such animal.

Wherefore be it said that for any cardinal number k&

k< 2%
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12. CARDINAL NUMBERS LARGER THAN C

We have come a long journey from the original youngsters’ debate
on the question of a largest number. But perhaps, in a sense, we have
arrived full cycle back to much the same position. Whether it be
“Mirror, Mirror, on the wall,” or the soul-searching query of a young
Archimedes, the question, “What is the largest cardinal number of
all?” gets the same comeuppance!

There isn’t any largest. For suppose the largest cardinal number is
a “killion.” What, then, about

2(killion)?

There is an interesting alternative to the notion of 2*. We can
arrive at this by going back, first, to finite cases. Suppose we consider
the set

S={ab, ¢}

and wish to determine all possible subsets. It is an accepted fact that
the empty set, @, is considered to be & subset of all sets. For if we
examine the definition of a subset, we infer that a set 7' is a subset of
a set S if T does not contain any element which is not in S. Now
apply this in respect to © and S.

We have already accepted the fact that any set is a subset of itself.
Hence the collection of all subsets of {a, b, ¢} may be displayed as

Q’ {a} ’ {b} ’ {c} H {a’ b} ? {al c} H {bl C} ? {a} b) c} *

There seem to be 8 subsets. Furthermore, 8 = 23. But let us wait
before jumping to conclusions. Suppose we look at another, and per-
haps more ingenious, way of indicating subsets of a given set, say of
three elements.

Let the symbol (011), for example, mean a subset of {a, b, ¢} which
omits the first element but includes the other two. Thus (011) =
{b, ¢}, (101) = {a, ¢}, and (100) = {a}.

How, then, would our complete list of subsets look? What about

(000), (100},  (010),  (oO1)

(110), (101), (011), (111)
Surely we’ve seen something like this before. It looks surprisingly
like the set of all functions on {a, b, ¢} to {0, 1}.

There is no need to labor the point further. We can now supply
the alternative definition of the cardinal number 2.

58

1t is also the cardinal number of the set of all possible subsets of a
set with cardinality k. Again we’ve a substitute answer to the question
about the “largest” cardinal number “killion.” Take a set with a
“killion” elements. Then find the total number of subsets. How big
18 this number? Perhaps we can’t quite say, but we do know that it is
“obviously” larger than a “killion”!

Many loose threads have been left dangling in this brief introduc-
tion to transfinite mathematics. Many questions have doubtless been
left unanswered. We have not said anything, for example, about

cRo_

We know that it is larger than ;. Why? Because a set with cardinal
number 2%¢ is larger than &, and such a set can be put in 1-1 correspon-
dence with a subset of a set with cardinality €%, There remains,
however, the question of whether or not C*¢ is larger than C itself.
This you can try to answer. And many other questions also. We
hope not only that you will try, but also that you will succeed. Good
luck!

13. SUMMARY

Since the presentation of this material has been somewhat informal,
more in the manner of a narrative than a carefully documented
sequence of logical consequences, it might be well to close with a
summary outline of what we have accomplished. This you may
subsequently use as a handy reference. The summary outline follows
herewith.

The nonexistence of a “largest” positive integer implies that the
set of positive integers goes on forever. Hence the total “number”
of positive integers cannot itself be an integer. It must, therefore, be
something else—a transfinite number. The question is, “Can any type
of mathematics be applied to such numbers?” Furthermore, can there
be more than one transfinite number? and if so, how can these num-
bers be determined, classified, combined, and if possible, compared?
The task of dealing with these problems is made possible through the
use of a branch of set theory.

First, we define the cardinal number of a set as follows:

Definition: A set 8 is said to have cardinal number n if and only if
the elements of 8 can be put in 1-1 correspondence with the set of in-
tegers {1, 2, 3, - - -, n}, where n is a positive integer.
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Immediately it is seen that the fundamental concept of a 1-1 corre-
spondence between sets lies at the heart of the enterprise.

From here we proceed to place the notion of infinity on a mathe-
matically workable footing as follows:

Definition: A set S is finite if and only if its cardinal number is a
posilive inleger. A non-emply sel which is not finile is called infinite.

Here we see that the concept of infinite set is predicated on the im-
possibility of establishing a certain type of 1-1 correspondence.

The set of positive integers proving to be infinite, we assign this
set a transfinite cardinal number called iN,.

Equivalence of sets is then defined by the assertion that:

Definition: Two sels are equivalent if and only if their elements can
be put in 1-1 correspondence with each other.

It follows that any set which is equivalent to the set of positive in-
tegers shall likewise be thought of as having the cardinal number N,
This, then, links together three basic notions:

Equivalence 1-1 Correspondence The same cardinal number

From the establishment of a 1-1 correspondence between the set of
all positive integers and the set of even positive integers, there follows
an alternative definition of infinite set:

Definition: An infinile set 18 one which can be pul in 1-1 corre-
spondence with a proper subset of itself.

Thus the existence of a 1-1 correspondence between one set, say S,
and a proper subset of another set, say T, does not guarantee that S
has cardinal number less than that of T, as it does in the finite case.
We do know, however, that in such instances the cardinal number of
S is less than or equal to that of T, i.e., N(S) < N(T).

An important theorem on equivalence is the Bernstein Theorem,
which implies, in effect, that

if N(S) € N(T) and if N(T) £ N(S), then N(8) = N(T).
Whence we obtain the criterion for comparing cardinal numbers:

If N(S) < N(T) but N(T) £* N(8), then N(8) < N(T).

t The symbol $_ reads “is not less than or equal to.”
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On an investigatory basis we arrive at an important conclusion,
namely, that there are many seemingly larger sets which also have
cardinal number N,. Among these are the set of all integers, the set of
all rational numbers, and, what’s more, the set of all algebraic num-
bers. It is further established that

N, is the smallest cardinal number

since every infinite set contains a subset with cardinal number R,. Sets
with cardinal number N, are called countable.

There follows the search for a set with cardinal number larger than
No. One such set turns out to be the set of all real numbers in the
interval (0, 1], to which we assign the cardinal number €. Thus
N, < Cq.

Many more sets prove to be equivalent to this one, including the set
of all points in any finite interval, or half line, or, for that matter,
full line. We also deduce that the set of all points in a plane has the
cardinal number C.

Before the quest for cardinal numbers larger than € can be under-
taken, some laws of arithmetic for cardinal numbers must be estab-
lished. These, while designed to include various transfinite numbers,
must not be in conflict with existing computational conventions for
positive integers.

Accordingly, we define two operations on cardinal numbers as
follows: :

Definitions:

(1) If m and n are any two cardinal numbers, then the sum m + n
18 the cardinal number of any sel which is the union of any two
disjoint sets having cardinal numbers m and n respeclively.

(2) The product m - n s the cardinal number of any sel which s the
Carlesian product (i.c., set of all ordered pairs with an element
from each set) of any two sets having cardinal numbers m and n.

A key factor in the above definitions is the notion that any sum or
product depends not on a particular set or sets but merely on any sets
having the requisite cardinal numbers. Thus any representative from
a class of equivalent sets may be selected in the determination of a
given sum or product.

On the basis of these definitions we may make further observations:

Addition and multiplication are both associative and commulative.
Multiplication is distributive over addition.
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Tor finite cardinal numbers the usual properties of positive integers
are preserved. However, in the case of transfinite cardinal numbers
there is a considerable amount of unconventional behavior. This can
be summarized as follows:

If n is a finite cardinal number, then

Ro+n=N8; N+8; =N,
Ro"ﬂ:RQ No‘Ro=No
C+n=¢C C+N;=¢C €C4+C=C
C:-n=C C€C:-N=€C C.C=C
By associativity, the sum and product results may be expanded to

include any finite number of terms or products. Likewise it is shown

that
o+ Ry + -+ = Ny

for a countable infinity of terms.
A definition follows for exponentiation which yields some very
important results:

Definition: Lel S be a set with cardinal number n and let T be a set
with cardinal number m. Then m™ is the cardinal number of the set of
all functions on 8 with values in 7T

On the basis of this definition we arrive at & fundamental relation-

ship, namely )
oK — €.

More significant is the final conclusion that for any eardinal number k
k< 2%
This provides us with a sound basis for the ultimate assertion that
there is no largest cardinal number.

It can also be shown that for any set with cardinal number k, the
set of all possible subsets has cardinal number 2%, Thus we are fur-
nigshed with an alternative way of “enlarging” a cardinal number by
means of subsets. .

14. EPILOGUE

Mathematicians have long been tussling with a celebrated un-
solved problem involving transfinite numbers. We have conclusively
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shown that Ny < C. But nowhere could the assertion be made that €
is the “next” number larger than ¥,. Is it possible to construct a set
whose cardinal number is greater than 8, and less than €? Do not
be discouraged if you cannot find an immediate answer. No one else
has been able to either!

The epic of transfinite numbers has many more verses. There is a
very fruitful and challenging companion piece, namely, the study of
the so-called ordinal numbers. This we most cordially invite you to
explore.
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Answers
Page 17. Positive Rationals Positive Integers
' 2 - — 16
5 20
% > 26
2 — 30
2 > 40
% 44
2 50

Page28. 1.15 2.10 3.14 4.23 5 25

Page 29.

: Polynomials with height 4:
23,222, 22 42,22 — 2,224 1,22 — 1,32, 22+ 1,2 — 1,z + 2,
z— 2,4

Polynomials with height 5:

1, 223, 23422 2% — 22 2841, 28 — 2, 2341, 23 — 1, 322,
2:2 4z, 222 — 3z, 22241, 222 —1, 24+ z41, 22 —z+1,
224z —1, 22—z — 1, 224 2z, 22 — 2, 224+ 2, 22 — 2, 4z,
32+ 1,3z — 1,2z + 2, 22 — 2,z+3,2z—35

Additional real roots not previously obtained from & = 2, 3, and 4:

=3, —} — V5, —V2, —iv2 § — V5 —4 & —4+ V5,
V2, V2, 3+ §V5,3

Page 39. 1. (7, &) of J, [5:4) of K; (Fy, 6l of J, (5. 1) of K
2 k= F—Gik=o9—1J

65




